Nachricht vom 17.02.2025
Spieglein, Spieglein, fang das Licht
Die Vermessung von unsichtbaren Lichtschwingungen mittels elektro-optischer Resonatoren
Forschende der Abteilung für Physikalische Chemie am Fritz-Haber-Institut der Max-Planck-Gesellschaft und des Instituts für Strahlenphysik am Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben eine neuartige experimentelle Plattform entwickelt, um die elektrischen Felder von Licht, das zwischen zwei Spiegeln gefangen ist, mit einer Präzision unterhalb eines Lichtzyklus zu messen. Diese elektrooptischen Fabry-Pérot-Resonatoren ermöglichen eine präzise Kontrolle und Beobachtung von Licht-Materie-Wechselwirkungen, insbesondere im Terahertz (THz) Spektralbereich. Durch die Entwicklung eines abstimmbaren hybriden Resonatordesigns und die Messung und Modellierung seines komplexen Modenspektrums können die Physiker*innen nun aktiv zwischen Knoten und Maxima der Lichtwellen an relevanten Resonatorstellen schalten. Die Studie eröffnet somit neue Wege zur Erforschung der Quantenelektrodynamik und der ultraschnellen Steuerung von Materialeigenschaften.
Experimentelles Prinzip der elektro-optischen Resonatoren (EOCs), bei denen die mehrfachen Echos des THz-Lichtfeldes (rot) mit einem sichtbaren Abtastimpuls (grün) mit Hilfe einer nichtlinearen Wechselwirkung innerhalb des Fabry-Pérot-Resonators (goldene Spiegel) zeitaufgelöst gemessen werden.
Bild: Spencer/Mährlein (FHI)
In einem bedeutenden experimentellen Fortschritt im Bereich der Elektrodynamik in Resonatoren (auch Kavitäten genannt) hat das Team eine neuartige Methode zur Messung elektrischer Lichtfelder innerhalb von Resonatoren demonstriert. Durch die Nutzung von elektrooptischen Fabry-Pérot-Resonatoren und ultrakurzen Laserblitzen haben sie Messungen mit einer Präzision einzelner Lichtzyklen erreicht, die Einblicke in Licht und Materie genau dort ermöglichen, wo ihre Interaktion stattfindet.
Die Kavitätselektrodynamik untersucht, wie Materialien, die zwischen Spiegeln platziert sind, mit Licht interagieren und sowohl ihre Eigenschaften als auch ihr dynamisches Verhalten verändern. Diese Studie konzentriert sich auf den Terahertz (THz) Spektralbereich, in dem niederenergetische Anregungen die grundlegenden Materialeigenschaften bestimmen. Die Fähigkeit, neuartige Zustände zu messen, die innerhalb des Resonators gleichzeitig Licht- und Materieanregungen sind, wird ein klareres Verständnis dieser Wechselwirkungen bieten.
Innovatives Hybrid-Kavitätsdesign
Die Forschenden haben auch ein Hybrid-Kavitätsdesign entwickelt, das eine abstimmbare Luftlücke mit einem geteilten Detektorkristall innerhalb des Resonators beherbergt. Dieses neuartige Design ermöglicht eine präzise Kontrolle über interne Reflexionen, was selektive Interferenzmuster „on demand“ erzeugt. Diese Beobachtungen werden durch mathematische Modelle unterstützt, die einen Schlüssel zum Dechiffrieren der komplizierten Resonatordispersion und ein tieferes Verständnis der zugrundeliegenden Physik ermöglichen.
Diese Forschung legt den Grundstein für zukünftige Studien zu Licht-Materie-Wechselwirkung in Resonatoren und bietet potenzielle Anwendungen für Grundlagenforschung, Quantencomputing und Materialwissenschaften. Dr. Michael S. Spencer, Erstautor der Studie, unterstreicht: „Unsere Arbeit eröffnet neue Möglichkeiten zur Erforschung und Steuerung der grundlegenden Wechselwirkungen zwischen Licht und Materie und bietet ein einzigartiges Werkzeugset für zukünftige wissenschaftliche Entdeckungen." Prof. Sebastian Mährlein, der Leiter der Forschungsgruppe, fasst zusammen: „Unsere EOCs bieten hochpräzise feldaufgelöste Einblicke, die neue Wege für die Kavitäts-Quanten-Elektrodynamik in Experiment und Theorie ermöglichen können."
Die Originalarbeit wurde kürzlich in der Nature-Fachzeitschrift Light: Science & Applications veröffentlicht: https://doi.org/10.1038/s41377-024-01685-x
Weitere Informationen:
Prof. Sebastian Frederick Mährlein
Leiter Hochfeld-THz getriebene Phänomene
Tel.: +49 351 260 2240 | E-Mail: s.maehrlein@hzdr.de