Contact

Porträt Prof. Dr. Brendler, Vinzenz; FWOA

Prof. Dr. Vinzenz Brendler

Head of Department
Thermo­dynamics of Actinides
v.brendler@hzdr.de
Phone: +49 351 260 2430

Social Media

  Twitter-Logo

Actinide thermodynamics department

Research

The department of “Thermodynamics of Actinides” is hosting a significant part of the analytical backbone of the institutes, e.g. mass spectrometry, atomic emission spectrometry, elemental analyses, powder diffraction, vibrational and nuclear magnetic resonance spectroscopy. This allows us to work on several steps in the thermodynamics value chain.

From a chemical point of view, the focus is set on heavy metal contaminants, namely long-lived radionuclides. The derivation of parameters describing hydrolysis, aqueous complexation, surface reactions or solubilities are combined with structural investigations to validate the species set forming reactions, enabling mechanistic models. Such parameters are fed into respective databases after verification. Gaps still remaining can be closed by applying different estimation methods, from mineral analogies to Linear Free Energy Relationships.

Combined with field data (mineralogical composition, porosity, pH, redox potential, ionic strength, temperature, or CO2 partial pressure), geochemical speciation patterns and radionuclide retardation can then be computed for complex systems on different scales. To name just a few, we worked on cementitious barriers with organic additives, with real-world crystalline samples or with Chornobyl soils. There, also, geostatistics helps to map the heterogeneities observed, and sensitivity / uncertainty analysis not only increases confidence in computational results but supports also the identification of critical parameters and submodels.

Quite recently, these approaches were complemented by machine learning methods, this will eventually lead to digital twins for nuclear waste repositories. Eventually, this shall bridge the distance between atomistic investigations and the large-scale prognostics required e.g. in performance assessment covering distances of several km over up to one million years.

The actual major research topics of our department can be summarized as follows:


Loading...

Latest publication

Relationship between Mineralogically Complex Iron (Oxyhydr)oxides and Plutonium Sorption and Reduction: A High-Energy Resolution X‑ray Absorption Spectroscopy Perspective

Vejar, M. R.; Zengotita, F. E.; Weiß, S.; Shams Aldin Azzam, S.; Huittinen, N. M.; Beutner, S.; Bazarkina, E.; Amidani, L.; Kvashnina, K.; Hixon, A. E.

Abstract

o facilitate the continued use of commercial nuclear power and
address environmental contamination, it is essential to understand the fate and
transport of plutonium (Pu) in (sub)surface environments. Current geochemical
models do not account for complexity in mineral assemblages, such as metal
substitution or the role of nanoscale crystallite sizes. In this work, we studied
mineralogically complex systems where Pu(V) was the sorbate and Al-substituted
or nanoscale iron (oxyhydr)oxides were the sorbents. Using M4-edge and L3-edge
high-energy resolution fluorescence detection X-ray absorption near-edge structure
(HERFD-XANES) spectroscopy, we probed the electronic configuration of Pu,
quantified the extent of Pu surface-mediated reduction, and explored Pu speciation.
Our results indicate that nanoscale iron oxides exert a greater degree of control
over the redox behavior of Pu than Al-substituted iron (oxyhydr)oxides under
circumneutral pH and oxic conditions. This is due to the dependence of Pu surface-mediated reduction on an initial sorption step,
which is greater with the increased specific surface area and reactivity of nanoscale crystallites.

Keywords: plutonium; redox; iron (oxyhydr)oxide minerals; HERFD-XANES; sorption

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-41430


More publications


Team


Head

NameBld./Office+49 351 260Email
Prof. Dr. Vinzenz Brendler801/P2502430
v.brendler@hzdr.de

Employees

NameBld./Office+49 351 260Email
Dr. Frank Bok801/P2023551
f.bok@hzdr.de
Rodrigo Castro Biondor.castro-biondoAthzdr.de
Viktor Dück801/P3063241
v.dueckAthzdr.de
Alexandra Duckstein801/P1532774
a.ducksteinAthzdr.de
Dr. Stephan Hilpmann801/P3062860
s.hilpmannAthzdr.de
Dr. Jerome Kretzschmar801/P2073136
j.kretzschmarAthzdr.de
Dr. Elmar Plischkee.plischkeAthzdr.de
Dr. Solveig Pospiech801/P2052438
s.pospiechAthzdr.de
Dr. Anke Richter801/P2022426
anke.richterAthzdr.de
Raj Sarkar801/P1032720
r.sarkarAthzdr.de
Dr. Katja Schmeide801/P2082436
2513
k.schmeideAthzdr.de
Salim Shams Aldin Azzam801/P1032720
s.shamsAthzdr.de
Susanne Zechel801/P3523328
s.zechelAthzdr.de

Analytics

Head

NameBld./Office+49 351 260Email
Dr. Harald Foerstendorf801/P2513664
2504
h.foerstendorfAthzdr.de

Employees

NameBld./Office+49 351 260Email
Sabrina Beutner801/P2032429
2528
s.beutnerAthzdr.de
Tim Gitzel801/P3162025
2517
t.gitzelAthzdr.de
Dominik Goldbach801/P2033198
d.goldbachAthzdr.de
Karsten Heim801/P2012434
2504
k.heimAthzdr.de
Sylvia Schöne801/P2033198
2526
s.schoene@hzdr.de, s.guertlerAthzdr.de