

TECHNISCHE UNIVERSITÄT CHEMNITZ

Tip-enhanced spectroscopies for studying 2-dimensional semiconductors and their interfaces

Dietrich RT Zahn

10/14/2022

www.tu-chemnitz.de/physik/hlph

Semiconductor Physics in Chemnitz

Spectroscopic Characterisation of Surfaces, Interfaces, Thin Films, and Low-dimensional Structures

Current Research Areas:

- Ternary and quaternary quantum dots
- 2D semiconductors
- Plasmonics
- Wide bandgap oxide semiconductors

- Raman spectroscopy including surface-enhanced and tip-enhanced Raman spectroscopy
- Photoluminescence including tip-enhanced photoluminescence

Methods

- Spectroscopic ellipsometry including imaging ellipsometry
- Infrared spectroscopy including nano-IR
- Ultraviolet and X-ray photoemission spectroscopy
- Atomic force microscopy including Kelvin force microscopy and current-sensing AFM
- Electrical characterisation (IV, CV, DLTS, ...)

- 2-dimensional Semiconductors
- Tip-enhanced Optical Spectroscopies
- MoS₂ on Plasmonic Nanostructures
- Observation of Dark Excitons at Room Temperature

2D Material Family

5

Graphene vs. TMDC: Atomic Structure

Atomic structure of (a) graphene/graphite and (b) monolayer TMDC and bulk 2H-TMDC. (c) Atomic displacements in two Raman active modes of monolayer TMDC and bulk 2H-TMDC.

Acc. Chem. Res. 2015, 48, 41-47. DOI: 10.1021/ar500280m

Acc. Chem. Res. 2015, 48, 56-64. DOI: 10.1021/ar5002846

Graphene vs. TMDC: Phonon Dispersion and Electronic Structure

Phonon dispersion relations of (a) graphene and (b) MoS₂. Electronic structure of (c) graphene and (d) MoS₂. *Acc. Chem. Res.* **2015**, 48, 41-47. DOI: 10.1021/ar500280m

Band Structures of Bulk, Bilayer, and Monolayer MoS₂

The top of the valence band and the bottom of the conduction band are highlighted in green. The red arrows indicate the smallest value of the bandgap (direct or indirect) for a given thickness.

Chem. Soc. Rev., 2016,45, 118-151

9

TMDC Properties

a	Bar	ndgap (eV)	Мо	W	Ti	Zr	Hf	V	Nb	Та	Ni	Pd	Pt
	S	monolayer	1.8-2.1	1.8-2.1	~0.65	~1.2	~1.3	~1.1	metal	metal	~0.6	~1.2	~1.9
		Bulk	1.0-1.3	1.3-1.4	~0.3	~1.6	~1.6	metal	metal	metal	~0.3	~1.1	~1.8
	Se	monolayer	1.4-1.7	1.5-1.7	~0.51	~0.7	~0.7	metal	metal	metal	~0.12	~1.1	~1.5
		Bulk	1.1-1.4	1.2-1.5	metal	~0.8	~0.6	metal	metal	metal	metal	~1.3	~1.4
	Те	monolayer	1.1-1.3	~1.03	~0.1	~0.4	~0.3	metal	metal	metal	metal	~0.3	~0.8
		Bulk	1.0-1.2	metal	metal	metal	metal	metal	metal	metal	metal	~0.2	~0.8

b

Chem. Soc. Rev., 2015, **44**, 8859-8876

MoS₂: Raman Spectra as a Function of Layer Thickness

Nanoscale, 2015,7, 4598-4810

- 2-dimensional Semiconductors
- Tip-enhanced Optical Spectroscopies
- MoS₂ on Plasmonic Nanostructures
- Observation of Dark Excitons at Room Temperature
- Interlayer Excitons
- Outlook

Abbe diffraction limit:

Spatial resolution = $\frac{0.61\lambda}{NA}$

 $\lambda \longrightarrow$ wavelength of the light

 $NA \rightarrow$ numerical aperture of the objective

Considering the probing lasers

100x obj. and 0.9 NA

For $\lambda = 515$ nm: Spatial resolution = 350 nm

For $\lambda = 632$ nm: Spatial resolution = 430 nm

Zhang et al.; Sci China-Phys. Mech. Astron., 55 1335 2012

Solution: Tip-enhanced Raman Spectroscopy

 $E = \frac{E_{loc}}{E_{far}}$

Schematic representation of TERS (a) FEM simulation of the plasmonic field enhancement at the tip apex for an Au tip (b). Also suitable for **Tip-enhanced Photoluminescence TEPL!**

Faraday Discussions

Cite this: Faraday Discuss., 2019, 214, 309

PAPER

CROYAL SOCIETY OF CHEMISTRY

View Article Online View Journal | View Issue

The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering⁺

Mahfujur Rahaman, (D^{*a} Alexander G. Milekhin, (D^{bc} Ashutosh Mukherjee, (D^a Ekaterina E. Rodyakina, (D^{bc} Alexander V. Latyshev, ^{bc} Volodymyr M. Dzhagan (D^{ad} and Dietrich R. T. Zahn (D^a

Distribution of Local Electric Field

COMSOL simulations

 $w \approx 2\sqrt{Rd}$

Richard-Lacroix et al., Chem. Soc. Rev. 2017, 46, 3922

Simulation of Enhancement Factor and Spatial Resolution

18

- 2-dimensional Semiconductors
- Tip-enhanced Optical Spectroscopies
- MoS₂ on Plasmonic Nanostructures
- Observation of Dark Excitons at Room Temperature
- Interlayer Excitons
- Outlook

Nanoscale

PAPER

View Article Online View Journal | View Issue

Cite this: Nanoscale, 2018, 10, 2755

Giant gap-plasmon tip-enhanced Raman scattering of MoS₂ monolayers on Au nanocluster arrays†

SEM and AFM of MoS₂ on Au Disks

1L-MoS₂/Plasmonic Heterostructure

nm

0

22

Experiment: TERS vs Raman

TERS on 2D/Plasmonic Heterostructures

Spatial Resolution and Enhancement Factor

-20

-10

0

TERS map @ 410cm⁻¹

Investigation of Local Heterogeneities

≻ Strain

50 nm

26

- > Temperature rise
- ➤ Hot electron doping TERS map @ 410cm⁻¹

Doping induced Raman shift $\approx 6 \text{ cm}^{-1}$

10000

Hot electron doping of about 1.4.10¹³ cm⁻²

0.0 0.3 0.6 0.9 1.2 1.5 1.8 n (10¹³/cm²)

Chakraborty et al. Phys. Rev. B (2012), 85, 161403(R)

- 1. Li et al.; ACS Nano (2015),9, 10158
- 2. Yu et al., Adv. Func. Mat. (2016), 26, 6394
- 3. Najmaei et al., ACS Nano (2014), 8, 12682

Doping gradient for A_{1g} mode = **0.23**·10¹³ cm⁻²/cm⁻¹

High resolution TERS map of monolayer MoS₂ on gold nanodiscs acquired with a gold tip and 785 nm excitation. Corresponding TERS spectra along the circles shown in the map.

RESEARCH ARTICLE

www.advopticalmat.de

Observation of Room-Temperature Dark Exciton Emission in Nanopatch-Decorated Monolayer WSe₂ on Metal Substrate

Mahfujur Rahaman,* Oleksandr Selyshchev, Yang Pan, Rico Schwartz, Ilya Milekhin, Apoorva Sharma, Georgeta Salvan, Sibylle Gemming, Tobias Korn, and Dietrich R. T. Zahn

Schematic of monolayer WSe₂ sandwiched between Au (or Ag) and PDMS nano-patches (a).

Two-way formation of out-of-plane dipole in WSe₂ (b): one via metal substrate (bottom) and the other via polar Si-O in PDMS (top). Formation of top dipoles via chalcogen vacancies are the most probable scenario.

Spin-dependent optical transitions in monolayer WSe₂ (c).

Dark Excitons in TMDCs

Coupling to Surface Plasmon Polariton

Zhou et al., Nat. Nanotech., 2017, 12, 856

Magnetic Brightening

Using high NA objective

Zhu et al., Phys. Rev. Lett., 2017, 119, 047401

Sample schematic

Sample preparation:

- Thermal evaporation of Au/Ag (100 nm) on Si
- 1L-WSe₂ was transferred on Au/Ag from PDMS using conventional dry transfer method
- Annealing @ 150 °C for 2 hours in N₂ atmosphere

AFM topography

SP image

Micro-PL measurements

at Room Temperature

at Room Temperature

Peak position map

at Room Temperature

TEPL spectra

TEPL schematic

Qualitative determination of defect density

010

270

TERS E(M)

2LA (M)

A(M)

Fit

300

 $E(\Gamma) + A(\Gamma)$

330

Correlation between TEPL and TERS

Qualitative determination of defect density

TEPL spectra

Nano-PL measurements

at Room Temperature

PL measurements on SiO₂ substrate

at Room Temperature

IOP Publishing

J. Phys.: Condens. Matter 34 (2022) 333001 (18pp)

Journal of Physics: Condensed Matter

https://doi.org/10.1088/1361-648X/ac7689

Topical Review

Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors

Mahfujur Rahaman^{1,2} and Dietrich R T Zahn^{1,3,*}

The Chemnitz Semiconductor Physics Group

http://www.tu-chemnitz.de/physik/HLPH/

Thank you very much for your attention!

Dr. Mahfujur Rahaman Yang Pan Ilya Milekhin

Funding: DFG Deutsche Forschungsgemeinschaft