Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Magnetic anisotropy and spin dynamics in the kagome magnet Fe4Si2Sn7O16: NMR and magnetic susceptibility study on oriented powder

Dengre, S.; Sarkar, R.; Opherden, L.; Herrmannsdörfer, T.; Allison, M.; Söhnel, T.; Ling, C. D.; Gardner, J. S.; Klauss, H.-H.

Fe4Si2Sn7O16 hosts an undistorted kagome lattice of Fe2+ (3d6, S = 2) ions. We present results of bulk magnetization and Sn nuclear magnetic resonance (NMR) measurements on an oriented Fe4Si2Sn7O16 powder sample oriented in geometries parallel (II) and perpendicular (⊥) to the external applied magnetic field used for orienting the powder (Bori). The bulk susceptibility χ shows a broad peak at TN ∼ 3 K associated with antiferromagnetic ordering. NMR spectra indicate the presence of planar anisotropy in the kagome planes. From an analysis of the static NMR shift (K) and dynamic spin-lattice relaxation rate (1/T1) we conclude the presence of dominant magnetic fluctuations in the kagome planes. For the II orientation, K scales linearly with the bulk susceptibility for temperatures down to ∼4 K, while in the ⊥ orientation K starts to deviate strongly below T ∼ 30 K. We associate this deviation with the onset of spin-tilting towards the kagome planes. These correlations are also reflected in the 1/T1 data for the II orientation, which starts to decrease below T ∼ 30 K. In this correlated regime, TN < T < ∼30 K, we discuss the formation of positive chiral spin correlations in the kagome planes.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-32343
Publ.-Id: 32343