Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Approved and published publications
Only approved publications

41490 Publications

Investigation of density variations in molded wood tubes using gamma-ray CT and correlation with load-bearing behavior

Hartig, J. U.; Bieberle, A.; Engmann, C.; Haller, P.

It is well known that mechanical properties of wood correlate with the density. Since wood is a naturally grown material, variations in the density distribution still exist in timber elements leading to a non-uniform distribution of mechanical properties. To investigate the density distribution in timber elements at the meter scale non-destructively, the gamma-ray computed tomography (CT) scanner, firstly introduced in 2007 by Hampel et al., has been applied. The CT scanner offers a spatial resolution of about 1-2 mm. Nevertheless, small single structures like cracks or branches can be revealed up to a size of several micrometers.
As object of interest, a molded wooden tube (MWT) [3] with a length of 3 m and a diameter of 0.3 m made of beech (Fagus sylvatica) is used. The MWT is produced in a thermo-hydro-mechanical process incorporating densification and recovery of wood transverse to the grain. Thus, besides naturally grown density variations also variations due to the production process of the MWT occur.
In order to verify the assumption that the mechanical properties correlate with the density, an axial compression test is performed with the MWT previously scanned with CT. The spatial deformations on the surface of the MWT were measured by photogrammetry and digital image correlation (DIC) is applied to determine the strain distribution.
The density and geometry data gathered by CT is also used to create a finite element (FE) model. Based on the density data, the elastic properties of the respective elements are defined. The axial compression test is simulated and the results in terms of the strain distributions are compared to the experimental data determined by DIC.
The results of the investigations showed that computed tomography is highly suitable for the non-destructive determination of the density distribution in structural elements of timber. Thus, besides for research purposes CT scanning might be used also in the future for industrial grading of timber elements.

Keywords: molded wooden tube; gamma-ray CT

Involved research facilities

  • TOPFLOW Facility
  • Contribution to proceedings
    International Conference on Computational Methods in Wood Mechanics - CompWood 2019, 17.-19.06.2019, Växjö, Sweden

Permalink: https://www.hzdr.de/publications/Publ-28801


Characterization of continuous wave laser-induced thermal gradients in magnetic tunnel junctions integrated into microresonators via COMSOL simulations

Cansever, H.; Lindner, J.; Huebner, T.; Niesen, A.; Reiss, G.; Fassbender, J.; Deac, A. M.

Spin caloritronics still is a vivid field and aims to investigate static and dynamic effects on magnetic structures due to spin-currents generated by thermal gradients [1]. In magnetic tunnel junctions, magnetization dynamics can be induced by bias voltage as well as thermal gradients [2]. In most research, COMSOL simulations are used to estimate the overall temperature of the magnetic tunnel junction as well as the thermal gradient over the insulating barrier [3-5]. Here, we perform COMSOL simulations using the 2D heat transfer module for specific Co2FeAl/MgO(2nm)/CoFeB magnetic tunnel junctions which are integrated into so-called microresonators [6]. Microresonators have been recently used as alternative approach to investigate the magnetization dynamics of the free-layer within magnetic tunnel junctions, induced by a thermal gradient by means of its ferromagnetic resonance response [6]. Utilizing microresonators for ferromagnetic resonance detection allow for the detection of signals from micron/nano-sized object under laser heating in terms of linewidth and resonance field and thus provide the possibility to detect influences of a thermal gradient on the magnetization dynamics far below the threshold of magnetic switching. The heat diffusion over all layers are modeled by starting with a 2D (vertical) rectangular shape in which we consider the MTJ stack with the MgO-substrate and backside metallization as part of the microresonators shown in Fig 1. Moreover, we consider an air ‘layer’ and the metal-contacts defining the microresonator on top of the MgO-substrate. Upon rotation of this two-dimensional shape around the central vertical z-axis of the MTJ, we obtain a 3D cylinder in which the heat profile is simulated (see Fig 2). The simulation parameters for the materials were chosen similar to those in [3,4]. In the simulation, the fundamental properties of layers i.e. thermal conductivity, heat capacity and material density are used to obtain a temperature profile of the magnetic structure. According to the simulation results, the thermal conductivity of the insulating barrier (MgO) and top metal thicknesses influence the thermal gradient, while uniform heating is strongly affected by the surrounding material of the microresonator which is mainly made from copper (high thermal conductivity). The simulation results provide insight into the heat profile of the whole structure and in particular demonstrate that not only changing the magnetic object itself but also modifying the structure of the surrounding materials yields a handle to tune and optimize the thermal gradient.
Figure 1. 2D sketch of MTJ structure integrated into a microresonator for COMSOL modelling. Heat source, i.e. cw- laser is applied to magnetic layers through the top-metal. The temperature of the bottom of the whole structure is set to 293.15 K.
Figure 2. (a) Temperature profile across the MTJ integrated in a microresonator with the applied power of 145 mW inset (b) 3D cylindrical image of MTJ structure.

[1] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391
[2] Jia X, Xia K and Bauer G E W 2011 Phys. Rev. Lett.107 176603
[3] Walter M et al 2011 Nat. Mater. 10 742
[4] Huebner T, Boehnke A, Martens U, Thomas A, Schmalhorst J M, Reiss G, Münzenberg M and Kuschel T 2016 Phys. Rev. B 93 224433
[5] T Huebner et al 2018 J. Phys. D: Appl. Phys. 51 224006
[6] H Cansever et al 2018 J. Phys. D: Appl. Phys. 51 224009

Keywords: COMSOL Simulation; magnetic tunnel junction; microresonator; ferromagnetic resonance

Involved research facilities

Related publications

  • Lecture (Conference)
    Joint MMM-Intermag Conference 2019 Washington D.C., 14.-18.01.2019, Washington D.C., The United States of America

Permalink: https://www.hzdr.de/publications/Publ-28800


New collective mode in superconducting cuprates uncovered by Higgs spectroscopy

Chu, H.; Kim, M.-J.; Katsumi, K.; Kovalev, S.; Dawson, R. D.; Schwarz, L.; Yoshikawa, N.; Kim, G.; Putzky, D.; Li, Z. Z.; Raffy, H.; Germanskiy, S.; Deinert, J.-C.; Awari, N.; Ilyakov, I.; Green, B.; Chen, M.; Bawatna, M.; Christiani, G.; Logvenov, G.; Gallais, Y.; Boris, A. V.; Keimer, B.; Schnyder, A.; Manske, D.; Gensch, M.; Wang, Z.; Shimano, R.; Kaiser, S.

The complexity of competing interactions in high-temperature superconductors provides a fertile ground for collective modes of different origins. Their coupling to the superconducting order parameter may give important insight into the microscopic pairing mechanism. One prominent example in cuprates is the magnetic resonant mode, whose experimental observation spawned theoretical investigations of pairing scenarios mediated by antiferromagnetic fluctuations. Now, phase-resolved nonlinear terahertz spectroscopy of the superconducting Higgs mode offers a new way to reveal the coupling between the collective modes and the superconducting order parameter.
Using this technique, we discover a new collective mode distinct from the heavily damped Higgs mode in different families of cuprates. We discuss the origin of this mode and characterize its interplay with the Higgs mode. Our results demonstrate Higgs spectroscopy as a new approach to uncover interactions directly relevant to superconductivity. This technique opens up entirely new avenues for understanding unconventional superconductivity and calls for supporting theoretical work to unlock its full power.

Keywords: Cuprate high-temperature superconductors; Higgs mode; nonlinear THz spectroscopy

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-28799


The new Felsenkeller 5 MV underground accelerator: Status and Program

Bemmerer, D.

Experimental nuclear astrophysics aims to study, in the laboratory, the nuclear reactions taking place in stars. However, at the energies relevant to stellar burnings, the relevant cross sections are strongly reduced by the repulsive Coulomb barrier. As a result, ion beam experiments in underground laboratories shielded from cosmic ray effects are needed in order to gain precise data. The Felsenkeller 5 MV accelerator, below 45 m rock in Dresden, is the first such accelerator on the MV scale in Europe. The laboratory was jointly built by HZDR and TU Dresden and opened in 2018. Both an internal and an external ion source have already been tested successfully underground. The accelerator itself is under commissioning, as well as a high-sensitivity radioactivity counting setup by TU Dresden. The talk will summarise the science case and the status for the new laboratory.

Keywords: Nuclear Astrophysics

  • Invited lecture (Conferences)
    Institutsseminar (Kolloquium), 24.01.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28797


Felsenkeller 5 MV underground ion accelerator status December 2018

Bemmerer, D.

I review the status of the Felsenkeller 5 MV underground accelerator in view of the CELLAR network of underground labs.

Keywords: Nuclear Astrophysics; Low-Level Radioactivity Measurements

  • Lecture (Conference)
    CELLAR / JEILORA Meeting, 05.-07.12.2018, Monaco, Monaco

Permalink: https://www.hzdr.de/publications/Publ-28796


Nuclear Astrophysics: Nucleosynthesis and Chemical Evolution Studies

Bemmerer, D.

I review Nuclear Astrophysics: Nucleosynthesis and Chemical Evolution Studies.

Keywords: Nuclear Astrophysics

  • Invited lecture (Conferences)
    Astroparticle Physics in Germany: Status and Perspectives, 19.09.2018, Mainz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28795


Felsenkeller 5 MV underground accelerator at the 5th International Solar Neutrino Conference

Bemmerer, D.

I review the status of the 5 MV underground accelerator at Felsenkeller, Dresden/Germany.

Keywords: Underground physics; Nuclear Astrophysics

  • Invited lecture (Conferences)
    5th International Solar Neutrino Conference, 13.06.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28794


Felsenkeller 5 MV underground ion accelerator for nuclear astrophysics

Bemmerer, D.; Cowan, T. E.; Grieger, M.; Hensel, T.; Junghans, A. R.; Koppitz, M.; Ludwig, F.; Rimarzig, B.; Reinicke, S.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M. P.; Turkat, S.; Wagner, A.; Zuber, K.

A 5 MV Pelletron accelerator with both an internal and an external ion source providing for intensive 1H+, 4He+, and 12C+ beams is being installed in the Felsenkeller underground site in Dresden, shielded from cosmic rays by 45 m rock overburden. Civil construction has recently been completed. The technical features of the new laboratory, test results, and the scientific program will be summarized. In addition to in-house research by HZDR and TU Dresden, the new accelerator will be open for outside users, both from Germany and worldwide.

Keywords: Nuclear astrophysics; Felsenkeller

  • Lecture (Conference)
    Frühjahrstagung Hadronen und Kerne, 26.02.2018, Bochum, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28793


Laser pulse-length effects in trident pair production

Hernandez Acosta, U.; Kämpfer, B.

Laser pulses facilitate multiphoton contributions to the trident pair production e_L^- \to e_L^- + e_L^+ + e_L^-, where the label L indicates a laser field dressed electron (e^-) or positron (e^+ ). We isolate the impact of the pulse envelope in the trident S matrix element, formulated within the Furry picture, in leading order of a series expansion in the classical non-linearity parameter a_0. Generally, the Fourier transform of the envelope carries the information on the pulse length, which becomes an easily tractable function in the case of a cos^2 pulse envelope. The transition to a monochromatic laser wave can be handled in a transparent manner, as also the onset of multiphoton effects for short pulses can be factorized out and studied separately.

Permalink: https://www.hzdr.de/publications/Publ-28792


Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements

Bruno, C. G.; Aliotta, M.; Descouvemont, P.; Best, A.; Davinson, T.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Caciolli, A.; Cavanna, F.; Chillery, T.; Ciani, G. F.; Corvisiero, P.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Z.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, G.; Imbriani, G.; Junker, M.; Lugaro, M.; Marigo, P.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Piatti, D.; Prati, P.; Stöckel, K.; Straniero, O.; Strieder, F.; Szücs, T.; Takács, M. P.; Trezzi, D.

The 18O(p,α)15N reaction affects the synthesis of 15N, 18O and 19F isotopes, whose abundances can be used to probe the nucleosynthesis and mixing processes occurring deep inside asymptotic giant branch (AGB) stars. We performed a low-background direct measurement of the 18O(p,α)15N reaction cross-section at the Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy E_CM= 340 keV down to E_CM = 55 keV, the lowest energy measured to date corresponding to a cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy E_r = 90 keV was found to be a factor of 10 higher than previously reported. A multi-channel R-matrix analysis of our and other data available in the literature was performed. Over a wide temperature range, T=0.01-1.00 GK, our new astrophysical rate is both more accurate and precise than recent evaluations. Stronger constraints can now be placed on the physical processes controlling nucleosynthesis in AGB stars with interesting consequences on the abundance of 18O in these stars and in stardust grains, specifically on the production sites of oxygen-rich Group II grains.

Keywords: Stellar hydrogen burningHydrostatic stellar nucleosynthesis

Permalink: https://www.hzdr.de/publications/Publ-28791


Hyperspectral Feature Extraction Using Sparse and Smooth Low-Rank Analysis

Rasti, B.; Ghamisi, P.; Ulfarsson, M. O.

In this paper, we develop a hyperspectral feature extraction method called sparse and smooth low-rank analysis (SSLRA). First, we propose a new low-rank model for hyperspectral images (HSIs) where we decompose the HSI into smooth and sparse components. Then, these components are simultaneously estimated using a nonconvex constrained penalized cost function (CPCF). The proposed CPCF exploits total variation penalty, ℓ1 penalty, and an orthogonality constraint. The total variation penalty is used to promote piecewise smoothness, and, therefore, it extracts spatial (local neighborhood) information. The ℓ1 penalty encourages sparse and spatial structures. Additionally, we show that this new type of decomposition improves the classification of the HSIs. In the experiments, SSLRA was applied on the Houston (urban) and the Trento (rural) datasets. The extracted features were used as an input into a classifier (either support vector machines (SVM) or random forest (RF)) to produce the final classification map. The results confirm improvement in classification accuracy compared to the state-of-the-art feature extraction approaches.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28790


Gamma-Durchstrahlungsverfahren zur Prozessanalyse und Fehlersuche in Rohrleitungen, Behältern und Kolonnen

Jentsch, T.; Joonha, J.; Thereska, J.; Brisset, P.; Verhasselt, S.

Ein optimaler und auslegungskonformer Betrieb ist das Ziel eines jeden Anlagenbe-treibers. Unregelmäßigkeiten sollten möglichst ohne Betriebsunterbrechung detek-tiert und lokalisiert werden können.
Die Einflüsse auf die Betriebsweise von Rohrleitungen und Chemieanlagen sind sehr vielfältig. Ablagerungen in Rohrleitungen führen beispielsweise zu erhöhten Druckverlusten oder gar zu Durchsatzeinbußen; Ablagerungen in Behältern zum Verlust wertvollen Lagervolumens.
Ursachen für das Fehlverhalten von Kolonnen sind häufig Beschädigungen von Einbauten, die bei Packungs- oder Füllkörperkolonnen zu einer ungleichmäßigen Fluidverteilung über den Kolonnenquerschnitt führen können. Typische Probleme von Bodenkolonnen sind das Fluten einzelner Böden, das Mitreißen von Flüssig-keit, das Schäumen oder das Durchregnen.
Mit Hilfe von Gamma-Durchstrahlungsverfahren, die auf der Schwächung der von einer umschlossenen Quelle emittierten ionisierenden Strahlung basieren, sind in der Lage, die beschriebenen Fehler zu detektieren und zu lokalisieren.
Im Beitrag werden nach einer kurzen Erläuterung der physikalischen Grundlagen und des Messprinzips an Hand von Praxisbeispielen die verschiedenen Anwen-dungsmöglichkeiten und Grenzen des Gamma-Durchstrahlungsverfahrens vorge-stellt.

Keywords: Gamma-Durchstrahlungsverfahren; Prozessanalyse; chemische Industrie; Kolonnen; zerstörungsfreie Prüfung; Gamma column scanning; trouble shooting

  • Invited lecture (Conferences)
    18. Seminar „Aktuelle Fragen der Durchstrahlungsprüfung und des Strahlenschutzes“, 28.02.2019, Kassel, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28789


LiDAR Data Classification Using Spatial Transformation and CNN

He, X.; Wang, A.; Ghamisi, P.; Li, G.; Chen, Y.

Light detection and ranging (LiDAR) is a useful data acquisition technique, which is widely used in a variety of practical applications. The classification of LiDAR-derived rasterized digital surface model (LiDAR-DSM) is a fundamental technique in LiDAR data processing. In recent years, deep learning methods, especially convolutional neural networks (CNNs), have shown their capability in remote sensing areas, including LiDAR data processing. Traditional deep models empirically use a fixed neighborhood system as input to the network. Therefore, the weight and height of the input rectangle may not be optimal. In order to modify such handcrafted setting, a spatial transformation network is used here to identify optimal inputs. The transformed inputs are fed into a well-designed CNN to obtain the final classification results. Furthermore, morphological profiles are combined with spatial transformation CNN to further improve the classification accuracy. The proposed frameworks are tested on two LiDAR-DSMs (i.e., the Recology and Houston data sets). The experimental results show that the proposed models provide competitive results compared to the state-of-the-art methods. Furthermore, the proposed optimal input identification approach can also be found beneficial for other remote sensing applications.

Permalink: https://www.hzdr.de/publications/Publ-28788


The IR-truncated PT-symmetric V = ix3 model and its asymptotic spectral scaling graph

Günther, U.; Stefani, F.

The PT-symmetric V = ix3 model over the real line is infra-red (IR) truncated and considered as Sturm-Liouville problem over a finite interval. Structures hidden in the Airy function setup of the V = ix3 model are combined with WKB techniques developed by Bender and Jones in 2012 for the derivation of the real part of the spectrum of theV = ix3 model. Via WKB and Stokes graph analysis, the location of the complex spectral branches of the ix3 model as well as those of more general V = -(ix)2n+1 models over finite intervals are obtained. Splitting the related action functions into purely real scale factors and scale invariant integrals allows to extract underlying asymptotic spectral scaling graphs. These (structurally very simple) scaling graphs are geometrically invariant and cutoff-independent so that the IR limit can be formally taken. Moreover an increasing length scale can be associated with a spectral UV-IR renormalization group flow on this scaling graph. It is shown that the eigenvalues of the IR-complete V = ix3 model can be bijectively mapped onto a finite segment of the scaling graph asymptotically approaching a (scale invariant) PT phase transition region. In this way, a simple heuristic picture and complementary explanation for the unboundedness of projector norms and C-operator for the ix3 model are provided and the lack of quasi-Hermiticity of the ix3 Hamiltonian over the real line appears physically plausible. Possible directions of further research are briefly sketched.

Keywords: PT Quantum Mechanics; PT phase transition; spectral branch points; exceptional points; ix3 model; WKB techniques; IR truncation; IR completion; asymptotic spectral scaling graphs; spectral UV-IR renormalization group flow

  • Invited lecture (Conferences)
    Discrete-18, organized by CERN and the Austrian Academy of Sciences, 26.-30.11.2018, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-28787


The IR-truncated PT-symmetric V = ix3 model and its asymptotic spectral scaling graph

Günther, U.; Stefani, F.

The PT-symmetric quantum mechanical V = ix3 model over the real line is infra-red (IR) truncated and considered as Sturm-Liouville problem over a finite interval of the real line. Via WKB and Stokes graph analysis, the location of the complex spectral branches of the V = ix3 model as well as those of more general V = -(ix)2n+1 models over finite intervals are obtained. Underlying asymptotic spectral scaling graphs are extracted which are scale-invariant so that the IR completion can be performed. Implications for the V = ix3 model over the full real line are discussed.

Keywords: PT Quantum Mechanics; PT phase transition; spectral branch points; exceptional points; ix3 model; WKB techniques; IR truncation; asymptotic spectral scaling graphs

  • Invited lecture (Conferences)
    Analytic and algebraic methods in physics XV, 10.-13.09.2018, Prague, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-28786


The IR-truncated PT-symmetric V=ix3 model and its asymptotic spectral scaling graph

Günther, U.; Stefani, F.

The PT-symmetric V=ix3 model over the real line is IR truncated and considered as Sturm-Liouville problem over a finite interval. Combining structures hidden in the Airy function setup of the V=ix model with WKB techniques developed by Bender and Jones in 2012 for the derivation of the real part of the spectrum of the ix3 model, a WKB and Stokes graph analysis for the complex spectral branches of the ix3 model as well as those of more general V=-(ix)2n+1 models over finite intervals is performed. Complementary insights into the spectra of these models are obtained by splitting the spectral branch-structure into purely real scale factors and asymptotic spectral scaling graphs. It turns out that the corresponding (structurally very simple) scaling graphs are geometrically invariant and cutoff-independent so that the infra-red (IR) limit can be formally taken. These graphs have invariantly existing PT phase transition regions. In this way, a simple heuristic picture and complementary explanation for the unboundedness of the C-operator and the lack of quasi-Hermiticity of the ix3 Hamiltonian over the real line is provided.

Keywords: PT-symmetric Quantum Mechanics; PT phase transition; spectral branch points; exceptional points; ix3 model; WKB techniques; IR truncation; C-operator; unboundedness; quasi-Hermiticity

  • Invited lecture (Conferences)
    Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) XVIII, 04.-13.06.2018, Bangalore, India

Permalink: https://www.hzdr.de/publications/Publ-28785


Curing processes in ultra low-k materials by positron annihilation spectroscopy

Liedke, M. O.; Köhler, N.; Butterling, M.; Hirschmann, E.; Attallah, A. G.; Krause-Rehberg, R.; Schulz, S. E.; Wagner, A.

The first results on in-situ investigations of pore formation in ultra low-k dielectrics during a curing process, i.e., a porogen removal by vacuum annealing will be presented. The main focus is to obtain insight into initial stages of pore networks formation up to their full development. The in-situ annealing and Doppler broadening positron annihilation spectroscopy measurements have been conducted on our Apparatus for In-situ Defect Analysis (AIDA) - the end-station of a slow positrons beamline at HZDR. In addition, positron lifetime spectroscopy has been utilized, where mono-energetic pulsed positron beam (MePS) serves as a probe to evaluate pore sizes, their concentration and distribution as a function of curing temperature and time. The MePS facility has partly been funded by the Federal Ministry of Education and Research (BMBF) with the grant PosiAnalyse (05K2013). The AIDA system was funded by the Impulse- und Networking fund of the Helmholtz-Association (FKZ VH-VI-442 Memriox) and through the Helmholtz Energy Materials Characterization Platform (03ET7015)

Keywords: positron; low-k; curing; AIDA; defects; pores

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG Frühjahrstagung Berlin, 11.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28784


Vacancy-mediated magnetic phase-transitions

Liedke, M. O.; Butterling, M.; Quintana, A.; Menéndez, E.; Ehrler, J.; Bali, R.; Hirschmann, E.; Sireus, V.; Nogués, J.; Sort, J.; Wagner, A.

Two thin film systems exhibiting vacancy mediated magnetic phase transitions will be discussed in detail, i.e., Co3O4 and Fe60Al40.
In applications, substituting electric currents, which are nowadays used to operate spintronic devices, with electric fields, would result in a reduction of both the energy consumption and cost [1]. Co3O4 is a candidate for a tunable, non-volatile energy-efficient functional material whose magnetic properties can be controlled by electric voltage. In our current investigations the as-grown Co3O4 films consist of a paramagnetic (PM) phase only, which is transformed to a ferromagnetic (FM) state by electrolyte-gated and defect-mediated O and Co transport. A negative voltage reduces Co3O4 to Co (FM: ON), resulting in a phase separated material with Co- and O-rich regions. Applying a positive bias, the process is reversed oxidizing Co back to Co3O4 (PM: OFF). We will show that atoms migration is driven by rather complex vacancy states and a clear increase of the grain boundaries volume after negative biasing assists to O transport. Moreover, concomitantly with the PM phase transition due to the positive biasing the structural defects picture reverses to a large extent as well, which manifests as reduction in volume of both vacancy clusters and grain boundaries.
B2-Fe60Al40 phase is paramagnetic, and strong ferromagnetism can be induced via disordering to the A2-Fe60Al40 phase [2]. Disordering implies the formation of anti-site defects [3], which correlates with an increased Fe coordination. The concentration and size of open volume defects can play an important role in reordering kinetics. Three different initial order states have been investigated: (i) as-grown, partially disordered Fe60Al40, (ii) the as-grown films after Ne+ irradiation, and (iii) Ne-irradiated B2-Fe60Al40. Since, reordering directly affects magnetization saturation; the extent of the diffusion process can be traced via magnetometry at slightly elevated temperature of 400 K. We show that immobile large vacancy clusters with a high thermal activation barrier are dominant in the as-grown film and hinder ordering. Ion irradiation breaks down these pinning sites, thereby strongly accelerating thermal diffusion and reordering. These results provide insights into thermal reordering processes in binary alloys, and the consequent effect on magnetic properties. Doppler broadening and positron annihilation lifetime spectroscopy have been used as a probe for both electric field driven ionic transport of Co and O via different type of defects in Co3O4 systems as well as vacancy-mediated ordering in Fe60Al40.
[1] Y. Shiota, et al. Nature Mater. 11, 39 (2012). [2] M.O. Liedke, et al., J. Appl. Phys. 117, 163908 (2015).
[3] R. Bali, et al., Nano Lett. 14, 435 (2014).

Keywords: magnetism; positron; ion; irradiation; phase transitions; defects; electrical fields

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    18th International Conference on Positron Annihilation (ICPA-18), 19.08.2018, Orlando, USA

Permalink: https://www.hzdr.de/publications/Publ-28783


Magnetic ordering and open volume defects – phase transitions in ion irradiated Fe60Al40 thin films

Liedke, M. O.; Ehrler, J.; Bali, R.; Butterling, M.; Hirschmann, E.; Wagner, A.

Fe60Al40 exhibit the so-called disorder induced ferromagnetism, where anti-site disorder (ASD) promotes ferromagnetic A2-phase (disordered) over paramagnetic B2-phase (ordered). Both phases can be - in a controllable fashion - driven by ion irradiation or annealing, respectively. The main physical origin correlates strongly with ASD [R. Bali, et al., Nano Lett. 14, 435 (2014)]. Nevertheless, the concentration and size of open volume defects can be of crucial importance in determining the kinetics of the reordering processes. To unravel the influence of vacancy clusters, three different initial order states have been investigated: (i) as-sputtered, (ii) as-grown irradiated with Ne+ and (iii) B2 ordered films, obtained via 773 K annealing and Ne-irradiated. Open volume defects in the treated samples were investigated with Doppler broadening and positron annihilation lifetime spectroscopy. Furthermore, since the reordering directly affects Ms, the extent of the diffusion process can be traced via magnetometry at slightly elevated temperature of 400 K. We show that immobile large vacancy clusters are dominant in the as-grown films; these complexes present only in the as-sputtered film possess a high thermal activation barrier and hinder ordering. Ion irradiation breaks down these pinning defects strongly accelerating thermal diffusion and reordering. These results provide insights into thermal reordering processes in binary alloys, and the consequent effect on magnetic behavior.

Keywords: magnetism; positron; ordering; ion; irradiation; phase transition; defects

Involved research facilities

Related publications

  • Lecture (Conference)
    9th Joint European Magnetic Symposia (JEMS-9), 03.09.2018, Mainz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28782


On the use of stacks of fission-like targets for neutron capture experiments

Guerrero, C.; Lerendegui-Marco, J.; Eberhardt, K.; Düllmann, C. E.; Junghans, A.; Lommel, B.; Mokry, C.; Quesada, J. M.; Runke, J.; Thörle-Pospiech, P.; The N_Tof Collaboration

The measurement of neutron induced reactions on unstable isotopes is of interest in many fields, from nuclear energy to astrophysics or applications; in particular transuranic isotopes are essential for the development of innovative nuclear reactors and for the management of the radioactive waste. In such measurements, the quality of the associated radioactive target is crucial for the success of the experiment, but in many cases the geometry, amount of mass and encapsulation of the target are not optimal, leading to limited results. In this work we propose to produce high quality radioactive targets for capture as a stack of thin targets using the techniques usually employed for fission measurements. In particular, we have succeeded in making a 242Pu target of nearly 100 mg by combining seven thin (~1 mg/cm2) fission-like targets with 45 mm in diameter achieving a total backing thickness of only 70 m of aluminum. The target has been shown to perform successfully in experiments at both a neutron time-of-flight facility (n_TOF at CERN) and a thermal neutron beam (BRR at KFKI), providing the most accurate data from thermal up to 250 keV to date.

Permalink: https://www.hzdr.de/publications/Publ-28781


Dual-Energy CT for more accurate stopping power prediction & Importance of range verification

Richter, C.

Direct dual-energy CT based stopping power prediction (DirectSPR) allows the reduction of the currently clinical used range uncertainty. The clinical benefits of DirectSPR, its extensive validation and implementation will be presented together with a quantification of the range reduction potential. Furthermore, steps towards in-man validation of the SPR prediction with the IBA Prompt-Gamma-Imaging slit camera will be highlighted.

  • Invited lecture (Conferences)
    IBA Proteus User Meeting 2019, 01.-03.02.2019, Miami, USA

Permalink: https://www.hzdr.de/publications/Publ-28780


Strahlenschutzaspekte bei der Errichtung und Inbetriebnahme des kanadischen Zyklotrons TR-FLEX im Helmholtz-Zentrum Dresden-Rossendorf

Preusche, S.; Naumann, B.; Kaspari, W.

Involved research facilities

  • PET-Center
  • Invited lecture (Conferences)
    Strahlenschutz in Medizin, Forschung und Industrie, 11.-12.12.2018, Aschaffenburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28779


Entwicklung von hochaffinen 18F-markierten Radiotracern zur molekularen Bildgebung des Adenosin-A2A-Rezeptors mittels Positronen-Emissions-Tomographie

Lai, T. H.; Schröder, S.; Moldovan, R.-P.; Ludwig, F.-A.; Fischer, S.; Dukic-Stefanovic, S.; Deuther Conrad, W.; Steinbach, J.; Brust, P.

Ziel: Die Bildgebung des Adenosin-A2A-Rezeptors mittels PET gilt hinsichtlich der Frühdiagnostik neurodegenerativer und neuroonkologischer Erkrankungen als vielversprechend. Für die Entwicklung neuer 18F-Tracer basierend auf einer Pyrazolo[2,3-d]pyrimidin-Leitverbindung [1] wurden 21 fluorierte Derivate synthetisiert. Aufgrund der Affinitätswerte wurden die 2- bzw. 4-Fluorbenzylderivate 1 (Ki(hA2A) = 5,3 nM; Ki(hA1) = 220 nM) und 2 (Ki(hA2A) = 2,1 nM; Ki(hA1) = 147 nM) als potentielle A2A-Radiotracer ausgewählt.

Methodik: Für die Radiosynthese von [18F]1 wurden drei verschiedene Markierungsstrategien entwickelt. Strategien A und B erfolgten über 2 bzw. 4 Stufen unter Verwendung von [18F]Fluorbenzaldehyd. Dieser wurde für die reduktive Aminierung (A) bzw. nach Reduktion und Bromierung für die finale Benzylierung (B) verwendet. Strategie C basiert auf einer einstufigen 18F Markierung eines Boronsäurepinacol-Präkursors mit [18F]TBAF in Gegenwart von Cu(OTf)2(py)4 in DMA/n-BuOH und wurde sowohl für die Radiosynthese von [18F]1 als auch [18F]2 angewendet. Die In vitro-Evaluierung erfolgte mittels Autoradiographie in Hirnschnitten von der Maus.

Ergebnisse: Die mehrstufigen Markierungsverfahren A und B ergaben radiochemische Ausbeuten von lediglich 1,4 bzw. 10% [18F]1 (nicht isoliert). Mittels der einstufigen Strategie C konnten [18F]1 und [18F]2 mit einer RCA von 51+6 bzw. 8+1% (EOB), einer AM von 135+64 bzw. 132 GBq/μmol (EOS) und einer RCR >98% erhalten werden. In-vitro-Autoradiographiestudien zeigten nur für [18F]2 eine spezifische Bindung im Striatum, die mit A2A- Liganden blockierbar war.

Schlussfolgerung: Es wurde eine effiziente einstufige 18F-Markierung von zwei neuen hochaffinen A2A-Radiotracern etabliert. In ersten In-vitro-Studien erwies sich [18F]2 für die bildgebende Darstellung des Adenosin-A2A-Rezeptores als geeignet. Gegenstand aktueller Arbeiten sind weitere In-vitro- und In-vivo-Untersuchungen.

Literatur: [1] Gillespie et al., Bioorg Med Chem Lett 2008, 18, 2924-2929.

Keywords: Adenison; A2A; Radiotracer; 18F; PET

  • Lecture (Conference)
    Nuklearmedizin 2019 - 57. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin, 03.-06.04.2019, Bremen, Deutschland
    DOI: 10.1055/s-0039-1683493

Permalink: https://www.hzdr.de/publications/Publ-28778


Detection of Extraterrestrial ⁶⁰Fe in Antarctica with AMS

Koll, D.; Faestermann, T.; Korschinek, G.; Merchel, S.; Welch, J. M.; Kipfstuhl, S.

The long-lived radioactive isotope ⁶⁰Fe with a half-life of 2.6 Myr is mainly produced by stellar nucleosynthesis and ejected into space by core-collapse supernovae. Former investigations by Accelerator Mass Spectrometry (AMS) showed a supernova signal on Earth 1.7-3.2 Myr ago.

Considering an enrichment of the solar neighborhood in long-lived radionuclides by previous supernovae, deposition of ⁶⁰Fe on Earth could be currently ongoing. To investigate this case, 500 kg of Antarctic snow were analyzed by Accelerator Mass Spectrometry with the 14 MV tandem accelerator and the Gas-filled Analyzing Magnet System (GAMS) at the Maier-Leibnitz-Laboratorium in Garching, Germany.

Indeed, ⁶⁰Fe was discovered in Antarctic snow and by the measurement of ⁵³Mn, which is dominantly produced by cosmic ray interactions with solar system objects, the origin of these ⁶⁰Fe atoms could be deduced.

Keywords: AMS; supernovae

Involved research facilities

Related publications

  • Lecture (Conference)
    83. Jahrestagung der DPG und DPG-Frühjahrstagung der Sektion Atome, Moleküle, Quantenoptik und Plasmen (SAMOP) in Zusammenarbeit mit der Deutschen Gesellschaft für Massenspektrometrie DGMS 2019, 10.-15.03.2019, Rostock, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28777


Universal Limits of Thermopower and Figure of Merit from Transport Energy Statistics

Zahn, P.

The search for new thermoelectric materials aims at improving their power and efficiency, as expressed by thermopower S and figure of merit ZT.
By considering a very general transport spectral function w(ε), expressions for the S and ZT can be derived, which contain the statistical weights of an effective distribution function only, see Ref. [1]. The assumption of a Lorentzian shape with width kBT resulting from the electron-phonon coupling allows to estimate an upper limit of S and ZT regardless the microscopic mechanisms of the transport process.
The limit of |S| is given by 1.88 in units of kB/e, which is about 160 μV/K, and the limit for ZT is about 1.11 (red dots in the figure).
The work was partially supported by the Initiative and Networking Fund of the German Helmholtz Association, International Helmholtz Research School NanoNet (VH-KO-606), the Helmholtz Exzellenznetzwerk cfaed (ExNet-0026), and the DFG Priority Program 'Nanostructured Thermoelectrics' (ZA264/3-2). We thank S. Gemming for helpful discussions.

Keywords: Thermoelectrics; Thermopower; Figure of Merit; universal limit; transport spectral function

  • Poster
    667. WE-Heraeus-Seminar 'System-oriented approach to thermoelectrics: Materials – Interfaces – Devices', 08.-11.04.2018, Bad Honnef, Deutschland
  • Open Access Logo Invited lecture (Conferences) (Online presentation)
    Understanding Transport Processes on the Nanoscale for Energy Harvesting Devices - 719. WE-Heraeus-Seminar, 08.-09.03.2021, Bad Honnef, Deutschland
  • Contribution to WWW
    arXiv:1804.02774 [cond-mat.mtrl-sci]: https://arxiv.org/abs/1804.02774v1

Permalink: https://www.hzdr.de/publications/Publ-28776


Burning in the Tail: Implications for a Burst Oscillation Model

Chambers, F.; Watts, A.; Keek, L.; Cavecchi, Y.; Garcia Gonzalez, F.

Accreting neutron stars (NSs) can exhibit high-frequency modulations, known as burst oscillations, in their light curves during thermonuclear X-ray bursts. Their frequencies can be offset from the spin frequency of the NS (known independently) by several Hz, and can drift by 1-3 Hz. One plausible explanation for this phenomenon is that a wave is present in the bursting ocean that decreases in frequency (in the rotating frame) as the burst cools. The strongest candidate is the buoyant r-mode; however, models for the burning ocean background used in previous studies over-predict frequency drifts by several Hz. Using new background models (which include shallow heating, and burning in the tail of the burst) the evolution of the buoyant r-mode is calculated. The resulting frequency drifts are smaller, in line with observations. This illustrates the importance of accounting for the detailed nuclear physics in these bursts.

Permalink: https://www.hzdr.de/publications/Publ-28775


Experiments and Simulations of the Magnetized Spherical Couette Problem

Garcia Gonzalez, F.; Stefani, F.

The magnetized spherical Couette system models experiments that are being carried out at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). A liquid metal is confined within two differentially rotating spheres and immersed in a magnetic field parallel to the axis of rotation. Preliminary simulations of periodic and quasiperiodic flows, arising at the first bifurcations, will be presented. The aim is to study in detail the instabilities observed in the experiments and previous numerical studies. This study will reveal how the flow patterns depend on control parameters, reproducing thus different physical situations of the HZDR experiments.

  • Poster
    Fifty years after Roberts' MHD: Dynamos and planetary flows today, 16.-17.11.2017, London, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-28774


Experiments and Simulations of the Magnetized Spherical Couette Problem

Garcia Gonzalez, F.; Stefani, F.

The magnetized spherical Couette system models experiments that are being carried out at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). A liquid metal is confined within two differentially rotating spheres and immersed in a magnetic field parallel to the axis of rotation. Preliminary simulations of periodic and quasiperiodic flows, arising at the first bifurcations, will be presented. The aim is to study in detail the instabilities observed in the experiments and previous numerical studies. This study will reveal how the flow patterns depend on control parameters, reproducing thus different physical situations of the HZDR experiments.

  • Poster
    GDRI Dynamo meeting 2017, 27.-29.11.2017, Paris, France

Permalink: https://www.hzdr.de/publications/Publ-28773


New axisymmetric helical magnetorotational instability in dissipative rotating flows with positive shear

Mamatsashvili, G.; Stefani, F.; Hollerbach, R.; Rüdiger, G.

We present a new type of axisymmetric magnetorotational instability which is capable of destabilizing viscous and resistive magnetized flows with radially increasing angular velocity. Using short-wavelength WKB approach, supported by 1D linear stability calculations in Taylor-Couette flow, we show that this instability works only when a combination of axial and azimuthal magnetic fields is applied and when the magnetic Prandtl number is different from one. It might have grave consequences for the stability of the equator-near parts of the solar tachocline, and for the dynamo action in this region

  • Lecture (Conference)
    MHD Days and GdRI Dynamo Meeting, 26.-28.11.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28772


Experiments and Simulations of the Magnetized Spherical Couette Problem

Garcia Gonzalez, F.; Stefani, F.

The magnetized spherical Couette system models experiments that are being carried out at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). A liquid metal is confined within two differentially rotating spheres and immersed in a magnetic field parallel to the axis of rotation. Preliminary simulations of periodic and quasiperiodic flows, arising at the first bifurcations, will be presented. The aim is to study in detail the instabilities observed in the experiments and previous numerical studies. This study will reveal how the flow patterns depend on control parameters, reproducing thus different physical situations of the HZDR experiments.

  • Poster
    Alexander von Humboldt Foundation Network Meeting 2018, 19.-21.02.2018, Potsdam, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28771


A Tayler-Spruit type model of a tidally synchronized solar dynamo

Stefani, F.; Giesecke, A.; Weber, N.; Weier, T.

We consider a solar dynamo model of Tayler-Spruit type whose Omega-effect is conventionally produced by a solar-like differential rotation but whose alpha-effect is assumed to be periodically modulated by planetary tidal forcing. This resonance-like effect relies on the tendency of the current-driven Tayler instability to produce intrinsic helicity oscillations which can be synchronized by periodic tidal perturbations. Specifically, we focus on the 11.07 years alignment periodicity of the tidally dominant planets Venus, Earth, and Jupiter, whose empirical synchronization with the solar dynamo is illustrated. The typically emerging dynamo modes are dipolar fields, oscillating with a 22.14 years period or pulsating with a 11.07 years period, but also quadrupolar fields with corresponding periodicities. In the absence of any constant part of alpha, we prove the subcritical nature of this periodic Tayler-Spruit type dynamo. Phase coherent transitions between dipoles and quadrupoles, which are reminiscent of the observed behaviour during the Maunder minimum, can be easily triggered by long-term variations of dynamo parameters. Further interesting features of the model are the typical second intensity peak and the intermittent appearance of reversed helicities in both hemispheres

  • Poster
    MHD Days and GdRI Dynamo Meeting, 26.-28.11.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28770


Rotating Waves in Spherical Geometry: Thermal Convection in Thin Rotating Shells and the Magnetized Spherical Couette System

Garcia Gonzalez, F.; Sánchez, J.; Net, M.; Chambers, F.; Watts, A.; Stefani, F.

Fluid dynamics plays an important role in many geophysical and astrophysical objects such as planets and stars. For instance, convection can occur in neutron stars' oceans formed by very thin layers of helium or hydrogen, which are subject to the influence of strong temperature gradients and rotation. In addition, instabilities observed in differentially rotating flows in the presence of a magnetic field (magnetized spherical Couette flows) were attributed to the magnetorotational instability (MRI), which is presently considered the most promising candidate to explain the transport mechanism of angular momentum in accretion disks around black holes and protostars. In this study, bifurcation diagrams of the first instabilities occurring in the two mentioned set-ups will be presented. They were obtained by means of continuation techniques. The arising flow patterns will be described. In both cases, pseudo-spectral high order methods as well as high order time integration methods are used for the time evolution of the Navier-Stokes equations.

  • Lecture (Conference)
    International Conference on Spectral and High-Order Methods ICOSAHOM'18., 09.-13.07.2018, London, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-28769


The DRESDYN project: Liquid metal experiments on dynamo action and magnetorotational instability

Stefani, F.

The dynamo effect in moving electrically conducting fluids is at the root of magnetic field generation in planets and stars. Yet, cosmic magnetic fields play also an active role in the formation of central objects, such as protostars and black holes, by destabilizing accretion disks that would be hydrodynamically stable. While often studied separately, dynamo action and magnetically triggered instabilities may also occur together in such highly non-linear processes as the MRI dynamo or the Tayler-Spruit dynamo.

The DRESDYN project at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) serves as a platform for continuing the liquid metal experiments of the last two decades which were related to dynamo action and magnetically triggered flow instabilities. After a short survey of the dynamo experiments in Riga, Karlsruhe and Cadarache, and the various MRI experiments at the PROMISE facility at HZDR, I discuss the preparatory status of a large-scale precession experiment and a Taylor-Couette experiment for investigating various forms of the MRI and their combinations with the Tayler instability. Special focus will be laid on the numerical predictions of both experiments, as well as on some recent findings concerning the relation of non-modal growth in rotating flows with dissipation-induced instabilities, such as helical and azimuthal MRI for negative and positive shear.

  • Invited lecture (Conferences)
    Waves, Turbulence, and Large-scale Structures in Rotating Magnetic Fluids: Above & Beyond Geophysical Fluid Dynamics, 10.-14.09.2018, Boulder, USA

Permalink: https://www.hzdr.de/publications/Publ-28768


A tidally synchronized Tayler-Spruid type model of the solar dynamo

Stefani, F.; Giesecke, A.; Weber, N.; Weier, T.

We present a solar dynamo model of the Tayler-Spruit type whose Omega-effect is produced, as usual, by differential rotation but whose alpha-effect is assumed as being periodically modulated by planetary tidal forcing. This resonance-like effect has its rationale in the tendency of the current-driven Tayler instability to undergo intrinsic helicity oscillations which can be synchronized by periodic tidal perturbations. Specifically, we focus on the 11.07 years periodicity of the alignment of the tidally dominant planets Venus, Earth, and Jupiter. In the framework of a simple one-dimensional numerical model we prove the subcritical character of this Tayler-Spruit type dynamo. The typical dynamo modes are dipole fields, oscillating with a 22.14 year period, but also quadrupole fields pulsating with an 11.07 years period. Transitions between these field topologies are reminiscent of the observed behavior during the Maunder minimum. Further interesting features of the model are the emergence of mid-term fluctuations, and the intermittent appearance of reversed helicities in both hemispheres. With minor model modifications, the correct direction of the butterfly diagram comes out as a robust feature, too.

  • Lecture (Conference)
    Third Russian Conference on Magnetohydrodynamics, 18.-21.06.2018, Perm, Russia

Permalink: https://www.hzdr.de/publications/Publ-28767


Experiments and Simulations on the Magnetized Spherical Couette Problem

Garcia Gonzalez, F.; Stefani, F.

Experiments on the magnetized spherical Couette system are presently being carried out at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). A liquid metal (GaInSn) is confined within two differentially rotating spheres and exposed to a magnetic field parallel to the axis of rotation. Bifurcation diagrams for rotating waves, obtained with continuation methods when only the magnetic field is increased, are presented. This allows us to carefully investigate the time-scales of the nonlinear saturation of the radial jet, return flow, and shear layer instabilities, as found in previous studies. In addition, modulated rotating waves, obtained at secondary bifurcations, are exhaustively studied by means of direct numerical simulations, with main focus on their spatio-temporal symmetries. We find that at moderate differential rotation the modulated rotating waves give rise to several types of chaotic flows, but only for the radial jet instability. With this study we reveal how the flow patterns and time-scales depend on the magnetic field, reproducing thus different physical situations of the HZDR experiments.

  • Lecture (Conference)
    MHD Days and GdRI Dynamo Meeting, 2018, 26.-28.11.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28766


A Tayler-Spruit model of the solar dynamo with tidal synchronization

Stefani, F.; Giesecke, A.; Weber, N.; Weier, T.

We present a solar dynamo model of the Tayler-Spruit type whose Omega-effect is coventionally produced by differential rotation but whose alpha-effect is assumed as being periodically modulated by planetary tidal forcing. This resonance-like effect has its rationale in the tendency of the current-driven Tayler instability to undergo intrinsic helicity oscillations which can be synchronized by periodic tidal perturbations. Specifically, we focus on the 11.07 years periodicity of the alignment of the tidally dominant planets Venus, Earth, and Jupiter. In the framework of a simple one-dimensional numerical model we prove the subcritical character of this Tayler-Spruit type dynamo. The typical dynamo modes are dipole fields, oscillating with a 22.14 year period, but also quadrupole fields pulsating with an 11.07 years period. Transitions between these field topologies are reminiscent of the observed behavior during the Maunder minimum. Further interesting features of the model are the emergence of mid-term fluctuations, and the intermittent appearance of reversed helicities in both hemispheres. With minor model modifications, the correct direction of the butterfly diagram comes out as a robust feature, too.

  • Invited lecture (Conferences)
    Planetary-Stellar Connection: The Sun's Lesson, 07.-09.05.2018, Freiburg im Breisgau, Germany

Permalink: https://www.hzdr.de/publications/Publ-28765


Thermal convection in rotating spherical shells: Temperature-dependent internal heat generation using the example of triple-𝛼 burning in neutron stars

Garcia Gonzalez, F.; Chambers, F.; Watts, A.

We present an extensive study of Boussinesq thermal convection including a temperature-dependent internal heating source, based on numerical three-dimensional simulations. The temperature dependence mimics triple-α nuclear reactions and the fluid geometry is a rotating spherical shell. These are key ingredients for the study of convective accreting neutron star oceans. A dimensionless parameter Raₙ, measuring the relevance of nuclear heating, is defined. We explore how flow characteristics change with increasing Raₙ and give an astrophysical motivation. The onset of convection is investigated with respect to this parameter and periodic, quasiperiodic, chaotic flows with coherent structures, and fully turbulent flows are exhibited as Raₙ is varied. Several regime transitions are identified and compared with previous results on differentially heated convection. Finally, we explore (tentatively) the potential applicability of our results to the evolution of thermonuclear bursts in accreting neutron star oceans.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28764


Self-excitation in a helical liquid metal flow: the Riga dynamo experiments

Gailitis, A.; Gerbeth, G.; Gundrum, T.; Lielausis, O.; Lipsbergs, G.; Platacis, E.; Stefani, F.

The homogeneous dynamo effect is at the root of magnetic field generation in cosmic bodies, including planets, stars and galaxies. While the underlying theory had increasingly flourished since the middle of the 20th century, hydromagnetic dynamos were not realized in the laboratory until 1999. On 11 November 1999, this situation changed with the first observation of a kinematic dynamo in the Riga experiment. Since that time, a series of experimental campaigns has provided a wealth of data on the kinematic and the saturated regime. This paper is intended to give a comprehensive survey about these experiments, to summarize their main results and to compare them with numerical simulations.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28763


Continuation and stability of rotating waves in the magnetized spherical Couette system: secondary transitions and multistability

Garcia Gonzalez, F.; Stefani, F.

Rotating waves (RW) bifurcating from the axisymmetric basic magnetized spherical Couette (MSC) flow are computed by means of Newton–Krylov continuation techniques for periodic orbits. In addition, their stability is analysed in the framework of Floquet theory. The inner sphere rotates while the outer is kept at rest and the fluid is subjected to an axial magnetic field. For a moderate Reynolds number Re = 10^3 (measuring inner rotation), the effect of increasing the magnetic field strength (measured by the Hartmann number Ha) is addressed in the range Ha ∈ (0, 80) corresponding to the working conditions of the HEDGEHOG experiment at Helmholtz-Zentrum Dresden-Rossendorf. The study reveals several regions of multistability of waves with azimuthal wavenumber m = 2, 3, 4, and several transitions to quasi-periodic flows, i.e modulated rotating waves. These nonlinear flows can be classified as the three different instabilities of the radial jet, the return flow and the shear layer, as found in the previous studies. These two flows are continuously linked, and part of the same branch, as the magnetic forcing is increased. Midway between the two instabilities, at a certain critical Ha, the non-axisymmetric component of the flow is maximum.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28762


The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability

Stefani, F.; Gailitis, A.; Gerbeth, G.; Giesecke, A.; Gundrum, T.; Rüdiger, G.; Seilmayer, M.; Vogt, T.

Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilising rotational flows that would be otherwise hydro-dynamically stable. For a long time, both hydromagnetic dynamo action as well as magnetically triggered flow instabilities had been the subject of purely theoretical research. Meanwhile, however, the dynamo effect has been observed in large-scale liquid sodium experiments in Riga, Karlsruhe and Cadarache. In this paper, we summarise the results of liquid metal experiments devoted to the dynamo effect and various magnetic instabilities such as the helical and the azimuthal magnetorotational instability and the Tayler instability. We discuss in detail our plans for a precession-driven dynamo
experiment and a large-scale Tayler–Couette experiment using liquid sodium, and on the prospects to observe magnetically triggered instabilities of flows with positive shear.

Permalink: https://www.hzdr.de/publications/Publ-28761


Numerical simulation of multicomponent flows with the presence of density gradients for the upgrading of advanced turbulence models

Huang, M.; Höhne, T.

The turbulence effects during the buoyancy-driven mixing was investigated at a vertical mixing (VeMix) test facility, which was developed to investigate the mixing of high borated and low borated coolant in nuclear reactor. Additional buoyancy terms are included in buoyancy-modified turbulence models, which have been implemented in the CFD code ANSYS CFX and validated with experimental data captured by optical methods and conductivity measurement technology. The physicality of the flow phenomena and the vortical oscillations analyzed by Fourier tranformation in both the experiments and simulations show good agreement under different flow conditions. The influence of different buoyancy models were investigated in detail and optimal models for simulations at similar flow conditions have been selected.

Keywords: Multicomponent flow; CFD; turbulence models; SBES; RANS; LES

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28760


Simulation der Strömungsverhältnisse in einem DWR (Vor-Konvoi)

Höhne, T.; Kliem, S.

Ziel der Untersuchung war der Nachweis möglicher Wirbel zwischen der 8.-9. Abstandshalterebene eines Vorkonvoi-Kerns, die zu Temperatur-Wechselbelastungen führen könnten. Es wurde eine 3D-CFD Modell genutzt, die instationäre Rechnung wurde mit einem geeignetem hybriden RANS-LES SBES Turbulenzmodell durchgeführt. Die CFD-Rechnung war off-line gekoppelt mit einem Neutronenkinetikprogramm (DYN3D). Es erfolgte eine Nutzung bekannter Druckverluste über der Kernhöhe zur Festlegung von Permeabilität und Widerstandskoeffizienten. Hierbei erfolgte eine Absicherung durch Vergleichsrechnungen mit einem Modell aus der Literatur. Die neutronenkinetische Rechnung wurde unter Normalbetriebsbedingungen mit einer prototypischen Leistungsverteilung im Kern bei EOC durchgeführt. Die Ergebnisse der Berechnung zeigen keine großflächigen dominanten Wirbel im oberen Kernbereich. Der Kern wirkt als Gleichrichter und dämpft großräumige Wirbel. Die Analysen umfassten mehrere Höhenebenen im Kern und zeigen, dass in einigen Bereichen des Kernquerschnitts eine nach oben zunehmend gerichtete laterale Strömung zu den Austrittsstutzen auftritt. In anderen Bereichen des Kernquerschnitts tritt dagegen kaum Querströmung auf. Die Geschwindigkeiten sind Leerrohrgeschwindigkeiten. Um diese in Strömungsgeschwindigkeiten umzurechnen, müssen diese durch die Porosität (ca. 0.4 in vertikaler und ca. 0.25 in horizontaler Richtung) geteilt werden. Die berechnete Leerrohrgeschwindigkeit von 2 m/s entspricht einer Strömungsgeschwindigkeit im Kern von ca. 5 m/s. Analog ist die Transversalgeschwindigkeit von 0.05 m/s (Leerrohr) einer Strömungsgeschwindigkeit von 0.2 m/s gleichzusetzen.
Folgende Einschränkungen des Modells gelten jedoch: Im Modell sind alle Brennelemente gleich behandelt und Querströmungen auf Grund unterschiedlicher axialer Druckverluste bei verschiedenen BE-Typen können nicht dargestellt werden. Die komplexe Struktur der BEs (bspw. Strömungsfahnen in AHs) könnte einen Einfluss auch auf die Bildung großräumiger Wirbel haben. Dieser Effekt könnte nur mit einer sehr hohen Anzahl Gitterelemente aufgelöst werden (mehrere Milliarden). Dies ist momentan rechentechnisch noch nicht möglich. Auch der mögliche Einfluss von Zweiphasenströmungen wurde nicht betrachtet.

Keywords: Vor-Konvoi; CFX; DYN3D; RPV

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-099 2019
    ISSN: 2191-8708, eISSN: 2191-8716
  • Lecture (Conference)
    CFD-Verbund, 12.-13.03.2019, Garching, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28758


Example of computations for boron dilution (system code, CFD and neutronic assessment)

Höhne, T.; Kliem, S.

Analysis of core responses during boron dilution scenarios requires use of different codes
Realistic boundary conditions especially for the coolant mixing can mitigate the consequences of higher slug volumes
Coupled neutron kinetic/thermal hydraulic core calculations needed for assessment of consequences
According to the results no violation of safety criteria observed

Keywords: DYN3D; ROCOM; Konvoi; PWR

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28757


Numerical simulation of density driven flows (PTS)

Höhne, T.

Buoyancy driven mixing was investigated under simulated natural circulation conditions at the test facility ROCOM.
A transition matrix from momentum to buoyancy-driven flow experiments was selected for validation of the CFD software ANSYS CFX.
Buoyancy generated source and dissipation terms were proposed and introduced into the balance equations for the turbulent kinetic energy .
The results of the experiments and of the numerical calculations show that mixing strongly depends on buoyancy effects: At higher Froude numbers (Fr>1.5) the injected slug propagates in the circumferential direction around the core barrel. With lower Froude numbers (Fr<0.85) buoyancy effects reduce this circumferential propagation at lower mass flow rates and/or higher density differences. The ECC water falls in an almost vertical path and reaches the lower downcomer sensor directly below the inlet nozzle.

Keywords: buoyancy-driven flow; PTS; ROCOM; ECC

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28756


Numerical simulation of boron dilution and cold-water transients

Höhne, T.

Boron Dilution scenarios were indentified for the use of 3D flow and mixing tools
Buoyancy driven mixing was investigated under simulated natural circulation conditions at the test facilities ROCOM and GMTF.
Hybrid meshes consisting at least of 2-8 million nodes were used.
The experiment and CFD calculations show in both cases significant mixing effects due to the density differences.
The ANSYS CFX calculations show a good qualitative agreement with the data.
CFD simulation of fibre material transport in a PWR core under loss of coolant conditions
Implementation of strainer model for the spacer grid

Keywords: CFX; PWR; ROCOM; Mixing

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28755


ROCOM Experiments – 2

Höhne, T.; Kliem, S.

Goal: Investigation of coolant mixing at constant flow rates in the primary circuit

Variation:

Mass flow rate in the loop (10 - 160 %)
Number of operating loops
Status of non-operating loops (reverse flow or closed)
Friction losses at core inlet (lower, nominal and enhanced)

Keywords: ROCOM; Mixing Scalar; RPV; Konvoi

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28754


ROCOM Experiments – 1

Höhne, T.; Kliem, S.

Goal: Investigation of coolant mixing at constant flow rates in the primary circuit

Variation:

Mass flow rate in the loop (10 - 160 %)
Number of operating loops
Status of non-operating loops (reverse flow or closed)
Friction losses at core inlet (lower, nominal and enhanced)

Keywords: ROCOM; Mixing Scalar; RPV; Konvoi

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28753


Overview of the Mixing Test Facility ROCOM

Höhne, T.; Kliem, S.; Prasser, H.-M.

PWR is equipped with 2 or more loops (German KONVOI: 4)
Boron dissolved in the coolant acts as neutron absorber
Hypothetical accidents with creation of lower borated slugs in single loops
Importance of mixing of coolant with different boron content

Keywords: ROCOM; Konvoi; PWR; RPV; Wire Mesh Sensor

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28752


Theory and Practice PTS

Höhne, T.; Lucas, D.

PTS is an important issue of Nuclear Safety Research
Thermohydraulic part: more reliable simulations on mixing needed  3D  CFD
Two-phase PTS is one of the most challenging problems for CFD simulations.
In principle simulations are possible, but with too large uncertainties (even for single regions and phenomena).
There are still open question regarding the most appropriate models to be used for a simulation of two-phase PTS.
Step by step improvement of single effect models is ongoing.
New experimental data with high resolution in space and time are needed for model development and validation.

Keywords: PTS; RPV; NPP

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28751


Theory and Practice Boron Dilution Transients

Höhne, T.; Kliem, S.

Development of calculation tools for the modeling of hypothetical accidents in NPPs
Conduction of calculations to show that safety criteria are fulfilled (safety goals)
For existing reactors
For future reactors
Two examples
Overcooling transient
Boron dilution accident

Keywords: Overcooling transient; PWR; Boron dilution; RPV; NPP

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28750


PWR Design Attributes Relevant to PTS and Boron Dilution

Höhne, T.

The primary system (also called the Reactor Coolant System) consists of the reactor vessel, the steam generators, the reactor coolant pumps, a pressurizer, and the connecting piping. A reactor coolant loop is a reactor coolant pump, a steam generator, and the piping that connects these components to the reactor vessel. The primary function of the reactor coolant system is to transfer the heat from the fuel to the steam generators. A second function is to contain any fission products that escape the fuel.
The following drawings show the layout of the reactor coolant systems for three pressurized water reactor vendors. All of the systems consist of the same major components, but they are arranged in slightly different ways. For example, Westinghouse has built plant with two, three, or four loops, depending upon the power output of the plant. The Combustion Engineering plants and the Babcock & Wilcox plants only have two steam generators, but they have four reactor coolant pumps.

Keywords: PWR; NPP; Primary System

  • Invited lecture (Conferences)
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan
  • Contribution to proceedings
    TC Expert Mission on Analysis of Heterogeneity in Coolant and Transient Boron Dilution Temperature Distribution, 11.-15.02.2019, Islamabad, Pakistan

Permalink: https://www.hzdr.de/publications/Publ-28749


FDG-PET/MRI in patients with pelvic recurrence of rectal cancer: first clinical experiences

Plodeck, V.; Rahbari, N.; Weitz, J.; Radosa, C.; Laniado, M.; Hoffmann, R.; Zoephel, K.; Beuthien-Baumann, B.; Kotzerke, J.; van den Hoff, J.; Platzek, I.

Objectives
To determine the value of 18F-FDG-PET/MRI in the diagnosis and management of patients with pelvic recurrence of rectal cancer.

Methods
Forty-four patients (16 women, 28 men) with a history of rectal cancer who received FDG-PET/MRI between June 2011 and February 2017 at our institution were retrospectively enrolled. Three patients received two FDG-PET/MRIs; thus a total of 47 examinations were included. Pelvic recurrence was confirmed either with histology (n = 27) or imaging follow-up (n = 17) (> 4 months). Two readers (one radiologist, one nuclear medicine physician) interpreted the images in consensus. Pelvic lesions were assessed regarding FDG uptake and morphology. Sensitivity, specificity, positive and negative predictive values as well as accuracy of PET/MRI in detecting recurrence were determined.

Results
In 47 FDG-PET/MRIs 30 suspicious pelvic lesions were identified, 29 of which were malignant. Two patients underwent resection and had histologically proven pelvic recurrence without showing suspicious findings on FDG-PET/MRI. Changes in management due to FDG-PET/MRI findings had been implemented in eight patients. Eighty per cent (16/20) of resected patients had histologically negative resection margins (R0), one patient had uncertain resection margins. Sensitivity of FDG-PET/MRI in detecting recurrence was 94%, specificity 94%, positive/negative predictive value and accuracy were 97%, 90% and 94%, respectively.

Conclusions
FDG-PET/MRI is a valuable tool in the diagnosis and staging of pelvic recurrence in patients with rectal cancer.

Keywords: Positron-emission tomography; Magnetic resonance imaging; Rectal cancer; local Neoplasm Recurrence

Involved research facilities

  • PET-Center

Permalink: https://www.hzdr.de/publications/Publ-28748


Investigation of the ion induced magnetization in FeRh

Semisalova, A.; Barton, C.; Bali, R.; Böttger, R.; Thomson, T.; Potzger, K.; Lenz, K.; Lindner, J.; Fassbender, J.

Structurally B2-ordered equiatomic FeRh thin films are known for unique properties such as a temperature, magnetic field, and spin polarized current driven phase transition from the antiferro- to the ferromagnetic state. The strain and structural disorder also influences the magnetic properties of FeRh, which opens a new way for controllable modification of properties at the micro- and nanoscale. Namely, structural modification by ion beam irradiation was shown to be an effective tool for tuning the phase transition temperature in FeRh as well as the saturation magnetization [1-3]. Here, we present a detailed study of magnetic properties of ion irradiated 40 nm thick FeRh films using magnetometry and broadband ferromagnetic resonance technique. The structurally ordered films were deposited epitaxially on MgO(001) substrates using magnetron sputtering. The irradiation was performed with 25 keV Ne ions at fluences of 0.1 – 4 ions/nm2 leading to a controllable reduction of the order parameter. The ion beam induced magnetization of FeRh at room temperature was shown to be as high as 1300 kA/m. Ferromagnetic resonance measurements performed at frequencies up to 40 GHz show that the Gilbert damping in structurally disordered ferromagnetic FeRh films is comparable to Py films. Such a relatively low damping in combination with the highly tunable saturation magnetization appears promising for further experiments on magnetization dynamics and spin wave propagation in FeRh thin films and nanostructures fabricated using ion beam irradiation.
[1] N. Fujita et al., J. Appl. Phys. 107 (2010) 09E302
[2] A. Heidarian et al., Nucl. Instr. Meth. B 358 (2015) 251-254
[3] S.P. Bennett et al., Mater. Res. Lett. 6 (2018) 106-112

Keywords: FeRh; disorder; FMR; Gilbert damping; ion irradiation

Involved research facilities

Related publications

  • Lecture (Conference)
    21st International Conference on Ion Beam Modification of Materials IBMM 2018, 24.-29.06.2018, San Antonio, Texas, USA

Permalink: https://www.hzdr.de/publications/Publ-28747


Probing the exchange coupling in the complex modified Ho-Fe-B compounds by high-field magnetization measurements

Tereshina, I. S.; Pyatakov, A. P.; Tereshina-Chitrova, E. A.; Gorbunov, D. I.; Skourski, Y.; Law, J. M.; Paukov, M. A.; Havela, L.; Doerr, M.; Zvezdin, A. K.; Andreev, A. V.

By examining the Ho2Fe14B case, we explored the influence of substitution and absorption atoms on the high-field behavior of magnetization of rare-earth (R)-Fe intermetallics. The value of the first critical field shows that the inter-sublattice exchange interactions remain practically unchanged when the substitution takes place in the R sublattice (replacement of up to 50 % of Ho by Nd). On the contrary, hydrogen absorption by Ho2Fe14B and Ho1Nd1Fe14B of the maximum possible hydrogen concentration 5.5 at./f.u. decreases the strength of the R-Fe Exchange by 30%. Remarkably, the influence of hydrogenation is stronger in the compound modified by substitution.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-28746


2D Materials Under Ion Irradiation: In-situ Experiments and the Role of the Substrate

Hlawacek, G.; Kretschmer, S.; Maslov, M.; Ghaderzadeh, S.; Ghorbani-Asl, M.; Krasheninnikov, A. V.

Helium ion Microscopy (HIM) is frequently used for the fabrication of 2D nanostructures in graphene, MoS 2 and other materials. While some of the experiments are carried out with freestanding materials most of the work is done on supported material. While the defect production is understood for the former case, it is not fully understood in the latter setup. We used a combination of analytical potential molecular dynamics and Monte Carlo simulations to elucidate the role of the different damage channels, namely primary ions, backscattered atoms and sputtered substrate atoms.
Using this approach we looked at the defect production by helium and neon ions in MoS 2 and graphene supported by SiO 2 at typical energies used in HIM. We show that depending on ion species and energy defect production for supported 2D materials can be dominated by sputtered atoms from the support, rather than direct damage induced by the primary ion beam. We also evaluated the consequences of these additional damage mechanisms on the achievable lateral resolution for HIM based defect engineering and nano-fabrication in 2D materials. The obtained results agree well with experimental results obtained by in-situ and ex-situ characterization of defects in graphene and MoS 2 .

Keywords: him; 2D; Simulations

Involved research facilities

Related publications

  • Lecture (Conference)
    AVS International Symposium & Exhibition, 21.-26.10.2018, Long Beach, USA

Permalink: https://www.hzdr.de/publications/Publ-28744


Organized Single Si Quantum Dots in tiny SiO2 volumes: Self-alignment for Single Electron Transistors

Heinig, K.-H.; von Borany, J.; Prüfer, T.; Xu, X.; Möller, W.; Ahmed, G.; Tiron, R.; Gregor, H.; Bischoff, L.; Engelmann, H.-J.; Facsko, S.

Room temperature (RT) operation of Single Electron Transistors (SETs) is based on two conditions: (i) The Coulomb blockade energy of charging a dot must be smaller than kT, i.e. a Si quantum dot must be <5nm. (ii) The electron tunneling distance from the Si dot embedded in SiO2 to an electrode must be <1.5nm. Such dimensions are beyond the limits of top-down processes like Electron Beam Lithography (EBL) and Reactive Ion Etching (RIE).
As we demonstrate by atomistic computer simulations, a functional nanostructure for RT-SETs can be achieved by bottom-up processes, self-organization and self-alignment: Phase separation in a tiny volume ~(10nm)3 of metastable SiOx results in the formation of a single Si precipitate in SiO2 . And, if this SiOx volume is bordered at two sides by an Si/SiOx interface, the Si dot becomes self-aligned (isolated) by an SiO2 layer (SiOx denuted by excess Si).
The tiny SiOx volume has been formed by top-down processes: From a bulk Si/7nm SiO2/a-Si layer stack nanopillars of <20nm diameter have been fabricated by EBL and RIE. Then, the SiO2 layer embedded in the nanopillar was transformed into SiOx by 50keV Si+ ion irradiation. During subsequent annealing the single Si dot is expected to form. Two nanoscale phenomena not observed so far have to be overcome to get a reliable RT-SET fabrication.
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688072.

Keywords: HIM; nanostructures

Involved research facilities

Related publications

  • Lecture (Conference)
    E-MRS Fall meeting, 16.-20.09.2018, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-28742


Manufacturability of Single Si Quantum Dots for Single Electron Transistors operating at Room Temperature

Heinig, K.-H.; von Borany, J.; Prüfer, T.; Xu, X.; Möller, W.; Gharbi, A.; Tiron, R.; Hlawacek, G.; Bischoff, L.; Engelmann, H.-J.; Facsko, S.

Single Electron Transistors (SETs) are an extremely low power consuming alternative to Field Effect Transistors (FETs). Their room temperature operation is based on two conditions:

(i) The Coulomb energy of charging the dot with an electron must exceed kT. That requires dot sizes <5 nm. (ii) The tunneling distance between dot and electrodes through SiO2 must be <1.5nm.
These requirements are beyond top-down approaches. Thus, we follow a bottom-up approach: (i) A single Si dot forms by self-organization during phase separation of a tiny metastable SiOx volume into a Si precipitate and a SiO2 matrix. (ii) If the tiny SiOx volume is sandwiched between Si, then the single dot becomes self-aligned, i.e. two tunnel barriers form due to condensation of excess Si of SiOx onto the Si/SiO2 interfaces.
Here, a CMOS compatible manufacturabilty of vertical-nanowire-based SETs will be presented. Regular arrays of Si nanowires with diameters down to 20nm are fabricated by top-down processes. A SiO2 layer of 7nm thickness is sandwiched between Si of the wire. This SiO2 is transformed to SiOx(x<2) by ion beam mixing. During subsequent thermal activation (RTA) the dot structure should evolve as described above. Experimental and computer simulation results will be presented, critical fundamental issues of the nanofabrication will be discussed.
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688072.

Keywords: HIM; nanostructures

Involved research facilities

Related publications

  • Lecture (Conference)
    E-MRS Fall meeting, 16.-20.09.2018, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-28741


Extraction separation of rare-earth elements using an acidic diamide-type ligand and structural analysis of the extracted complex

Shimojo, K.; Sasanuki, T.; Schöne, S.; Sugita, T.; Okamura, H.; Ikeda-Ohno, A.

An acidic diamine type ligand was synthesised and its capability for extraction and separation of rare-earth elements were studied. The results showed that the ligand has a remarkably high selectivity for Sc amongst the rare-earth elements. Possible extraction and separation mechanisms are further discussed based on structure information derived from single-crystal X-ray diffraction.

Keywords: Separation; solvent extraction; rare-earth elements; single-crystal X-ray diffraction; coordination

  • Lecture (Conference)
    79th meeting of the Japan Society for Analytical Chemistry, 18.05.2019, Kita-Kyushu, Japan

Permalink: https://www.hzdr.de/publications/Publ-28740


HeFIB 2018: Helium and emerging focused ion beams

Hlawacek, G.; Facsko, S.; Bischoff, L.; Klingner, N.; Xu, X.; Serralta, E.; Ghaderzadeh, S.

Gas field ion sources (GFIS) using helium and neon as ion species are new and rapidly growing ion beam techniques.
However, GFIS based focused ion beams (FIB) are not the only new ion beam techniques offering new capabilities that go
beyond what classic Ga based FIB can do. Based on the contributions to the recently held meeting on Helium and
Emerging Focused Ion Beams (HeFIB) I will report on the newest developments in this field.
I will try to highlight new technological developments in the field of GFIS based FIBs, but also present new and emerging
alternative FIB source techniques such as Laser cooled sources, liquid metal alloy source, or Xe plasma FIBs. However,
such new techniques also open up many new application fields. I will present selected examples of in which focused ion
beams have been used for imaging, localized materials modification as well as classical FIB based fabrication of nano-
structures.

Keywords: HIM

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    CAARI 2018 - The Conference on Application of Accelerators in Research and Industry, 13.-17.08.2018, Fort Worth, USA

Permalink: https://www.hzdr.de/publications/Publ-28739


Molecular Dynamics simulations of 30 keV He impacts on gold nano-clusters

Ghaderzadeh, S.; Hlawacek, G.; Krasheninnikov, A.

At the Helmholtz-Zentrum Dresden-Rossendorf, molecular dynamics computer simulations are employed to study the sputtering yield and channeling effects in Gold nano-clusters of different sizes. Primary ion energy and crystal orientation are varied to obtain a holistic image of the possible effects relevant for scanning transmission ion microscopy. Our results show that ion-channeling occurs not only in the principal low-index, but also in other directions in between. The strengths of different channels are specifed, and their correlations with sputtering yield and damage production is addressed. The figure below shows sputtering under 30 keV He ion irradiation of 5 nm Gold nano-clusters.

Keywords: HIM; nanostructures; simulations; channeling

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-28738


Imaging and analytic possibilities in the Helium Ion Microscope

Hlawacek, G.; Klingner, N.; Heller, R.; Veligura, V.; van Gastel, R.; Poelsema, B.; von Borany, J.; Facsko, S.

Helium Ion Microscopy (HIM) utilizes a Gas Field Ion Source (GFIS) to create a Helium or Neon ion beam with a diameter better than 0.5 nm and 1.8 nm, respectively. The method is well known for its high resolution imaging and nano-fabrication capabilities which it is able to provide not only for conducting but also insulating samples without the need for a conductive coating. The latter specimens are typically found in the fields of biosciences, MEMS/NEMS technology, catalyst research and many others. The availability of He and Ne ions with either low or moderate sputter yields, allow direct write nano-structuring with a precision below 10 nm in the HIM [1, 2]. However, the existing GFIS based focused ion beam (FIB) tools suffer from the lack of a well integrated analytic method that can enrich the highly detailed morphological images with materials contrast. While HIM technology is relatively young several efforts have been made to add such an analytic capability to the technique. So far, ionoluminescence [1, 3], backscattering spectrometry (BS) [1, 4], and secondary ion mass spectrometry (SIMS) using a magnetic sector [5] or time of flight (TOF) setup have been demonstrated [4].
I will present results obtained using the above mentioned methods beginning with iono-luminescence and its application to various materials systems. The method is in particular suited for the analysis of various defects present in the sample and the behaviour of defects under ion beam irradiation. In the second part of the talk I will present our newly developed TOF-BS and TOF-SIMS setup which allow to obtain information on the composition of the sample. They both utilize the same cost efficient and minimal invasive pulsing scheme for the primary ion beam. The lateral resolution reached for TOF-BS is approximately 50 nm while for TOF-SIMS a value of 8 nm could be reached. First images will be presented and the performance of the TOF-SIMS spectrometer will be discussed.

Keywords: HIM; nanostructures; analytic; SIMS

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    Imaging 2020 Workshop, 06.04.2018, Sønderborg, Denmark
  • Lecture (others)
    PNNL Seminar, 19.10.2018, Richland, USA

Permalink: https://www.hzdr.de/publications/Publ-28737


Dispersion relation of interlayer exchange coupled tailored ferrimagnets

Sorokin, S.; Gallardo, R.; Fowley, C.; Atcheson, G.; Dennehy, G. S.; Rode, K.; Stamenov, P.; Lindner, J.; Fassbender, J.; Deac, A. M.

Different ferromagnetic resonance (FMR) modes in micron-sized antiferromagnetically interlayer exchange coupled SiO2/Ta(5nm)/Py(t)/Ru(0.85 nm)/Py(3nm)/Ru(3nm) structures, with t = 3, 6 and 9 nm, were studied by means of the electrically detected ferromagnetic resonance (ED-FMR).
The main magnetoresistance effect used in ED-FMR was anisotropic magnetoresistance (AMR). Bilinear and biquadratic coupling strengths for each sample were determined by fitting SQUID-VSM measurements on 4×4 mm² thin films, using equilibrium total energy minimization. The existence of two different resonance modes (in-phase (acoustic) and out-of-phase (optic)) is shown for asymmetric samples. For the symmetric sample only the acoustic mode was observed, due to the compensation of AMR response from Py layers for the out-of-phase mode. The obtained dispersion relations show a clear dependence of the acoustic mode frequency minimum on the bilinear coupling strength.

Keywords: FMR; ED-FMR; Synthetic Antiferromagnets; Dispersion relation

Involved research facilities

Related publications

  • Poster
    The European School on Magnetism, 17.09.2018, Krakow, Poland

Permalink: https://www.hzdr.de/publications/Publ-28736


Dispersion relation of the interlayer exchange coupled tailored ferrimagnets

Sorokin, S.; Fowley, C.; Atcheson, G.; Dennehy, G.; Duan, J.; Khudorozhkov, A.; Rode, K.; Lindner, J.; Fassbender, J.; Deac, A.; Stamenov, P.

Here we present a study of different ferromagnetic resonance (FMR) modes in micron-sized antiferromagnetically interlayer exchange coupled SiO2/Ta(5nm)/Py(t)/Ru(0.85 nm)/Py(3nm)/Ru(3nm) structures, with t = 3, 6 and 9 nm, by means of the electrically detected ferromagnetic resonance (ED-FMR).
The main magnetoresistance effect used in ED-FMR was anisotropic magnetoresistance (AMR). Bilinear and biquadratic coupling strengths for each sample were determined by fitting SQUID-VSM measurements on 4×4 mm² thin films, using equilibrium total energy minimization. The existence of two different resonance modes (in-phase (acoustic) and out-of-phase (optic)) is shown for asymmetric samples. For the symmetric sample only the acoustic mode was observed, due to the compensation of AMR response from Py layers for the out-of-phase mode. The obtained dispersion relations show a clear dependence of the acoustic mode frequency minimum on the bilinear coupling strength. For asymmetric samples, mode intermixing occurs for certain resonance fields, accompanied by abrupt jumps in both mode frequencies. Such behavior is not observed for symmetric samples, in accordance with predictions based on VNA-FMR experiments and simulations performed elsewhere.

Keywords: FMR; ED-FMR; Synthetic antiferromagnets; Dispersion relation

Involved research facilities

Related publications

  • Lecture (Conference)
    JEMS 2018 - The Joint European Magnetic Symposia, 03.09.2018, Mainz, Germany

Permalink: https://www.hzdr.de/publications/Publ-28735


Magneto-transport measurements in para- and ferromagnetic Fe60Al40 wires

Liersch, V.; Schmeink, A.; Eggert, B.; Warnatz, T.; Wintz, S.; Ehrler, J.; Böttger, R.; Hlawacek, G.; Potzger, K.; Lindner, J.; Faßbender, J.; Wende, H.; Bali, R.

Certain alloys (Fe60Al40, Fe50Rh50, Fe65V35) have stable, chemically ordered, B2 and metastable, chemically dis-ordered, A2 crystal structures with different magnetic properties.
B2 Fe60Al40 is paramagnetic (PM), A2 Fe60Al40 is ferromagnetic (FM).
Possible applications are in phase change memories and sensors.
We investigate change of resistivity 𝜌 during A2 ↔ B2 transitions in Fe60Al40 wires.

Keywords: HIM; magnetic structures; nanopatterning

Involved research facilities

Related publications

  • Poster
    DPG-Frühjahrstagung 2018, 11.-16.03.2018, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-28734


Synthesis, Structural Characterization and Photodecarbonylation Study of a Dicarbonyl Ruthenium(II)-Bisquinoline Complex

Kubeil, M.; Joshi, T.; Wood, B. R.; Stephan, H.

A photoactivatable ruthenium(II) carbonyl complex [Ru(II)(BisQ)Cl(CO)2]PF6 2 was prepared using a tridentate bisquinoline ligand (BisQ = (2,6-diquinolin-2-yl)pyridin). Compound 2 was thoroughly characterized by standard analytical methods and single crystal X-ray diffraction. The crystal structure of the complex cation reveals a distorted octahedral geometry. The CO release upon exposure to UV light was monitored by UV/VIS absorbance and Fourier transform infrared spectroscopies in acetonitrile and 1% (v/v) DMSO in water, respectively. The photodecarbonylation follows a stepwise CO release. The first CO release occurs very quickly whereas the second decarbonylation step proceeds more slowly. Moreover, the photoreaction in acetonitrile is more distinguished and faster than in 1% aq. (v/v) DMSO.

Keywords: photoCORM; ruthenium; tridentate ligand; UV/VIS and FTIR; photodecarbonylation

Permalink: https://www.hzdr.de/publications/Publ-28733


Luminescence spectroscopy of uranium in environmental systems

Steudtner, R.; Drobot, B.; Zabelt, D.; Bader, M.; Hilpmann, S.; Großmann, K.

Luminescence spectroscopy is a powerful tool to study the chemistry of uranium in trace concentration. Manifold operating mode, e.g. steady state, time-resolved, laser-induced, site-selective, cryogenic, etc. were used to investigate the environmental behavior of uranium in various geological and biological systems.
Hydrolysis is the basis for more complex aquatic systems and thus a deep understanding of those systems is indispensable. In case of U(VI) we demonstrated that a combination of luminescence spectroscopic methods together with state of the art data analysis (parallel factor analysis – PARAFAC) and quantum chemical calculations is a powerful setup to gain information on that system. We were able to extract thermodynamic constants for the mononuclear hydrolysis species using optimized data processing. Furthermore, advanced deconvolution of individual luminescence spectra demonstrates the correlation of luminescence spectroscopy and vibrational spectroscopy.
For kinetic studies of geological or biological sorption phenomena, different microscopic or flow-through cell techniques are useable. For online monitoring and characterization of U(VI) sorption species we develop a new technical in situ luminescence spectroscopy setup in comparability to the well established in situ time resolved ATR FT-IR spectroscopy. For biological systems, we combined microscopy with luminescence spectroscopic measurements for localization, visualization and chemical characterization of uranium complexes. This approach enables us to distinguish between biosorption, intracellular uptake or biomineralization as dominant retention process for uranium in biological samples.
Under reducing conditions expected in the near field of nuclear waste repository, the tetravalent uranium should be the major oxidation state. We studied the U(IV) luminescence characteristics in presence of various inorganic ligands (ClO4–, Cl–, SO42–). By using cryo-TRLFS at 77 K the speciation analysis limit for U(IV) was determined with 5·10–6 M and this corresponds to uranium concentrations occurring in the environment.

  • Lecture (Conference)
    8. RCA-Workshop, 12.-14.06.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28732


Towards an understanding of U(VI) interaction with Boom Clay dissolved organic matter by TRLFS

Buchatskaya, Y.; Salah, S.; Durce, D.; Steudtner, R.; Devillers, M.

Uranium represents the most abundant radionuclide in nuclear waste and its behavior is a major concern for geological waste disposal. The speciation of Uranium in solution affects its mobility in porous media and must in consequence be well understood. The dissolved organic matter (DOM) present in pore waters of geological formations can change the speciation and the geochemical behavior of uranium [1]. DOM present in the potential host rock formation Boom Clay in Belgium differs in size (from hundreds to thousands of Da), solubility at different pH (humic and fulvic acids) and functionality. Due to DOM polydispersity and polyfunctionality, its interaction with U(VI) could involve various mechanism which need to be studied in details. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) is a well-known technique used to characterize U(VI) speciation and complex formation with inorganic and organic ligands. This method was already successfully applied to derive complex stability constants of U(VI) and humic acids [2]. The objective of the present work is to perform a systematic and multi-parametric study on the U(VI) complexation with BC DOM fractions using TRLFS.
Two DOM fractions different in molecular size were separated, concentrated and purified from natural Boom Clay organic matter: one “colloidal” (100 kDa – 0.45 µm) and one “small” (< 1 kDa). The separation and concentration were performed using ultrafiltration and solid phase extraction methods. The size distribution and reactivity of final fractions were characterized using size-exclusion chromatography, X-ray photoelectron spectroscopy and potentiometric titrations. Complex formation of U(VI) with different DOM fractions was studied using TRLFS in presence and absence of carbonates in 0.1 M NaClO4 for a pH range 4-12.5.

  • Lecture (Conference)
    International conference Uranium biogeochemistry, 21.-26.10.2018, Ascona, Switzerland

Permalink: https://www.hzdr.de/publications/Publ-28731


Mechanistic understanding for biochemical and biological processes of uranium(VI) by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

Steudtner, R.; Hilpmann, S.; Bader, M.; Jessat, J.; Sachs, S.; Cherkouk, A.

The transfer of radionuclides into the food chain is of central concern for the safety assessment of both nuclear waste repositories and radioactive contaminated areas, such as legacies of the former uranium mining. The interaction of radionuclides, here in this particular case uranium(VI), with microorganism or plants is mostly described by transfer factors without knowing the underlying processes. In two examples we want present that luminescence spectroscopy is a powerful tool to study these unknowing processes of uranium(VI) on a molecular level.
Rock salt formations are considered as potential host rocks for the long-term storage of highly radioactive waste in a deep geological repository. Extremely halophilic archaea, e.g. Halobacterium species, dominate this habitat. We studied and compared the interactions of different extremely halophilic Halobacterium species with uranium(VI) by classical chemical and biological, by multi-spectroscopic and microscopic and by molecular biological methods. Depending on the used initial uranium(VI) concentration the different Halobacterium species showed a different bioassociation behaviour of uranium(VI). By using TRLFS the formation of uranium(VI) phosphate minerals, such as meta-autunite, as well as the complexation with carboxylate groups was observed as a function of the uranium(VI) concentration and the Halobacterium species.
In a second example, we studied the interaction of uranium(VI) with canola cells (Brassica napus) focusing on the concentration dependent impact of uranium(VI) on the cell metabolism. Previous studies showed, for instance, a speciation dependent influence of radionuclide uptake and translocation in plants [1]. Heavy metal stress induces the synthesis of metal-binding metabolites, storage of metal chelates in vacuoles or the secretion into the rhizosphere [2], which changes the plant cell metabolism. To study the interaction of lanthanides with Brassica napus on a cellular level, callus and suspension cells were exposed to uranium(VI). Besides the kinetics of the bio-association, the amount of associated uranium(VI) and its effect on cell growth and viability was determined. TRLFS was used as direct speciation technique to determine the uranium(VI) species on callus cells and the supernatant. In combination with high performance liquid chromatography (HPLC) experiments the metabolic answer of the callus cells during the presence of uranium(VI) will be investigated.

  • Lecture (Conference)
    4th International Workshop on Advanced Techniques in Actinide Spectroscopy (ATAS), 06.-09.11.2018, Nice, France

Permalink: https://www.hzdr.de/publications/Publ-28730


Estimating mean residence times and flow velocities to quantify recharge to the Western Dead Sea aquifer system using multiple environmental tracers

Wilske, C.; Suckow, A.; Roediger, T.; Geyer, S.; Merchel, S.; Rugel, G.; Pavetich, S.; Merkel, B.; Siebert, C.

The geologically complex, partly karstic limestone aquifers located west of the Dead Sea provide vital freshwater sources for all populated areas from Ramallah to Hebron. Discharge from these aquifers also sustains sensitive ecosystems located along the western shore of the lake. Recharge to these aquifers is restricted to winter precipitation events, which only occur in Hebron and Jerusalem uplands. To inform future sustainable water management strategies, a detailed characterization of these aquifers, including the volume of sustainable extraction is needed. In this study, the time scales of groundwater recharge to the two main aquifers were estimated through the sampling and interpretation of a suite of young age environmental tracers including tritium (³H), chlorine-36 (³⁶Cl), chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) and sulfur hexafluoride (SF₆).

Keywords: water management; AMS; tritium; groundwater

Involved research facilities

Related publications

  • Lecture (Conference)
    International Symposium on Isotope Hydrology: Advancing the Understanding of Water Cycle Processes, 20.-24.05.2019, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-28729


¹⁰Be exposure dating on moraines in the Sayan Mountains, Siberia

Rauh, P.; Schweri, L.; Garcia Morabito, E.; Merchel, S.; Rugel, G.; Zech, R.

Mountain glaciers are very sensitive to (past) climate changes. Paleoglaciation of the Tibetan Plateau and the Himalaya received plenty of attention for the reconstruction of past climate and environmental conditions, whereas few studies have been conducted so far in the adjacent Altai and Sayan Mountains in Siberia, although they promise a complex history.
The investigated Sayan Mountains in the Russian Altai indicate extensive glacial activity during the Pleistocene and a shifting of the local Last Glacial Maximum (LGM). Rich glacial residues in terms of moraine ridges and erratic boulders in the region provide excellent opportunities to establish a detailed age chronology using in-situ cosmogenic ¹⁰Be surface exposure dating and derive information about paleoclimatic conditions.
We present 28 ¹⁰Be surface exposure ages from the Ergaki Range and Tuva Uplands in the western Sayan Mountains. Distinct lateral moraines document the extents of former glaciation during a last glacial maximum. Several recessional moraines in the Ergaki Range additionally record stand stills or readvances during the last glacial termination.
The prominent lateral moraine in the Ergaki Range yields three exposure ages of ~19 ka, indicating a MIS 2 glaciation. The maximum advances correlate with the end of the global LGM. Concluding, glaciers in the Ergaki Range existed continuously during the late Pleistocene only varying in their extent. The well-clustered ages of the Ergaki Range provide a robust deglaciation chronology. The readvances/ stand stills consistently date to ~18 ka (three boulders), ~17.5 ka (two boulders), ~17 ka (three boulders), and ~16 ka (two boulders), with a deglaciation starting after 16 ka. The valley is not elevated enough to record younger, less extensive glaciation, e.g. during the Younger Dryas and the Holocene. Exposure ages from the Tuva Uplands are more difficult to interpret: The lateral moraine documenting the most extensive glaciation yields two exposure ages of ~22 ka. The immediately adjacent inner lateral moraine has two slightly younger and stratigraphically consistent ages of ~21 ka, yet three more boulders from that moraine are ~27 and 43 ka. At this point, we suspect these older boulders to have inheritance, but we cannot confidently exclude a much older deposition age for both moraines. Planned are analyzes of other cosmogenic nuclides, such as ²⁶Al and/or in situ ¹⁴C, which might help to more robustly identify inheritance and complex exposure histories.

Keywords: AMS; glaciation; moraine; LGM

Involved research facilities

Related publications

  • Poster
    INQUA 2019 (International Union for Quaternary Research), 25.-31.07.2019, Dublin, Ireland

Permalink: https://www.hzdr.de/publications/Publ-28728


Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions

Kozubek, R.; Tripathi, M.; Ghorbani-Asl, M.; Kretschmer, S.; Madauß, L.; Pollmann, E.; O'Brien, M.; Mcevoy, N.; Ludacka, U.; Susi, T.; Duesberg, G. S.; Wilhelm, R. A.; Krasheninnikov, A. V.; Kotakoski, J.; Schleberger, M. Y.

Porous single-layer molybdenum disulfide (MoS2) is a promising material for applications such as DNA sequencing and water desalination. In this work, we introduce irradiation with highly charged ions (HCIs) as a new technique to fabricate well-defined pores in MoS2. Surprisingly, we find a linear increase of the pore creation efficiency over a broad range of potential energies. Comparison to atomistic simulations reveals the critical role of energy deposition from the ion to the material through electronic excitation in the defect creation process, and suggests an enrichment in molybdenum in the vicinity of the pore edges at least for ions with low potential energies. Analysis of the irradiated samples with atomic resolution scanning transmission electron microscopy reveals a clear dependence of the pore size on the potential energy of the projectiles, establishing irradiation with highly charged ions as an effective method to create pores with narrow size distributions and radii between ca. 0.3 and 3 nm.

Keywords: ion irradiation; highly charged ions; molybdenum disulfide; 2D material; STEM; MD simulation; perforation

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28727


Study of the influence of water gaps between fuel assemblies on the activation of an aeroball measurement system (AMS)

Konheiser, J.; Mueller, S. E.; Seidl, M.

The aeroball measuring system (AMS) at Siemens/KWU built pressurized water reactors (PWR) is an important part of the in-core instrumentation to determine in detail the local power distribution. Simulations were carried out with the help of the MCNP6 Monte Carlo program to determine the possible impact of an additional the water gap between the fuel assemblies with regard to the 51V(n,γ)52V reaction rate in the AMS. A simplified geometric model in a 3x3 matrix of identical fuel assemblies was used and four AMS lances were simulated in the central fuel assembly. By shifting the outer 8 fuel assemblies, different water gaps were created and the effects on the reaction rate of the AMS were calculated for different burn-up values and boron contents in the cooling water. It was found that the change of reaction rates can reach up to 10% for an assumed gap maximum of 1cm. The changes are largest for burn-up values at 30 and 45 GWd/t and slowly increase with decreasing boron concentration. The results are an important piece of information to assess the possibility of detecting non-nominal water gaps during reactor operation.

Keywords: AMS; PWR; MCNP6; in-core instrumentation

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28726


Site-controlled Si Nanodot Formation for a RT-SET via Ion Beam Mixing and Phase Separation

Xu, X.; Prüfer, T.; Wolf, D.; Hübner, R.; Bischoff, L.; Engelmann, H.-J.; Gharbi, A.; Heinig, K.-H.; Hlawacek, G.; von Borany, J.

CMOS-compatible formation of Si nanodots (NDs) as Coulomb islands is a prerequisite for an RT Single Electron Transistor operation. In this work, Si NDs are formed via ion beam mixing and thermally stimulated phase separation. Broad-beam Si+ and Ne+ beams followed by a rapid thermal annealing treatment were utilized to create a layer of NDs and visualized by Energy-Filtered Transmission Electron Microscopy (EFTEM). The conditions for ND formation are optimized based on an extensive survey of the parameter space. The work is guided by TRIDYN simulations during the ion beam mixing and 3D Kinetic Monte-Carlo simulation for the phase separation during the thermal treatment. To tailor towards a single Si ND, the focused Ne+ beam from the Helium Ion Microscope (HIM) is utilized to create patterns of NDs in planar layer stacks. The formation of site-controlled single NDs with a diameter of 2.2 nm is confirmed by comparing the EFTEM Si plasmon-loss intensity with simulated intensity.

Involved research facilities

Related publications

  • Lecture (Conference)
    HeFIB2018 Helium and emerging Focused Ion Beams, 11.06.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28724


Avoiding Amorphization Related Shape Changes of Nanostructures during Medium Fluence Ion Beam Irradiation of Semiconductor Materials

Xu, X.; Hlawacek, G.; Engelmann, H.-J.; Heinig, K.-H.; Möller, W.; Gharbi, A.; Tiron, R.; Bischoff, L.; Prüfer, T.; Hübner, R.; Facsko, S.; von Borany, J.

We present an approach to mitigate the ion beam induced damage inflicted on semiconductor nano-structures during ion beam irradiation. Nanopillars (with diameter a of 35 nm and height of 70 nm) have been irradiated with both, a 50 keV Si+ broad beam and a 25 keV focused Ne+ beam from a helium ion microscope (HIM). Upon irradiation of the nanopillars at room temperature with a medium fluence (2e16 ions/cm2), strong plastic deformation has been observed which hinders further device integration. This differs from predictions made by the Monte-Carlo based simulations using the TRI3DYN. However, irradiation at elevated temperatures with the same fluence would preserve the shape of the nanopillars.
It is well known that a critical temperature exists for silicon above which it will recrystallize during ion beam irradiation. This prevents the amorphization of the target material independent of the applied fluence. At high enough temperatures and not for too high flux this prevents the ion beam hammering and viscous flow of the nano-structures. These two effects are responsible for the shape change observed at low temperature. This has been observed previously mainly for swift heavy ions and energies higher than 100 keV. We used HIM and transmission electron microscopy to follow the morphological evolution of the pillars and their crystallinity. While irradiation at room temperature results in amorphization and the related destruction of the nanopillars, irradiation above 650 K preserves the crystalline nature of the pillars and prevents viscous flow. This effect has been observed previously mainly for swift heavy ions and energies higher than 100 keV. Such high-temperature irradiation, when carried out on a nanopillar with Si/SiO2/Si layer stack, would induce ion beam mixing without suffering from the plastic deformation of the nanostructure. Due to a limited mixing volume, single Si-NCs would form in a subsequent rapid thermal annealing process via Oswald ripening and serve as a basic structure of a gate-all-around single electron transistor device.
This work is supported by the European Union’s H-2020 research project ‘IONS4SET’ under Grant Agreement No. 688072.

Involved research facilities

Related publications

  • Lecture (Conference)
    AVS 65th International Symposium & Exhibition, 22.10.2018, Long Beach, USA

Permalink: https://www.hzdr.de/publications/Publ-28723


Tuneable vortex dynamics with ion implantation

Ramasubramanian, L.; Kákay, A.; Fowley, C.; Yildirim, O.; Matthes, P.; Lindner, J.; Deac, A. M.

The fundamental oscillation mode of magnetic vortices in thin-film elements has been proposed as working principle for spin-torque-driven nano-oscillators [Nat. Phys., 3:498, 2007].
Commercial applications require tuning of the output frequency by external parameters, such as spin-polarized currents. The tunability of vortex-based devices is limited, since the gyrotropic frequency is specific to the individual sample design. The fundamental frequency is determined by the saturation magnetisation, Ms, as well as the geometrical confinement of the magnetisation i.e. the diameter and height of a magnetic disk. Our micromagnetic simulations have shown that if regions with different Ms can be induced in a magnetic disk, multiple precession frequencies can be generated. Here, we show that ion implantation [Phys. Rev. B 73, 184410, 2006] is a novel route to fabricate such devices.
Permalloy (Py) disks of various diameters and thicknesses were patterned and contacted to study the interaction of an applied AC current with the magnetic vortex. Using a conventional lock-in technique, the resonance frequencies are measured based on the anisotropic magnetoresistance (AMR) effect. Regions of different Ms are induced in single disks by ion implantation, yielding different resonance frequencies corresponding to the specific area where the core is precessing. The work represents a novel way to obtain multiple oscillation frequencies from a single disk.

Keywords: magnetic vortex; ion implantation; frequency tunability

Involved research facilities

Related publications

  • Lecture (Conference)
    9th JEMS Conference 2018, 03.-07.09.2018, Mainz, Germany

Permalink: https://www.hzdr.de/publications/Publ-28722


Phase transition lowering in dynamically compressed silicon

Mcbride, E. E.; Krygier, A.; Ehnes, A.; Galtier, E.; Harmand, M.; Konôpková, Z.; Lee, H. J.; Liermann, H.-P.; Nagler, B.; Pelka, A.; Rödel, M.; Schropp, A.; Smith, R. F.; Spindloe, C.; Swift, D.; Tavella, F.; Toleikis, S.; Tschentscher, T.; Wark, J. S.; Higginbotham, A.

Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.

Keywords: compressed silicon; shock; LCLS; x-ray diffraction; XFEL; phase transition; MEC; high energy density

Downloads

Permalink: https://www.hzdr.de/publications/Publ-28721


Magnetic vortex dynamics and frequency tunability in Cr-implanted permalloy disks

Ramasubramanian, L.; Kákay, A.; Fowley, C.; Yildirim, O.; Matthes, P.; Böttger, R.; Lindner, J.; Fassbender, J.; Gemming, S.; Schulz, S. E.; Deac, A. M.

The fundamental oscillation mode of magnetic vortices in thin-film elements has recently been proposed for designing spin-torque-driven nano-oscillators [1]. Commercial applications require tuning of the output frequency by external parameters, such as applied fields or spin-polarized currents. However, the tunability of vortex-based devices is limited, since the gyrotropic frequency is specific to the individual sample design. Indeed, the fundamental frequency is known to be determined by the saturation magnetisation, M_s , as well as the geometrical confinement of the magnetisation, i.e. the diameter and height of the magnetic disk [2, 3]. Micromagnetic simulations [4] have shown that if regions with different saturation magnetisation can be induced in a magnetic disk, multiple precession frequencies can be generated. We show that ion implantation [5] is a novel route to fabricate such devices.
Permalloy (Py) disks of various diameters and thicknesses were prepared using electron beam lithography followed by electron beam evaporation. Individual disks were contacted by gold leads to study the interaction of spin-polarized current with the magnetic vortex. The presence of vortex is verified by magneto optic Kerr effect (MOKE), X-ray magnetic circular dichroism (XMCD) and magnetotransport measurements. The magnetic field dependence of the vortex position can be tuned by the disk size as shown by XMCD (Figure 1 (a)). Higher magnetic stability due to larger annihilation fields can be achieved by smaller disk diameters, whereas larger field sensitivity is present in larger disks (Figure 1 (b)). Magnetotransport measurements on electrically contacted disks show the presence of anisotropic magnetoresistance (AMR) in different disks with varying thickness (Figure 1 (c)).
Using a conventional lock-in technique, the resonance frequencies are measured for disks with different radii as shown in Figure 2 (a), with the inset showing the scanning electron microscope image of an electrically contacted disk. In order to modify the magnetisation within a single disk and to achieve two different oscillation frequencies, we implant chromium in different regions of the disk (inner and outer). Cr-implantation leads to a decrease in the Curie temperature and thus a reduction in the magnetic moment [6]. The reduction of M_s as a function of Cr fluence was optimised on extended Py films using a vibrating sample magnetometer – superconducting quantum interference device (VSM-SQUID), see figure 2 (b). A clear drop in M_s with increasing the chromium ion fluence is observed. Concentric donut-like structures were then implanted with Cr and the modification of dynamics as a function of magnetic field was investigated. An example of Cr implantation in a 3 µm radius disk at 30 keV with a fluence of 1.2×〖10〗^16 ions/cm^2 is shown in Figure 2 (c). The vortex core is shifted between the two different magnetisation regions by applying an external in-plane field. The vortex nucleates in the irradiated region at – 2.281 mT, leading to a resonance frequency of 30.2 MHz (shown in orange in Figure 2 (c)). Further increasing the external field pushes the vortex core to the non-irradiated region where the resonance frequency is 42.3 MHz (shown in green), corresponding to a field of + 1.597 mT. The results show that ion implantation is a novel way to obtain multiple frequencies from a single disk.

Keywords: magnetic vortex; ion implantation; frequency tunability

Involved research facilities

Related publications

  • Lecture (Conference)
    INTERMAG 2018 - The IEEE International Magnetics Conference (INTERMAG, 23.-27.04.2018, Singapore, Singapore

Permalink: https://www.hzdr.de/publications/Publ-28720


Effect of insertion layer on the properties of Mn₂RuₓGa in magnetic tunnel junctions

Titova, A.; Fowley, C.; Clifford, E.; Lau, Y.-C.; Borisov, K.; Betto, D.; Atcheson, G.; Hübner, R.; Xu, C.; Stamenov, P.; Coey, M.; Rode, K.; Lindner, J.; Fassbender, J.; Deac, A. M.

The choice of proper materials for magnetic tunnel junctions (MTJs) for storage and communication applications (like MRAM or spin-transfer-torque nano-oscillators (STNOs)) is always an issue. On the one hand, the magnetic layers should exhibit as little stray field as possible and be mostly insensitive to the external magnetic field. On another hand, in order to maximize the tunneling magnetoresistance (TMR) ratio, these materials should provide high spin polarization, or even ideally possess half-metallic properties. An option which satisfies both criteria are the compensated half metallic ferrimagnets (CHFMs) — a class of materials predicted in 1995 by van Leuken and de Groot. CHFMs are materials which behave as antiferromagnets (AFMs) with respect to external magnetic fields, since the magnetic moments of the two sublattices compensate, while simultaneously exhibiting half-metal behavior from the point of view of magnetotransport. Experimentally, the first identified zero-moment half-metal was Mn₂RuₓGa (MRG) in 2014. It was already known that Mn-based Heusler compounds possess huge uniaxial anisotropy fields (exceeding tens of teslas); this, together with their vanishing magnetization, lead to resonance frequencies of several hundred GHz in such materials, making them very attractive candidates for STNOs in the sub-THz range. Such devices, due to the much higher bandwidth accessible, are expected to open the way for remote hospitals, 3-D remote meetings and much more.
Earlier MRG studies have already shown that these materials exhibit tunable magnetic properties. Indeed, the compensation temperature varies between 2 and 450K, depending on the Ru concentration. They also yield giant spontaneous Hall angle (7.7%). MRG has also been successfully integrated into perpendicular MRG/MgO/CoFeB MTJs, with low-bias TMR reaching up to 40 % at 10 K and 7 % at 300 K.
As the low value of TMR was attributed to diffusion of Mn atoms inside the MgO barrier, here, we investigate the effect of different insertion layers introduced between MRG and MgO on the magnetic properties and transport of MTJs. Mn₂Ruₓ Ga (23)/insertion layer(t)/MgO(1.7)/CoFeB(1)/Ta(0.3)/CoFeB(0.9)MgO(0.7)/Ta(3)/Ru(4) multilayers were deposited using a “Shamrock” fully automated sputter deposition tool (thickness given in nm). Mn₂RuₓGa was grown by co-sputtering from a Mn₂Ga and a Ru target. Different MRG compositions (Mn₂Ru1.1Ga, Mn₂Ru0.9Ga, Mn₂Ru0.75Ga, and Mn₂Ru0.65Ga) have been obtained by varying the sputtering power of Mn₂Ga while keeping the sputtering power of Ru constant. Changing Ru concentration in MRG allows adjusting the compensation temperature Tcomp from 2 to 450 K.
We fabricated MTJs without insertion layers, as well as stacks with Ta (0.3 nm, 0.6 nm, 0.9 nm) and Al (0.3 nm, 0.6 nm, 0.9 nm) insertion layers. The switching properties of MTJs were analyzed through magnetotransport measurements as a function of applied bias voltage at room temperature. Al 0.6 nm acts as the best diffusion barrier. Magnetic properties of the multi-layers were characterized by the quantum design superconducting quantum interference device (SQUID) with a maximal applied field of 7n T at the range of temperatures from 60 K to 300 T.
The magnetometry data was extracted from the typical out-of-plane hysteresis loop of the investigated MTJs (Fig.1). As the magnetic field is swept from +7 T to – 7 T, the magnetic moment of CoFeB starts to rotate first and switches close to 0 T. The sharp jump observed at -0.4 T is attributed to the reversal of MRG magnetization. With conducting the same measurements at different temperatures, it is possible to detect the compensation temperature of MRG, which will lead to a decrease of its magnetic moment and a divergence of the coercive field. The temperature with zero magnetic moment and extremely high Hc corresponds to the compensation point of MRG. In Fig.2 the temperature dependence of magnetic properties of MTJs with the same MRG composition, but different diffusion barriers, is presented. For different insertion layers, Tcomp can shift over a large range, showing that the choice of insertion layer can have a dramatic effect on the properties of MRG. For instance, in MTJs with no insertion layer 100 K < Tcomp < 160 K; the shift to the higher temperatures is observed for Ta 0.3 nm insertion (140 K < Tcomp < 200 K), and to the lower temperatures with Al 0.6 nm insertion (Tcomp < 120 K). Moreover, we demonstrate that Tcomp can also be altered by post-annealing, as a 20 K shift is observed after annealing at 325°C for 1 hour.
Mn₂RuₓGa integrated into MTJs demonstrates a low magnetic moment, high coercivity, and thereby high immunity to the applied magnetic field over a broad temperature range (60 K – 300 K). At the same time, these MTJs show TMR even at the compensation temperature, highlighting a fundamental difference between an AFM and a CHFM. All these make MRG extremely attractive for spintronics applications, and for the excitation of magnetic resonances in STNOs.

Keywords: Ferrimagnetism; Half-metals; Magnetic Tunnel Junctions; Heusler Alloy

Involved research facilities

Related publications

  • Lecture (Conference)
    The IEEE International Magnetics Conference (INTERMAG), 23.-27.04.2018, Singapore, Singapore

Permalink: https://www.hzdr.de/publications/Publ-28719


Running Status of SRF Gun-II at ELBE Center

Xiang, R.; Arnold, A.; Lu, P.; Murcek, P.; Schaber, J.; Teichert, J.; Vennekate, H.; Zwartek, P.

As a new electron source with higher brilliance, the second version of the superconducting RF photoinjector (SRF Gun-II) has been successfully commissioned at the ELBE Center for high power radiation sources since 2014. SRF Gun-II features an improved 3.5-cell niobium cavity as well as a superconducting solenoid in the same cryomodule. With Mg photocathode SRF Gun-II can provide high current beam with bunch charge up to 300 pC at 100 kHz repetition rate. For user operation the SRF Gun-II successfully generated stable beam with 200 pC in CW mode and sub-ps bunch length. In this presentation the gun's status and beam parameters will be presented.

Keywords: photoinjector; SRF Gun; Mg photocathode; CW mode; sub-ps

Involved research facilities

Related publications

  • Open Access Logo Contribution to proceedings
    29th Linear Accelerator Conference, 16.-21.09.2018, Beijing, China
    Proceedings of the 29th Linear Accelerator Conference, ISBN 978-3-95450-194-6

Permalink: https://www.hzdr.de/publications/Publ-28718


Robust Cs2Te and Mg photocathodes in SRF gun at ELBE center successful for CW IR FEL and THz radiation

Xiang, R.; Teichert, J.

Quality of photocathodes is one of the critical issues for the stability and reliability of the light source facility. In 2014, SRF gun-I with Cs2Te provided stable electron beams successfully for IR FEL at HZDR. Cs2Te worked in SRF gun for more than one year without degradation. Currently, Mg photocathodes with QE up to 0.5% are applied in SRF Gun II, which is able to generate e- beam with bunch charges up to 200 pC in CW mode with sub-ps bunch length for the high power THz radiation facility for the ELBE users.

Keywords: Photocathode; SRF gun

Involved research facilities

Related publications

  • Lecture (Conference)
    Photocathode Physics for Photoinjectors 2018, 15.-17.10.2018, Santa Fe, NM, USA

Permalink: https://www.hzdr.de/publications/Publ-28717


Development and characterization of novel anti-GD2 target modules for retargeting of Universal CAR T cells toward GD2 expressing tumors

Mitwasi, N.; Feldmann, A.; Bergmann, R.; Berndt, N.; Rössig, C.; Bachmann, M.

Although chimeric antigen receptor (CAR) engineered T cells demonstrated promising therapeutic effect against cancer, they are still associated with adverse side effects which could be life threatening in some cases. Therefore, in our group we have developed a switchable universal CAR T cell platform “UniCAR”, which can be repeatedly switched on and off. This system consists of CAR T cells that cannot bind tumor antigens directly but instead they are redirected with a target module (TM). Such TMs are mainly composed of an epitope on one side, which is recognized by the UniCAR T cells, and on the other side a tumor antigen-binding domain. Once the TM is eliminated, the UniCAR T cells are no more activated. Disialoganglioside GD2 was shown previously to be a very promising target for several tumors such as neuroblastoma and Ewing’s sarcomas. Therefore, anti-GD2 TMs were developed and evaluated regarding their functionality. They were shown to be functional in activating the UniCARs to secrete important pro-inflammatory cytokines and to kill GD2+ tumor cells both in vivo and in vitro. To further characterize the anti-GD2 TM with PET imaging, it was labeled with radioactive Cu64 . The TM showed a specific enrichment at the site of the GD2+ growing tumor, and it was mainly eliminated through the kidneys within half an hour due to its small size. Such short half-life, provides the UniCAR system with the fast safety switch in case any complications occurred in patients treated with the UniCAR T cells.

  • Poster
    The International Conference on Lymphocyte Engineering, 13.09.2018, Madrid, Spain
  • Open Access Logo Abstract in refereed journal
    Human Gene Therapy 29(2018)11, A9
    DOI: 10.1089/hum.2018.29071.abstracts

Permalink: https://www.hzdr.de/publications/Publ-28716


Automated Target Model Determination from MEIS Spectra Utilizing an Evolutionary Algorithm

Heller, R.

To extract chemical compositions and layer thicknesses of layered samples from back scattering spectra experimentalists usually have to take the following approach: Simulation of a theoretical spectrum for an initial target configuration and comparison to the measured data followed by the successive re-adjustment of the target model iteratively, until simulation result and experimental spectrum fit together. For multi-layer samples this procedure can get rather time consuming, especially when a series of similar samples with varying layer thickness and/or stoichiometry has to be analyzed.

Although modern IBA spectrum simulation software like SimNRA[1] or WINDF[2] have become quite powerful and handy tools, the analysis of the spectra consumes still a significant fraction of an IBA scientist’s working time. SimNRA offers therefore the opportunity to partially fit layer thicknesses and/or elemental ratios for a given layer within a certain region of a spectrum. WINDF goes a step further and implements an automated spectrum fitting based on a simulated annealing algorithm. However, it takes the user quite some time to set up the boundary conditions and fit parameters until the actual fit procedure can be initiated. Furthermore, the outcome of the fit procedure in some cases contains non-physical artifacts and requires multiple re-adjustments of the boundary conditions / fit parameters.

An approach that came up in the past (and is still being applied for particular tasks) is the application of artificial neural networks (ANN) to derive sample information from IBA spectra [3,4]. In a nut-shell this method basically trains an algorithm how the shape of a spectrum is correlated to the sample’s target model without introducing any physics (numerical calculations) to the code. Therefore, the ANN is fed with many (typically several 10 thousand) training spectra with a known target model. After this training procedure (which can be quite time consuming) the ANN spits out the target model of any unknown spectra in almost zero time. However, the spectra must be of the same type as all the training spectra since an ANN can only interpolate and not extrapolate, which is for sure one of the mayor drawbacks of this approach. However, all these efforts are justified in some special scenarios e.g. if a large series of spectra of similar type has to be evaluated.

In this contribution, we present a new approach of automated IBA spectra fitting applying an evolutionary algorithm (EA). We show that EA is well suited and robust for complete and fast IBA spectrum fitting with minimum input of boundary conditions. The benefits of this algorithm and the particular differences to simulated annealing and ANN are pointed out. Special emphasis is put on the adoption of this algorithm to the analysis of MEIS spectra, since there is a couple of differences to classical IBA methods that needs to be considered.

Based on this algorithm a platform independent software package has been developed that comprises a clean and easy-to-use graphical user interface. We will introduce this software in a basic overview.

Keywords: Ion beam analysis; evaluation software; evolutionary algorithm

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    9th International Workshop on High-Resolution Depth Profiling (HRDP-9), 25.-29.06.2018, Uppsala, Schweden

Permalink: https://www.hzdr.de/publications/Publ-28715


Structural and magnetic properties of epitaxial Mn–Ge films grown on Ir/Cr buffered MgO(0 0 1)

Dash, S.; Schleicher, B.; Schwabe, S.; Reichel, L.; Heller, R.; Fähler, S.; Neu, V.; Patra, A. K.

Epitaxial Mn–Ge films with varying composition have been prepared on Ir/Cr buffered MgO(0 0 1) substrates using DC magnetron sputtering. The effect of composition on phase formation, texture and magnetic properties of Mn–Ge films has been investigated. These films grow epitaxially on Ir/Cr buffered MgO(0 0 1) with a tetragonal D022 type structure. From the pole figure analysis the epitaxial relationship is determined to be: D022 Mn–Ge [1 0 0] (0 0 1)||Ir [1 0 0] (0 0 1)||Cr [1 1 0] (0 0 1)||MgO [1 0 0] (0 0 1). Mn–Ge films close to stoichiometric composition (Mn77.5Ge22.5) exhibit perpendicular magnetic anisotropy with crystallographic c-axis being the easy axis of magnetization. The room temperature measured values of coercivity µ 0 H c, saturation magnetization M S and anisotropy field µ 0 H A for Mn77.5Ge22.5 are 2.86 T, 90 kA m−1 and 9.6 T, respectively. Mn–Ge films with low and high Mn concentration possess high coercivity but extremely low magnetization and that can be ascribed to the presence of secondary phases of non-magnetic/low magnetic nature, possible interdiffusion, and especially partial substitution of excess Mn atoms into the Ge site.

Keywords: epitaxial growth; magnetron sputtering; ion beam analysis; Mn; Ge; magnetic propoerties

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-28714


Hydrogen storage in Mg2FeSi alloy thin films depending on the Fe-to-Si ratio measured by conversion electron Mössbauer spectroscopy

Trinh, T. T.; Asano, K.; Heller, R.; Reuther, H.; Grenzer, J.; Schreuders, H.; Dam, B.; Potzger, K.

Sputter deposited Mg2FexSi1-x films of 250 nm thickness have been investigated by means of Mössbauer spectroscopy. While non-hydrogenated films are characterized by a quadrupole split doublet, hydrogenated regions show a singlet with reduced isomer shift. The relative areas of the spectra reflect the relation between loaded and unloaded regions prepared at the same loading conditions.

Keywords: Hydrogen storage; MgFe; Mössbauer

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-28713


Interaction of hydrogen with hafnium dioxide grown on silicon dioxide by the atomic layer deposition technique

Kolkovsky, V.; Scholz, S.; Kolkovsky, V.; Schmidt, J. U.; Heller, R.

The electrical and structural properties of thin hafnia films grown by the atomic layer deposition technique were investigated before and after different annealing steps as well as after a dc H plasma treatment. By using the nuclear reaction analysis, the authors demonstrated that high concentrations of hydrogen (about 1–2 at. %) could be observed even in as-grown hafnia layers. An additional hydrogenation of the samples with atomic H led to a significant shift of the flatband voltage. This shift could be explained by the introduction of positively charged H-related defects which were found to be stable at room temperature. By comparing the experimental findings with the theory and the data from muon spin spectroscopy, they tentatively ascribed these defects to interstitial H in HfO2.

Keywords: hafnium oxide; ion beam analysis; nuclear reaction analysis; hydrogen depth profiling

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-28712


Untersuchung an Meteoriten mittels INAA am FRM II

Li, X.; Lierse Von Gostomski, C.; Merchel, S.; Leister, N.

Im Rahmen eines Schülerprogrammes (TUM-Kolleg) der TU München wurden drei gewöhnliche Chondrite aus Deutschland (Cloppenburg (Fund 2017) [1,2], Oldenburg (Bissel), Benthullen) und drei Achondrite der Gruppe der HEDs (Howardite-Eukrite-Diogenite) aus dem Oman und aus Nord-West-Afrika (Dhofar 1675, NWA 2690, NWA 2698) sowie ein Mond-, ein Marsmeteorit (NWA 7986, NWA 4925) und zwei potentielle Mikrometeorite mit Probengewichten von je 38 µg und 22 µg mittels der INAA im radiochemischen Labor der Radiochemie analysiert. Die Mikrometeoriten wurden einmal 24 h lang in der Hochflussposition (>1E14 cm-2s-1) und die anderen größeren Proben mit einem Gewicht von je ca. 20 mg jeweils für 3 min bzw. 5 min und 45 min in der Rohrpostanlage bestrahlt. Durch den hohen und reinen thermischen Neutronenfluss am FRM II konnten insgesamt bis zu 45 Elemente in den Proben bestimmt werden.
Anhand der Elementzusammensetzung konnten die beiden Meteoritengruppen eindeutig unterschieden werden, und damit die Klassifizierung der Meteoriten bestimmt bzw. bestätigt werden [Abb. 1 & 2].
Der Marsmeteorit konnte mit seinem hohen Eisenanteil von 17,2 % von den anderen Achondriten unter-schieden werden. Das Ergebnis vom Mondmeteorit zeigte hingegen zwar einen höheren Gehalt von Elementen seltener Erden, aber keine deutliche KREEP-Signatur. Eine negative Europium-Anomalie konnte aber auch nicht zweifelfrei festgestellt werden [Tab. 1].
Bei den beiden potentiellen Mikrometeoriten konnten trotz geringer Probenmassen bis zu 14 Elemente detektiert werden. Beide haben einen hohen Fe-Gehalt von 65 Gew.% bzw. 55 Gew.%, aber für Ni wurde nur eine Nachweisgrenze von 0,3 Gew.% bzw. 0,45 Gew.% fest-stellt, so dass ein extraterrestrischer Ursprung kaum möglich ist.
Danksagung: Wir danken A. Muszynski und M. Szyszko (Poznan, PL), A. Bischoff (U Münster), D. Heinlein, J. Feige (TU Berlin) und A. Gärtner (Senckenberg Dresden) für die Bereitstellung der Meteoritenproben.

[1] www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-24638/#/gallery/28819 (Jan. 2019)
[2] J. Storz et al., (Jan. 2019) www.paneth.eu/PanethKolloquium/2017/0075.pdf.
[3] A. Palme et al., GCA 55 (1991) 3105-3122.
[4] H. Binder, Lexikon der chemischen Elemente, ISBN 3-7776-0736-3 (1999).
[5] J.A. Barrat et al., Geochim. Cosmochim. Acta 83 (2012) 79–92.

Keywords: INAA; meteorite; cosmic rays

  • Lecture (Conference)
    27th Seminar on Activation Analysis and Gamma Spectrometry (SAAGAS 27), 24.-27.02.2019, München, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28711


Immune Monitoring of Cancer Patients Prior to and During CTLA-4 or PD-1/PD-L1 Inhibitor Treatment

Tunger, A.; Kießler, M.; Wehner, R.; Temme, A.; Meier, F.; Bachmann, M.; Schmitz, M.

Targeting the immune checkpoint receptors cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed cell death 1 ligand 1 (PD-L1) represents a very attractive treatment modality for tumor patients. The administration of antibodies against these receptors can promote efficient antitumor effects and can induce objective clinical responses in about 20–40% patients with various tumor types, accompanied by improved survival. Based on their therapeutic efficiency, several antibodies have been approved for the treatment of tumor patients. However, many patients do not respond to checkpoint inhibitor therapy. Therefore, the identification of biomarkers is required to guide patient selection for this treatment modality. Here, we summarize recent studies investigating the PD-L1 expression or mutational load of tumor tissues as well as the frequency and phenotype of immune cells in tumor patients prior to and during CTLA-4 or PD-1/PD-L1 inhibitor treatment.

Permalink: https://www.hzdr.de/publications/Publ-28710


Multimodal PET/MRI Imaging Results Enable Monitoring the Side Effects of Radiation Therapy.

Kovács, N.; Szigeti, K.; Hegedűs, N.; Horváth, I.; Veres, D. S.; Bachmann, M.; Bergmann, R.; Máthé, D.

Radiotherapy is one of the most frequently applied treatments in oncology. Tissue-absorbed ionizing radiation damages not only targeted cells but the surrounding cells too. The consequent long-term induced oxidative stress, irreversible tissue damage, or second malignancies draw attention to the urgent need of a follow-up medical method by which personalized treatment could be attained and the actually dose-limiting organ could be monitored in the clinical practice. We worked out a special hemisphere irradiation technique for mice which mimics the radiation exposure during radiotherapy. We followed up the changes of possible brain imaging biomarkers of side effects, such as cerebral blood flow, vascular endothelial function, and cellular metabolic processes for 60 days. BALB/c mice were divided into two groups (n=6 per group) based on the irradiation doses (5 and 20 Gy). After the irradiation procedure arterial spin labeling (ASL), diffusion-weighted imaging (DWI) in magnetic resonance modality and [18F]fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) scans of the brain were obtained at several time points (3, 7, 30, and 60 days after the irradiation). Significant physiological changes were registered in the brain of animals following the irradiation by both applied doses. Elevated standard uptake values were detected all over the brain by FDG-PET studies 2 months after the irradiation. The apparent diffusion coefficients from DWI scans significantly decreased one month after the irradiation procedure, while ASL studies did not show any significant perfusion changes in the brain. Altogether, our sensitive multimodal imaging protocol seems to be an appropriate method for follow-up of the health status after radiation therapy. The presented approach makes possible parallel screening of healthy tissues and the effectiveness of tumor therapy without any additional radiation exposure.

Permalink: https://www.hzdr.de/publications/Publ-28709


Late-Stage Preclinical Characterization of Switchable CD123-Specific CAR-T for Treatment of Acute Leukemia

Loff, S.; Meyer, J.-E.; Dietrich, J.; Spehr, J.; Riewaldt, J.; von Bonin, M.; Gründer, C.; Franke, K.; Feldmann, A.; Bachmann, M.; Ehninger, G.; Ehninger, A.; Cartellieri, M.

Application of autologous T cells genetically engineered to express CD19-specific chimeric antigen receptors (CAR-T) is highly effective in the treatment of B cell malignancies. To this date, application of CAR-T therapy beyond CD19 remains challenging due to the inability to control CAR-T reactivity in patients and the lack of tumor-associated antigens exclusively expressed by malignant cells. The interleukin-3 receptor alpha chain (CD123) is a promising immunotherapeutic target and associated with leukemia-initiating compartments in myeloid- or lymphoid derived diseases. However, in contrast to CD19, CD123 is a precarious target due to its prevalent expression on healthy hematopoietic stem and progenitor cells (HSPC) as well as endothelial cells. Thus, CAR-T lacking any fine-tuned control mechanisms are at risk to cause life threatening toxicities or can only act as bridging therapy to an allogeneic stem cell transplantation. To extend application of CAR-T therapy and safely redirect CAR engineered T cells to challenging targets such as CD123, a switch-controllable universal CAR T platform (UniCAR) was recently introduced. The UniCAR system consists of two components: (1) a non-reactive inducible second generation CAR with CD28/CD3ζ stimulation for an inert manipulation of T cells (UniCAR-T) and (2) soluble targeting modules (TM) enabling UniCAR-T reactivity in an antigen-specific manner.
Here we provide late stage pre-clinical data for UniCAR-T in combination with a CD123 specific TM (TM123) for treatment of acute leukemia. Primary patient-derived CD123-positive leukemic blasts were efficiently eradicated by TM123-redirected clinical grade manufactured UniCAR-T in vitro and in vivo. Activation, cytolytic responses and cytokine release were proven to be strictly switch-controlled. Moreover, anti-leukemic responses of UniCAR-T were demonstrated to be comparable to conventional CD123 specific CAR-T in vitro. In contrast to conventional CD123 CAR-T, TM123-redirected UniCAR-T discriminate between CD123high malignant cells and CD123lowhealthy cells with negligible toxicity towards HSPC in vivo. As 4-1BB mediated co-stimulation is known to enhance CAR-T activity in vivo, a novel CD123-specific targeting module bearing a covalently bound trimeric 4-1BB ligand (4-1BBL) was developed and characterized for co-stimulation at the leukemic site in trans. Specific binding of TM123 4 1BBL was demonstrated against native 4-1BB as well as CD123-positive leukemic blasts. In long-term tumor eradication models, TM123 4 1BBL ameliorated the killing capability of UniCAR-T in vitro. Additionally, the increased hydrodynamic radius of trimeric 4-1BBL-coupled TM123 prolonged plasma half-life and enhanced bioavailability in vivo. In conclusion, UniCAR-T maintain high anti-leukemic efficacy, while adding a sophisticated mechanism for immediate control to improve safety and versatility of CD123-directed CAR-T therapy. Moreover, switching between several TMs from short to moderate plasma half-life allows for an individualized treatment of various leukemic settings while minimizing potential adverse effects.

Permalink: https://www.hzdr.de/publications/Publ-28708


Low-energy carrier dynamics in graphene and other 2D materials

Winnerl, S.; König-Otto, J. C.; Mittendorff, M.; Pashkin, A.; Venanzi, T.; Schneider, H.; Helm, M.

Phonons in graphene and interexcitonic transition in transition metal dichalcogenides are examples for low-energy excitations in 2D materials. Free-electron lasers such as FELBE deliver tunable short mid-infrared pulses that are ideally suited to study the carrier dynamics in 2D materials in the energy range of these low-energy excitations. We present results on the carrier dynamics in graphene and MoSe2.

Keywords: free-electron laser; ultrafast dynamics; low energy excitations; 2D materials

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    18th International Conference on Laser Optics (ICLO 2018), 04.-08.06.2018, St. Petersburg, Russland

Permalink: https://www.hzdr.de/publications/Publ-28707


Ultrafast Carrier Dynamics in Hybrid Plasmonic Nanostructured metal/graphene

Huang, X.; Winnerl, S.; Schneider, H.

Graphene plasmonic circuits critically depend on convertingincident light into propagating graphene plasmons (GPs), and on controlling their propagation and focusing to enhance light-matter interactions. Here, the theoretical analysis and experimental studies are mainly focused on the GP induced hot-carrier generation and injection on graphene when energy transferred at different SPP interference states. We characterize the ultrafast carrier dynamics in the hybrid metal/graphene nanostructures using ultrafast pump-probe spectroscopy in the mid-inferred range. The renormalized plasmon dispersions in the interface of the metal/graphene nanostructures are investigated. And, the characterization of nonlinearity phase of the high order harmonic generation signals of the hybrid nanostructures are also demonstrated.

Keywords: graphene; plasmonics; hybride graphene-metal nanostructure

  • Poster
    Graphene 2018, 26.-29.06.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28706


ESUO - The European Synchrotron and FEL User Organisation: Aims and activities

Arčon, I.; Arikan, P.; Bittencourt, C.; Boscherini, F.; Braz Fernandes, F. M.; Brooks, N.; Buljan, M.; Casu, B.; D'Angelo, M.; D'Astuto, M.; Feiters, M.; Froideval, A.; Gross, S.; Gutt, C.; Hase, T.; Huotari, S.; Jablonska, K.; Jergel, M.; Kajander, T.; Khan, A.; Kirm, M.; Kokkinidis, M.; Kövér, L.; Lamba, D.; Larsen, H. B.; Lechner, R. T.; Logan, D. T.; López, O.; Lorentz, K.; Lüning, J.; Mariani, C.; Marinkovic, B.; Mc Guinness, C.; Meedom Nielsen, M.; Mickevicius, S.; Mikulík, P.; Petukhov, A.; Pietsch, U.; Pokroy, B.; Purans, J.; Renault, L.; Santoro, G.; Shivachev, B.; Stangl, J.; Tromp, M.; Vankó, G. A.; Blasetti, C.; Górkiewicz, A.; Grobosch, M.; Helm, M.; Schramm, B.; Seidlhofer, B. K.; van Daalen, M.; Vollmer, A.

The European Synchrotron and free-electron laser User Organisation (ESUO) established in 2010 today represents about 30.000 users. We aim at representing the users from all European countries. Each country is represented within ESUO by one up to four national delegate(s), depending on the size of the user community in the respective country. The ESUO aims and activities are shown in this poster.

Keywords: European synchrotron and FEL user organisation (ESUO); European projects; scientific collaborations; European synchrotron and FEL radiation facilities

  • Poster
    10th Joint BER II and BESSY II User Meeting, 05.-07.12.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28705


Rotation-Free Scattered-Radiation Imaging with a Radiotherapy X-Ray Linac

Simoes, H.; Ferreira Marques, R.; Rachinhas, P. J. B. M.; Wagner, A.; Crespo, P.

The OrthoCT (acronym for orthogonal computed tomography) concept, based on orthogonal ray imaging, is a new low-dose imaging technique under investigation to potentially assist external-beam radiation therapy treatments. It consists in detecting radiation scattered in the patient and emitted at approximately 90 degrees with respect to the direction of the incoming beam. Such radiation can be collected by a 1D-detector system with a multi-sliced collimator positioned parallel to the incident beam axis. This system can be potentially useful for on-board imaging with the patient positioned and ready for treatment, or for real-time treatment monitoring. In this work, a multi-pixel, small OrthoCT detector prototype was developed and tested experimentally. This system is based on gadolinium orthosilicate crystals coupled to photomultiplier tubes and a collimator made of lead slices. The experimental measurements were performed with a heterogeneous phantom of acrylic with an air cavity inside, using a TrueBeam linac operated at 6MV in the flattening-filter-free modality. The results allow concluding that this new imaging technique is capable to provide, in 1.3 s, morphological images of the phantom without the need to rotate the X-ray source around the object to be irradiated, showing the feasibility of such system.

Keywords: Low-dose imaging for radiotherapy; Rotationfree megavoltage tomography; X-ray detection; Image-guided radiotherapy (IGRT)

  • Lecture (Conference)
    IEEE Nuclear Science Symposium and Medical Imaging Conference, 10.-17.11.2018, Sydney, Australien
  • Contribution to proceedings
    IEEE Nuclear Science Symposium and Medical Imaging Conference, 10.-17.11.2018, Sydney, Australien
    IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC): IEEE, 1-3
    DOI: 10.1109/NSSMIC.2018.8824227

Permalink: https://www.hzdr.de/publications/Publ-28704


Double-bended saturation of optically induced bleaching in graphene

Winnerl, S.; Winzer, T.; Mittendorff, M.; Mittenzwey, H.; Jago, R.; Schneider, H.; Helm, M.; Malic, E.; Knorr, A.

Saturable absorption due to Pauli blocking is a fundamental optical phenomenon that can be described fully analytically for a two-level system. In solids, the related carrier dynamics is typically much more complex. Nevertheless, the fluence dependence of the induced bleaching is typically qualitatively similar to the behaviour of a two-level system. Saturable absorbers are important photonic devices for realizing short laser pulses.
We present a joint theory-experiment study, where the bleaching of graphene is studied in a wide range of fluences. In pump-probe experiments utilizing 30 fs near-infrared (wavelength 800 nm) pulses the pump-induced transmission is measured. The study reveals an unusual double-bended saturation behaviour. For fluences in the mJ/cm2 range the induced transmission saturates due to Pauli blocking. Interestingly, a qualitatively similar behaviour is found at fluences that are 1000 times smaller. In this range one would expect a linear fluence dependence of the induced transmission. Microscopic theory based on the density matrix formalism shows that the unexpected saturation at low fluences is related to intensity dependent many-particle scattering. The crucial point is the balance between in- and out-scattering of electrons from the optically excited k-space regions. The occupation of this region determines the observed transmission [1].
Full understanding of the saturation behaviour in graphene is of relevance for graphene-based saturable absorbers. Graphene is an interesting material for this purpose as it can be applied in a very broad spectral range from THz to UV [2,3]. Also the high damage threshold, which is verified in our experiments, is an attractive feature.

[1] T. Winzer et al., Nature Commun. 8 (2017) 15042
[2] V. Bianchi et al., Nature Commun. 8 (2017) 15763
[3] D. G. Purdie et al., Appl. Phys. Lett. 106 (2015) 253101

Keywords: graphene; ultrafast dynamics; saturable absorption

  • Poster
    Graphene 2018, 26.-29.06.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28703


Unusual Coulomb effects in graphene

Winnerl, S.

In many semiconductors Coulomb scattering plays an essential role in the thermalization process of a non-equilibrium carrier distribution. Here we discuss three surprising and fascinating manifestations of Coulomb scattering in graphene. All phenomena are explored both experimentally and by manybody theory. The experimental techniques for time-resolved studies at rather low photon energy (mi-infrared and terahertz range) are introduced and we explain why epitaxial graphene samples are particularly well suited for our experiments.
The first observation concerns a double-bended saturation behavior of bleaching induced by near-infrared radiation. The second phenomenon is the optically induced anisotropy in k-space for excitation with linearly polarized radiation and its relaxation to a Fermi-Dirac distribution. The third set of experiments tackles the dynamics of graphene in a magnetic field perpendicular to the graphene layer. Here evidence for strong Auger scattering is found. We discuss the possibility to apply Landau quantized graphene as a gain medium in a tunable laser and as a tunable nonlinear optical material.

Keywords: graphene; ultrafast dynamics; Coulomb scattering

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    Tianjin International Symposium on Epigraphene (TISEG), 22.-27.07.2018, Tianjin, China

Permalink: https://www.hzdr.de/publications/Publ-28702


Low energy relaxation dynamics in graphene and MoSe2

Winnerl, S.

Time-resolved investigations of 2D materials such as graphene and transition metal dichalcogenides (TMDs) in the energetic vicinity of their low-energy excitations provide deep insights into the physical processes involved in the carrier relaxation dynamics. We show results of pump-probe experiments in the mid-infrared and terahertz rage using a free-electron laser as a source. They allow one to disentangle the role of carrier-carrier and carrier-phonon scattering. As an application, an ultra-broadband fast photodetector is demonstrated. Furthermore we present very recent results on monolayer MoSe2. Here, fairly slow carrier cooling is observed. At the overlap of the terahertz pump pulse with the near-infrared probe pulse we see a red-shift of both the exciton and trion peak. This signal may stem from either the Franz-Keldysh or the AC-Stark effect.

Involved research facilities

Related publications

  • Lecture (others)
    Seminar of Physics Departmern, Chalmers University, 14.11.2018, Göteborg, Schweden

Permalink: https://www.hzdr.de/publications/Publ-28701


Pump-probe spectroscopy in the infrared

Winnerl, S.

We discuss infrared pump-probe spectroscopy experiments, where both tabletop lasers and a free-electron laser are applied as radiation sources covering the inire infrared range from the near infrared to terahertz.The focus of the talk is on the basic principle of the experiment and related techniques like four-wave mixing, and on the experimental capabilities in our labs at HZDR. Electronic transitions in semiconductor quantum wells, interband transitions in graphene, plasmonic excitations in graphene ribbons will serve as examples for low-energy excitations that can be investigated in a time-resolved manner. In particular, examples for excitations with different polarization states will be discussed. Finally we will show the strength of probing with terahertz time-domain spectroscopy.

Keywords: Pump-Probe spectroscopy

Involved research facilities

Related publications

  • Lecture (others)
    Leibniz-Institut für Polymerforschung, 18.12.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28700


Application of electromagnetic fields in material processing, metallurgy, casting and crystal growth

Eckert, S.

Basic and applied research on Liquid Metal Technologies and Magnetohydrodynamics represents a surprising bandwidth ranging from high-temperature energy conversion, new kinds of liquid metal batteries, the production of solar-grade silicon, carbon dioxide free production of hydrogen, liquid metal targets in modern neutron sources and transmutation systems, casting of steel and light metals, welding and soldering processes, to basic laboratory experiments with relevance to liquid metal cooled systems, materials processing as well as to geo- and astrophysics.
Most of the metallurgical and crystal growth processes comprise phases with liquid metals (or liquid semiconductors with very similar properties). The application of diverse electromagnetic fields has proven to be a very effective tool of influencing and controlling such liquid metal flows and the corresponding heat and mass transport. For instance, most of the problems in casting of metal alloys affecting the product quality are associated with an improperly conditioned fluid flow during the process. Small improvements in the flow pattern can achieve therefore large effects in terms of quality assurance and energy savings.
This presentation gives an overview of the research activities at the HZDR with respect to the use of magnetic fields in metallurgy, casting and crystal growth. The experimental work is based on model experiments for the detailed investigation of flow processes under the influence of magnetic fields. This presentation presents a number of examples and discusses corresponding results in the light of the respective technologies considered.

Keywords: Magnetohydrodynamics; crystal growth; metallurgy; metal casting

  • Invited lecture (Conferences)
    The Third Russian Conference on Magnetohydrodynamics, 18.-21.06.2018, Perm, Russia

Permalink: https://www.hzdr.de/publications/Publ-28699


Flow structures in liquid metal Rayleigh-Benard convection under the influence of DC magnetic fields

Vogt, T.; Schindler, F.; Zürner, T.; Schumacher, J.; Tasaka, Y.; Yanagisawa, T.; Eckert, S.

One of the classical problems in fluid dynamics is the Rayleigh-Bénard convection (RBC) where a fluid layer is exposed to a temperature difference ΔT between a colder lid and a warmer bottom. RBC under the influence of a steady magnetic field is of particular interest in geo- and astrophysics, but has also some relevance for technical applications such as the use of liquid metals for new type of batteries or heat removals in fusion blankets. In this paper we present flow measurements conducted in various geometries and magnetic field configurations. Systematic flow measurements were performed by means of the ultrasound Doppler velocimetry (UDV). Experiments were carried out in GaInSn using a cylindrical fluid vessel in a vertical magnetic field and a rectangular container exposed to a horizontal magnetic field. Various flow regimes have been identified by the velocity measurements, in particular, we studied the transition from a quasi-two-dimensional state towards a three-dimensional flow occurring with decreasing magnetic field strength.

Keywords: Rayleigh; Benard convection; liquid metals; magnetoconvection; flow measurements; ultrasound Doppler velocimetry

Related publications

  • Lecture (Conference)
    9th International Symposium on Electromagnetic Processing of Materials (EPM2018), 14.-18.10.2018, Awaji Island, Japan

Permalink: https://www.hzdr.de/publications/Publ-28698


A material experiment for small satellites to characterise the behaviour of carbon nanotubes in space – development and ground validation

Abbe, E.; Renger, T.; Sznajder, M.; Klemmed, B.; Sachse, E.; Hübner, R.; Schüler, T.; Bärtling, Y.; Muchow, B.; Tajmar, M.; Schmiel, T.

Over the last years, Carbon Nanotubes (CNT) drew interdisciplinary attention. Regarding space technologies a variety of potential applications were proposed and investigated. However, no complex data on the behaviour and degradation process of carbon nanotubes under space environment exist. Therefore, it is necessary to investigate the performance of these new materials in space environment and to revaluate the application potential of CNTs in space technologies. Hence, CiREX (Carbon Nanotubes – Resistance Experiment) was developed as a part of a student project. It is a small and compact experiment, which is designed for CubeSat class space satellites. These are a class of nanosatellites with a standardized size and shape. The CiREX design, electrical measurements and the satellites interfaces will be discussed in detail. CiREX is the first in-situ space material experiment for CNTs. To evaluate the data obtained from CiREX, ground validation tests are mandatory. As part of an extensive test series the behaviour of CNTs under solar ultra violet light (UV) and vacuum ultraviolet light (VUV) was examined. Single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and MWNT/resin composite (ME) were exposed to different light sources. After the exposure, the defect density was investigated with Raman spectroscopy. There is a clear indication that UV and VUV light can increase the defect density of untreated CNTs and influence the electrical behaviour.

Keywords: Carbon nanotubes; CubeSat; Electrical behavior; Material experiment; Solar light; Space environment

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-28697


Pages: [1.] [2.] [3.] [4.] [5.] [6.] [7.] [8.] [9.] [10.] [11.] [12.] [13.] [14.] [15.] [16.] [17.] [18.] [19.] [20.] [21.] [22.] [23.] [24.] [25.] [26.] [27.] [28.] [29.] [30.] [31.] [32.] [33.] [34.] [35.] [36.] [37.] [38.] [39.] [40.] [41.] [42.] [43.] [44.] [45.] [46.] [47.] [48.] [49.] [50.] [51.] [52.] [53.] [54.] [55.] [56.] [57.] [58.] [59.] [60.] [61.] [62.] [63.] [64.] [65.] [66.] [67.] [68.] [69.] [70.] [71.] [72.] [73.] [74.] [75.] [76.] [77.] [78.] [79.] [80.] [81.] [82.] [83.] [84.] [85.] [86.] [87.] [88.] [89.] [90.] [91.] [92.] [93.] [94.] [95.] [96.] [97.] [98.] [99.] [100.] [101.] [102.] [103.] [104.] [105.] [106.] [107.] [108.] [109.] [110.] [111.] [112.] [113.] [114.] [115.] [116.] [117.] [118.] [119.] [120.] [121.] [122.] [123.] [124.] [125.] [126.] [127.] [128.] [129.] [130.] [131.] [132.] [133.] [134.] [135.] [136.] [137.] [138.] [139.] [140.] [141.] [142.] [143.] [144.] [145.] [146.] [147.] [148.] [149.] [150.] [151.] [152.] [153.] [154.] [155.] [156.] [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.] [168.] [169.] [170.] [171.] [172.] [173.] [174.] [175.] [176.] [177.] [178.] [179.] [180.] [181.] [182.] [183.] [184.] [185.] [186.] [187.] [188.] [189.] [190.] [191.] [192.] [193.] [194.] [195.] [196.] [197.] [198.] [199.] [200.] [201.] [202.] [203.] [204.] [205.] [206.] [207.] [208.] [209.] [210.] [211.] [212.] [213.] [214.] [215.] [216.] [217.] [218.] [219.] [220.] [221.] [222.] [223.] [224.] [225.] [226.] [227.] [228.] [229.] [230.] [231.] [232.] [233.] [234.] [235.] [236.] [237.] [238.] [239.] [240.] [241.] [242.] [243.] [244.] [245.] [246.] [247.] [248.] [249.] [250.] [251.] [252.] [253.] [254.] [255.] [256.] [257.] [258.] [259.] [260.] [261.] [262.] [263.] [264.] [265.] [266.] [267.] [268.] [269.] [270.] [271.] [272.] [273.] [274.] [275.] [276.] [277.] [278.] [279.] [280.] [281.] [282.] [283.] [284.] [285.] [286.] [287.] [288.] [289.] [290.] [291.] [292.] [293.] [294.] [295.] [296.] [297.] [298.] [299.] [300.] [301.] [302.] [303.] [304.] [305.] [306.] [307.] [308.] [309.] [310.] [311.] [312.] [313.] [314.] [315.] [316.] [317.] [318.] [319.] [320.] [321.] [322.] [323.] [324.] [325.] [326.] [327.] [328.] [329.] [330.] [331.] [332.] [333.] [334.] [335.] [336.] [337.] [338.] [339.] [340.] [341.] [342.] [343.] [344.] [345.] [346.] [347.] [348.] [349.] [350.]