Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Integration of mineralogical and hyperspectral data for drill-core characterization

Tusa, L.; Andreani, L.; Contreras, C. I.; Ivascanu, P.; Gloaguen, R.; Gutzmer, J.

Mineral exploration and resource definition require extensive drilling campaigns that are generally done with tight deadlines and often rely only on visual qualitative evaluation of the rock characteristics (core logging) and limited chemical analyses. The aim of these campaigns is to understand the genesis and zonality of mineral deposits. The ore, in many cases, is closely related to the distribution of hydrothermal alterations and their associated structures. Therefore, the host characteristics are analysed in order to build a distribution model of the mineralization. However, traditional techniques such as core logging can present limitations in the identification of often subtle and therefore similar mineral assemblages and the acquired data are only qualitative. Additionally, the identification and quantification of other textural and structural features, such as veins, is slow, laborious and frequently limited by the subjectivity of the observer.
Our aim is to develop new methods which respond to the need for rapid, automated and precise extraction of mineralogical, textural and structural information from cores. We propose to process hyperspectral VNIR/SWIR data from core scanners, using innovative image segmentation and classification techniques in order to quickly extract precise numerical parameters of both mineralogical and structural information. We use scanning electron microscopy (SEM)-based analyses on selected samples to train the classifier and validate the results. SEM shows great potential in the identification of the main alteration assemblages as well as of the main hydrothermal events they are associated with. Even though it requires extensive sample preparation and the measurements are time consuming, by analysing representative samples for different alteration types, SEM-based analyses provide control information for the interpretation and classification of hyperspectral data. Hyperspectral data allow the identification of the main alteration phases and the distribution of specific mineral assemblages as each vein type displays a specific signature in the VNIR-SWIR region of the electromagnetic spectrum. Image segmentation techniques allow us to extract veins and additional parameters such as orientations and densities. The interest of this approach is that it (1) allows the combined analysis of compositional and structural features, (2) provides a very rapid and validated mapping of the cores that is based on (3) the upscaling of SEM data.
The proposed methodology has been tested on selected core samples from the Bolcana copper-gold porphyry system (Romania). This site is located in the Golden Quadrilateral (Apuseni Mountains) where extensive drilling has been performed by Eldorado Gold using state of art methodology that includes thorough chemical analyses, detailed logging and spectral characterization of assay pulps. The mineralization in Bolcana is hosted in Neogene subvolcanic dioritic intrusions and associated magmatic-hydrothermal breccias that intruded in a shallow volcanic environment. The system is characterized by complex transitions on lithological and alteration assemblages. The porphyry mineralization is also overprinted by later epithermal events that lead to different alteration patterns than those usually encountered in porphyry systems.
The analyses of the cores collected from the Bolcana site have shown a preferential association of specific alteration assemblages with different vein generations such as white mica dominant assemblages for late stage pyrite veins, a chlorite-epidote dominant assemblage on early chalcopyrite veins and low intensity white mica dominant assemblage associated with early quartz veins. At core scale a preferential orientation of these veins was additionally observed.
The integration of this new approach with traditional logging methods performed by site geologists as well as with structural data (Reflex IQ-logger) provided by Eldorado Gold gives us an insight on the spatial and directional distribution of the main vein types and their characteristic alteration assemblages in the Bolcana site. The integration of such new methodologies in the exploration campaign allows for better and faster exploration targeting based on key mineral assemblages and structural features, as well as a more comprehensive preliminary ore evaluation and resource modelling. This would be achieved by the implementation of on-site drill-core scanning.

  • Poster
    Applied Geological Remote Sensing, 12.-15.12.2017, Lisbon, Portugal

Permalink: https://www.hzdr.de/publications/Publ-26731
Publ.-Id: 26731