Social Media

Twitter-Logo  Mastodon-Logo  LinkedIn-Logo

Upcoming Events

Initiatives & Cooperation

Vorschau-Bild

Joint press release by HZDR and TU Dresden of 01.12.2021

Using terahertz to explore the inside of the cell: Joint research group between the Cluster of Excellence Physics of Life and the Helmholtz-Zentrum Dresden-Rossendorf to decipher biomolecules

Foto: Dr. Ellen Adams ©Copyright: Fabio Novelli

Dr. Ellen Adams

Source: Fabio Novelli

Download

Since December 2021, Dr. Ellen Adams leads the DRESDEN-concept Research Group for Physical Chemistry of Biomolecular Condensates. Her position with tenure track to a professorship is jointly funded by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the Cluster of Excellence Physics of Life (PoL) at TU Dresden. Ellen Adams aims to use the latest terahertz technologies to decipher biophysical processes of interfaces - so-called membrane-less condensates - in the cell interior, which for example play a role in neurodegenerative diseases.

In order to describe the physical processes that underlie the organization of life in molecules, cells and tissues, excellent infrastructure and interdisciplinary research as well as, above all, international top-class researchers are required. Dresden with the TU Dresden, the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and other partners in the DRESDEN-concept network has exactly this to offer.

Move from Bochum to Dresden

From now on, Ellen Adams will be a part of this scientific community. Starting December 2021, she will be looking deep into cells with her new joint research group on biomolecular condensates at the Cluster of Excellence Physics of Life (PoL) at TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR) to unravel the details of how the inside of cells is structured from the level of atoms and molecules. Adams received her PhD in physical chemistry from Ohio State University, USA, in 2016. She then conducted postdoctoral research at KTH Royal Institute of Technology Stockholm, Sweden, and at Ruhr-Universität Bochum, Germany, where she first investigated the hydration properties of biomolecular condensates using terahertz spectroscopy. “The results of my research have implications not only for biology, but for many other fields in which water is essential, including many areas of physical chemistry, biochemistry, and atmospheric chemistry. Interdisciplinary collaboration between many research areas is essential to achieve my research goals. The Cluster of Excellence PoL and the HZDR offer me a great opportunity to continue my research while living in one of my favorite cities. I’m looking forward to calling Dresden my new home,” the scientist highlights.

Exploring biological interfaces

Ellen Adams will address fundamental physical phenomena of biological interfaces. Since the invention of the microscope, it is known that certain areas in cells are divided into organelles – areas with different specialized functions in cells. These organelles, such as the cell nucleus, are separated by a biological membrane – a kind of biological interface between the two areas of the cell. All the more astonishing was a discovery made in Dresden: segregated organelles that are membrane-less. These organelles are formed by a so-called liquid-liquid phase separation in the cell interior, which separate droplets from the surrounding liquid without being bound by a membrane, similar to oil droplets in water. Defects in the formation and dissolution of such segregates are associated with various diseases and thus their regulation is an important research topic. This is exactly what Ellen Adams' group will focus on. The goal is to understand and target the physical properties of the interfaces and the role of water as a structural component of these biologically reactive droplets.

Optimal experimental conditions at the HZDR

At the HZDR, Adams finds the cutting-edge experimental conditions necessary for her projects. This is where it is already possible today to use so-called terahertz radiation for research into biomolecules. These are especially long-wave infrared rays that are specifically absorbed by water molecules. Ellen Adams has worked intensively on the use of this radiation for the study of the water envelope around biological molecules and will share this expertise to the Dresden Cluster of Excellence PoL. TELBE is the name of the existing terahertz source at the HZDR's ELBE (electron linear accelerator for beams of high brilliance and low emittance) beam source. In addition, a fundamental renewal of the accelerator facilities at HZDR is planned: the future project DALI (Dresden Advanced Light Infrastructure). Biophysicist Prof. Karim Fahmy, who has been working as a researcher at the HZDR since 2002, is already looking forward to the close collaboration with Ellen Adams and emphasizes the efficiency of the infrastructure at the HZDR: “The further development of TELBE with regard to highest beam qualities should, among other things, create new experimental possibilities for users from biophysics. Here, the requirements of the groups from DRESDEN-concept are directly relevant for technical developments to keep biological samples functional under experimental conditions. This will once again underpin Dresden's competitiveness as a leading location for science and research.”

All in all, Dresden provides ideal conditions for a successful start of Adams and research results from deep inside the cell.

Editorial: Kim-Astrid Magister


Media contact:

Simon Schmitt | Head and Press Officer
Department of Communication and Media Relations at HZDR
Phone: +49 351 260 3400 | Email: s.schmitt@hzdr.de

Bianka Claus
DFG Cluster of Excellence Physics of Life (PoL), TU Dresden
Public relations
Phone: +49 351 463-41247 I Email: bianka.claus@tu-dresden.de