Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Implantable highly compliant devices for heating of internal organs: towards cancer treatment

Cañón Bermudez, G. S.; Kruv, A.; Voitsekhivska, T.; Hochnadel, I.; Lebanov, A.; Potthoff, A.; Fassbender, J.; Yevsa, T.; Makarov, D.

Flexible electronics have a strong potential to revolutionize the health care sector. Numerous flexible diagnostic or therapeutic devices have been successfully demonstrated. However, tumor treatment remains rather unexplored in the field of flexible electronics. Here, we demonstrate that the electrical and mechanical properties of highly compliant electronics are advantageous for targeting tumor sites at internal organs. This kind of electronics could be implanted to heat and thereby render the treated tissue susceptible to chemotherapy, radiation or other available treatments. Our method relies on the implantation directly at the tumor site of an ultra-thin flexible device comprising a resistive heater and temperature sensor. The device consists of a 6 µm thick polymeric foil hosting the heater and sensor, capped with a 5 µm thick encapsulation layer. Due to its ultrathin nature, it seamlessly conforms to the very soft liver tissue and allows for precisely controlled thermal treatment. Its high mechanical compliance provides stable readings even upon severe mechanical deformations, enabling a temperature accuracy of 0.1°C at bending radii of 2.5 mm, characteristic for mouse liver tissues. We demonstrate a proof-of-concept prototype and evaluate its electrical and mechanical performance when applied to murine cancer models. The presented highly compliant device paves the way for handling of exophytic (located at the organ surface) tumor nodules via thermal destruction of tissue, targeted drug release, or enhancement of anti-tumor immune responses. In addition, it raises the possibility to further study the effects of thermal treatment in enhancing the development of the new cancer therapies, especially for severe malignancies as liver cancer.

Keywords: flexible electronics; cancer

Related publications

Permalink: https://www.hzdr.de/publications/Publ-29629
Publ.-Id: 29629