Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Thermal stability of Te-hyperdoped Si: Atomic-scale correlation of the structural, electrical, and optical properties

Wang, M.; Hübner, R.; Xu, C.; Xie, Y.; Berencen, Y.; Heller, R.; Rebohle, L.; Helm, M.; Prucnal, S.; Zhou, S.

Si hyperdoped with chalcogens (S,Se,Te) is well known to possess unique properties such as an insulator-tometal transition and a room-temperature sub-band-gap absorption. These properties are expected to be sensitive to a postsynthesis thermal annealing, since hyperdoped Si is a thermodynamically metastable material. Thermal stability of the as-fabricated hyperdoped Si is of great importance for the device fabrication process involving temperature-dependent steps such as Ohmic contact formation. Here, we report on the thermal stability of the as-fabricated Te-hyperdoped Si subjected to isochronal furnace anneals from 250 to 1200 °C. We demonstrate that Te-hyperdoped Si exhibits thermal stability up to 400 °C for 10 min, which even helps to further improve the crystalline quality, the electrical activation of Te dopants, and the room-temperature sub-band-gap absorption. At higher temperatures, however, Te atoms are found to move out from the substitutional sites with a maximum migration energy of EM = 2.3 eV forming inactive clusters and precipitates that impair the structural, electrical, and optical properties. These results provide further insight into the underlying physical state transformation of Te dopants in a metastable compositional regime caused by postsynthesis thermal annealing. They also pave the way for the fabrication of advanced hyperdoped Si-based devices.

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-29175
Publ.-Id: 29175