Contact

Prof. Dr. Joachim Wosnitza

Director
Dresden High Magnetic Field Laboratory
j.wosnitzaAthzdr.de
Phone: +49 351 260 3524

Julia Blöcker

Secretary/ Administration
fwh-sek@hzdr.de, j.bloeckerAthzdr.de
Phone: +49 351 260 3527

Nicole Zimmermann

Secretary/Administration
fwh-sek@hzdr.de, n.zimmermannAthzdr.de
Phone: +49 351 260 3535

News

Publication: Pressure-tuned quantum criticality in the large-D antiferromagnet DTN

Povarov, K. et al., Nat. Comm. 15 (2024), 2295

Publication: Field-induced compensation of magnetic exchange as the possible origin of reentrant superconductivity in UTe2

Helm, T. et al., Nat. Comm. 15 (2024), 37

Publication: Terahertz Néel spin-orbit torques drive nonlinear magnon dynamics in antiferromagnetic Mn2Au

Behovits, Y. et al., Nat. Comm. 14 (2023), 6038

Publication: Unveiling new quantum phases in the Shastry-Sutherland compound SrCu2(BO3)2 up to the saturation magnetic field

Nomura, T. et al., Nat. Comm. 14 (2023), 3769


Newsletter: Read the latest news from the four leading high field labs in Europe on the EMFL website.

Foto: EMFL News 4/2023 ©Copyright: EMFL


Video: EMFL - Science in High Magnetic Fields

Get more information

Vorschau-Bild

Bachelor, Master and PhD theses

The HLD offers the possibility to carry out your practical courses as well as for Bachelor, Master and PhD theses for interested students of appropriate branches of study. Furthermore, we provide the opportunity to work as a student research assistant at our institute.
You may send us your application or contact us by phone or e-mail. 


Bachelor projects PhD students Kathrin Götze and Richard Zahn conduct research on current topics in solid state physics

  • Magnetization studies of novel magnetic materials

    Novel magnetic materials will be investigated by means of modern magnetometry methods (SQUID, HALL). You will use advanced measurement techniques and devices in order to study novel magnetic compounds at extreme sample conditions. You will perform the experiments by use of computer-assisted data acquisition and analyse your data by means of modern software tools.  

  • Electronical and thermodynamic transport
    In this project, you will perform measurements of the electronical and thermodynamical transport. These experiments will be conducted at extreme sample conditions (low temperatures, high magnetic fields, high pressures).
  • Thermometry at extreme sample conditions
    Precise thermometry at very low temperatures and high magnetic fields is an ambitious task. It needs to be attuned to experimental measurement techniques. There are several methods at choice, e.g. resistance, permeability, permittivity, Coulomb blockade or nuclear spin resonance thermometry. In your bachelor work, you will address one of these techniques in experiment and its underlying theoretical concept.

The student will be supported by the HLD team.


Master projects 

  • Quantum oscillation measurements in strongly correlated electron systems
    You will utilize high magnetic fields in order to observe quantum oscillations by means of high resolution transport (Shubnikov- de Haas effect) or magnetization (de Haas-van Alphen effect) measurements. Your data will give insight into the band structure and Fermi surface of novel, not yet understood materials.
  • Thermodynamics of quantum materials
    Investigation of the magnetic ground state of new complex materials by means of heat-capacity measurements at very low temperatures. You will perform thermodynamic measurements by using the ultralow-temperature equipment of the HLD. Magnetic fields applied to the sample will be produced in superconducting magnets.

  • Nuclear magnetic resonance studies
    Nuclear magnetic resonance studies of novel iron-based and organic superconductors, as well as magnetic systems with low-dimensional and frustrated interactions at extremely low temperatures and highest magnetic fields.

PhD projects

  • We are always looking for talented PhD students with very good university degree (Diploma/Master) in physics for thermodynamic and spectroscopic investigations of novel solid-state materials (for instance, frustrated magnets or superconductors) at extremely high magnetic fields (up to 95 T) and very low temperatures (down to 10 mK).


Postdoc positions

Available vacancies are listed here.Dr. Geoffrey Chanda in the NMR-Lab