Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

2 Publications

Ultrahigh anisotropy Heusler alloys for THz spin-torque oscillators

Deac, A. M.

Since the discovery of giant magnetoresistance, metal spin electronics has seen unprecedented advances, from the realisation of ultra-high magnetoresistance ratios to substantial output power from spin transfer torque oscillators based on Fe/MgO/Fe-type tunnel junctions which function in the GHz range [1]. The recently discovered class of almost compensated ferrimagnetic manganese gallium pseudo-Heusler alloys, due to their widely tunable magnetic properties [2], could enable the design of spin torque oscillators which work in the range of hundreds of GHz, i.e., covering the THz gap.
To investigate the resonance modes in such compounds, we first conducted high-field magnetotransport measurements [3] on selected films with different composition and, therefore, different compensation temperatures (Tc) and effective anisotropies. In manganese ruthenium gallium (MRG), for instance, both the transverse Hall resistivity and longitudinal resistivity were recorded in magnetic fields up to 58 T, at variable temperature. MRG exhibits a large spontaneous Hall angle of ~2%, coercivity exceeding 1 T at room temperature (and several Teslas close to Tc ) and has very low net magnetisation of 25 kA/m. Despite having no net magnetic moment at Tc, the magnitude of the Hall signal does not become zero, indicating both a half-metallic nature of the material and that the magnetotransport is dominated by one sublattice only. An additional feature is observed in the transport data, which resembles a spin-flop transition. By comparison to analytical and mean-field calculations of the sublattice magnetisation directions, we can estimate both the sublattice anisotropy (Hk ) and interlayer exchange coupling (Hex). Based on these values, the out-of-phase and in-phase magnetic resonance modes are estimated to lie in the range of 0.3 THz and 2 THz, respectively. Furthermore, magnetoresistance ratios as high as 40% at 4.2 K and 12% at room temperature can be obtained when integrating MRG in magnetic tunnel junctions [4].
The out-of-phase resonance mode was also directly measured for ferrimagnetic Mn3-xGa thin films as function of anisotropy and applied magnetic fields (up to 10 T). At low applied fields, we find that the resonance frequency ranges between 200 and 350 GHz for films with different compositions (i.e. anisotropy), providing proof of concept for efficient on-chip emitters of coherent, narrow-band light pulses in the THz gap [5].

References:

[1] Baibich M.N. et al., Physical Review B, 61, 2472 (1988), Ikeda S. et al., Applied Physics Letters, 93 082508 (2008), Tsunegi S. et al., Applied Physics Letters, 109, 252402 (2016)
[2] Kurt H. et al., Physical Review Letters, 112, 027201 (2014)
[3] Fowley C. et al., Journal of Physics D : Applied Physics, 48, 164006 (2015)
[4] Borisov K. et al., Applied Physics Letters, 108, 192407 (2016)
[6] Awari N. et al., Applied Physics Letters, 109, 032403 (2016)

Keywords: magnetism; spin-transfer torque; terahertz communication

Related publications

  • Invited lecture (Conferences)
    62nd Annual Conference on Magnetism and Magnetic Materials, 06.-10.11.2017, Pittsburgh, USA
  • Invited lecture (Conferences)
    APS March Meeting 2018, 05.03.2018, Los Angeles, USA

Permalink: https://www.hzdr.de/publications/Publ-26031
Publ.-Id: 26031