### P implantation into pre-amorphized germanium and subsequent annealing: Solid phase epitaxial regrowth, P diffusion and activation

#### related publication:

Posselt, M., Schmidt, B., Anwand, W., Grötzschel, R., Heera, V., Wündisch, C., Skorupa, W.,
Hortenbach, H., Gennaro, S., Bersani, M., Giubertoni, D., Möller, A., Bracht, H. *P implantation into pre-amorphized germanium and subsequent annealing: solid phase epitaxial regrowth, P diffusion and activation*Proc. Int. Workshop on INSIGHT in Semiconductor Device Fabrication, Metrology and Modeling (INSIGHT-2007), 06.-09.05.2007, Napa, USA, pp. 309-315



Institute of Ion Beam Physics and Materials Research

## Introduction

renewed interest in Ge

carrier mobility is higher than in Si, SiO<sub>2</sub> is increasingly replaced by high-k dielectrics

n and p doping by implantation and subsequent annealing

P, As B, Ga

high doping level  $\rightarrow$  high implantation fluence

into crystalline Ge (amorphization by P, As, Ga implants)

into pre-amorphized Ge

Mitalied der Leibniz-Gemeinschaft



Institute of Ion Beam Physics and Materials Research

#### this talk:

# implantation of P *into preamorphized material*, subsequent RTA or FLA

focus on:

- (i) formation of amorphous layers during Ge pre-amorphization implantation
- (ii) regrowth of the amorphous layer by solid phase epitaxy (SPE)
- (iii) P diffusion in amorphous Ge
- (iv) P redistribution during SPE
- (v) concentration-dependent P diffusion in single-crystalline Ge

(vi) activation of P



Institute of Ion Beam Physics and Materials Research

## **Experiments**

(100) p-Ge with 10 nm  $SiO_2$  cap layer

pre-amorphization implantation (PAI):

100, 150, 200, 300, 400 keV Ge, 1-1.2x10<sup>15</sup> cm<sup>-2</sup>

30 keV P implantation, 3x10<sup>15</sup> cm<sup>-2</sup>

RTA (N<sub>2</sub>): 60 s at 400, 500, 600 °C

FLA (Ar): 240 s pre-heating at 400 °C (450 °C = mixed RTA+FLA), 3, 20 ms flash at 800 and 900 °C

## Analysis

Mitalied der Leibniz-Gemeinschaft

#### SIMS, RBS/C, SRP, Hall measurements



Institute of Ion Beam Physics and Materials Research

## **Results**

(i) formation of amorphous layers during Ge pre-amorphization implantation

| Ge              | e PAI                                           | thickness (nm) |                  |  |
|-----------------|-------------------------------------------------|----------------|------------------|--|
| Energy<br>(keV) | Fluence<br>(10 <sup>15</sup> cm <sup>-2</sup> ) | RBS/C          | Crystal-<br>TRIM |  |
| 100             | 1                                               | 105            | 90               |  |
| 150             | 1                                               | 150            | 135              |  |
| 200             | 1                                               | 177            | 175              |  |
| 300             | 1                                               | 254            | 260              |  |
| 400             | 1.2                                             | 322            | 350              |  |





→ as-implanted P profile fully embedded in a-Ge



Mitglied der Leibniz-Gemeinschaft

Institute of Ion Beam Physics and Materials Research

(ii) regrowth of the amorphous layer by solid phase epitaxy (SPE)

RBS/C damage and defect profiles



Forschungszentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research

Mitglied der Leibniz-Gemeinschaft

regrowth rate in undoped Ge (Csepregi et al. 1977):





Institute of Ion Beam Physics and Materials Research

(iii) P diffusion in amorphous Ge

T > 400 °C, RTA and FLA (pre-heating):

the time the implanted layer spends in c-Ge is much larger than time for SPE

 $T = 400 \ ^{0}C, RTA$ 

the time the implanted layer spends in c-Ge is comparable with the time for SPE, but: thermal diffusion is negligible at 400 °C for <60s (see next slide)

#### $\rightarrow$ diffusion in a-Ge cannot be observed



Mitglied der Leibniz-Gemeinschaft

Institute of Ion Beam Physics and Materials Research





→ measured profile broadening due to diffusion in c-Ge is independent of the thickness of the amorphous layer

Mitalied der Leibniz-Gemeinschaft

 $\rightarrow$  diffusion of P in a-Ge is negligible

Forschungszentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research

→loss:

50%

#### (iv) P redistribution during SPE



#### → P is pushed ahead from moving a/c interface, *loss at interface*

consistent with results of Satta et al. 2006



Mitglied der Leibniz-Gemeinschaft

Institute of Ion Beam Physics and Materials Research

#### (v) concentration-dependent P diffusion in single-crystalline Ge - RTA (II)



→ no significant influence of implantation defects on P diffusion



Mitglied der Leibniz-Gemeinschaft

Institute of Ion Beam Physics and Materials Research

#### phenomenology of concentration-dependent diffusion

consideration of diffusion equation and profile shape





Institute of Ion Beam Physics and Materials Research

M. Posselt

Mitglied der Leibniz-Gemeinschaft



lines:

$$D = D_0 \times \left(\frac{n}{n_i}\right)^2 \quad \text{for} \quad n \ge n_i$$
$$D = D_0 \quad \text{else}$$

 $D_0$  from Chui et al. 2003 (RTA)

 $D_0$  from Carroll et al. 2007 (FA)



Mitglied der Leibniz-Gemeinschaft

onset of concentration-dependent diffusion: RTA at 500 and 600  $^{0}$ C: n<sub>i</sub> ~ 5x10<sup>17</sup>, 2x10<sup>18</sup> cm<sup>-3</sup>





Institute of Ion Beam Physics and Materials Research

diffusion mechanism (after H. Bracht 2005-2007, for As in Ge)

consideration of coupled diffusion and reaction equations for defects and P

#### P diffusion via the vacancy mechanism

 $(PV)^{-} - (2+k)e^{-} \leftrightarrow P_{s}^{+} + V^{k}$ 

immobile:  $P_s^+$  mobile:  $V^k$ ,  $PV^-$ 

in the foreign-atom controlled mode:

transport capacity of V<sup>k</sup> much higher than transport capacity of PV<sup>-</sup>

equilibrium concentration of PV<sup>-</sup> is small compared to that of  $P_{s}^{+}$ , local equilibrium of the above reaction, etc.

Mitalied der Leibniz-Gemeinschaft

$$D = D_0 \times \left(\frac{n}{n_i}\right)^2 \quad \text{for} \quad n \ge n_i$$
$$D = D_0 \quad \text{else}$$



Institute of Ion Beam Physics and Materials Research

(v) concentration-dependent P diffusion in single-crystalline Ge -- FLA



 $\rightarrow$  additional tail diffusion depends on the thickness of the amorphous layer

 $\rightarrow$  influence of defects remaining after SPE (transient state) ???  $\rightarrow$  |OSS:

30%



Mitglied der Leibniz-Gemeinschaft

Institute of Ion Beam Physics and Materials Research

(vi) activation of P -- RTA



#### $\rightarrow$ depth dependent activation from <1% to 100%

reasons for strong deactivation:

Simoen et al. 2006

- (i) P-V acceptor centers
- (ii) formation of P-V and/or GeP clusters above the solubility limit  $(2x10^{20} \text{ cm}^{-3})$

Mitalied der Leibniz-Gemeinschaft



Institute of Ion Beam Physics and Materials Research

#### (vi) activation of P -- FLA



20 ms, 900 °C

## →degree of activation depends on the thickness of the pre-existing amorphous layer

Mitglied der Leibniz-Gemeinschaft



Institute of Ion Beam Physics and Materials Research



#### →best result for mixed **RTA**+**FLA**



Mitglied der Leibniz-Gemeinschaft

Institute of Ion Beam Physics and Materials Research

depth of the n<sup>+</sup>p junction (Xj, determined at a donor concentration of  $10^{17}$  cm<sup>-3</sup>), maximum electrical activation (**ma**), average electrical activation (**aa**), and sheet resistance (**R**<sub>s</sub>)

| Ge PAI          | 60 s RTA, 600 ⁰C    |                                            |           |                    | pre-heating: 240 s, 400 ºC (*450 ºC),<br>FLA: 20 ms , 900 ºC |                     |                                            |            |                    |                              |
|-----------------|---------------------|--------------------------------------------|-----------|--------------------|--------------------------------------------------------------|---------------------|--------------------------------------------|------------|--------------------|------------------------------|
| Energy<br>(keV) | X <sub>j</sub> (nm) | ma<br>(10 <sup>19</sup> cm <sup>-3</sup> ) | aa (%)    | R <sub>s</sub> (Ω) | R <sub>s</sub> (Ω)<br>(Hall)                                 | X <sub>j</sub> (nm) | ma<br>(10 <sup>19</sup> cm <sup>-3</sup> ) | aa<br>(%)  | R <sub>s</sub> (Ω) | R <sub>s</sub> (Ω)<br>(Hall) |
| 100             | 186                 | 2.8                                        | 27        | 100                | 54                                                           | <u>139*</u>         | <u>5.8*</u>                                | <u>35*</u> | <u>60*</u>         | <u>51*</u>                   |
| 150             | 196                 | 3.0                                        | 28        | 88                 | 45                                                           | -                   | -                                          | -          | -                  | -                            |
| 200             | 180                 | 7.2                                        | 40        | 55                 | -                                                            | 144                 | 2.5                                        | 10         | 100                | -                            |
| <u>300</u>      | <u>163</u>          | <u>6.9</u>                                 | <u>34</u> | <u>55</u>          | -                                                            | -                   | -                                          | -          | -                  | -                            |
| 400             | 156                 | 5.6                                        | 32        | 75                 | -                                                            | 134                 | 0.41                                       | 1.5        | 600                | -                            |



Institute of Ion Beam Physics and Materials Research

M. Posselt

Mitglied der Leibniz-Gemeinschaft

## Summary

P implantation into pre-amorphized Ge and subsequent annealing:

- SPE regrowth occurs already at the lowest thermal budget
- fast P redistribution during SPE regrowth
- P diffusion in a-Ge cannot be observed
- concentration-dependent P diffusion in c-Ge
   is the main cause for profile broadening and P loss
   towards the interface
- mechanism of concentration-dependent P diffusion:
   vacancy mechanism in the foreign-atom controlled mode



Institute of Ion Beam Physics and Materials Research

- additional diffusion component in the tail region obtained after FLA could be related to defects remaining after SPE
- FLA: degree of activation depends on the thickness of the pre-existing amorphous layer
- RTA: maximum activation 3 7x10<sup>19</sup> cm<sup>-3</sup>, R<sub>s</sub>: 50 -100  $\Omega$ , X<sub>i</sub>: 160 200 nm
- best result: mixed RTA+FLA:  $6x10^{19}$  cm<sup>-3</sup>, R<sub>s</sub>: 60  $\Omega$ , X<sub>i</sub>: 140 nm

