Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Europium(III) as luminescence probe for interactions of a sulfate-reducing microorganism with potentially toxic metals

Hilpmann, S.; Moll, H.; Drobot, B.; Vogel, M.; Hübner, R.; Stumpf, T.; Cherkouk, A.

Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was in-vestigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a sim-ple biosorption process. The bioprecipitation was also verified by luminescence spec-troscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy pro-vided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.

Keywords: Europium(III) luminescence; Sulfate-reducing bacteria; Europium(III) bioprecipitation; Opalinus Clay pore water

Related publications

Permalink: https://www.hzdr.de/publications/Publ-37162