Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Direct visualization of highly resistive areas in GaN by means of low-voltage scanning electron microscopy

Jóźwik, I.; Jagielski, J.; Caban, P.; Kamiński, M.; Kentsch, U.

The damage-induced voltage alteration (DIVA) contrast mechanism in scanning
electron microscope (SEM) at low electron energy has been presented as a fast and
convenient method of direct visualization of increased resistivity induced by energetic
ions irradiation in gallium nitride (GaN). Epitaxially grown GaN layers on sapphire
covered with a metallic masks with etched windows were subjected to He 2+
irradiations at 600 keV energy. The resulting two-dimensional damage profiles at the
samples cross-sections were imaged at SEM at different e-beam energies and scan
speeds. The gradual development of image contrast was observed with the increase of
cumulative charge deposited by electron beam irradiation, to finally reach the
saturation level of the contrast related to the local resistivity of the ion-irradiated part of
GaN.
The presented method allows one to directly visualize the ion-irradiated zone even for
the lowest resistivity changes resulting from ion damage, i.e. all levels of insulation
build-up in GaN upon irradiation with ions. Taking into account that it is not possible to
apply the etch-stop technique by wet chemistry to GaN, it makes the presented
technique the only available method of visualization of highly resistant and insulating
regions in GaN-based electronic devices.
Main aim of the presented work is to get a deeper insight into a DIVA contrast in GaN
with the special emphasize to discuss the role of rastering speed and electron beam
current, i.e. details of charge build-up ion the sample surface.

Keywords: GaN; Ion damage; Ion implantation; Low-kV SEM

Related publications

Permalink: https://www.hzdr.de/publications/Publ-33450
Publ.-Id: 33450