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Abstract

The induced soft gluon radiation processes of light and yeswvshell quarks passing an amor-
phous colour-neutral deconfined medium are compared in tarpative approach on tree level.
Therefore the potential model of Gyulassy and Wang is agpkd its validity is numerically
verified with respect to one gluon emission from single qegukrk scattering. The processes of
single and double scattering with one gluon being emittedimrestigated in detail by analytical
and numerical means in the scalar QCD approach. Subtle depeies on a variety of parameters
are outlined and, in particular, the dead cone effect focifjppekinematical situations is analysed.
Comparisons to the QED situation and calculations of sp®©D results as well as studies of dif-
ferent gauges are presented. The importance of destrunteerences in multiple scatterings,
the Landau-Pomeranchuk-Migdal effect, can be considerétei double scattering case; numerical
problems with these calculations are discussed.

Kurzfassung

Die Prozesse weicher Gluonenabstrahlung von leichten cmdesen "on-shell” Quarks, die ein
amorphes farbneutrales "deconfinement” Medium passigrerden im storungsthereotischen An-
satz auf dem Niveau von "tree level” Diagrammen verglicheazu wird das Potenzialmodell von
Gyulassy und Wang angewandt und dessen Gilltigkeit in bamtigie Emission eines Gluons in
der Quark-Quark Einfachstreuung verifiziert. Die Einfacimd Doppelstreuprozesse, bei denen
ein Gluon emittiert wird, werden mittels analytischer undnerischer Methoden im Rahmen der
skalaren QCD genauer untersucht. Dabei werden subtilaAdigkeiten von einer Vielzahl von
Parametern hervorgehoben und insbesondere der "dead Effe&t fur spezifische kinematische
Situationen analysiert. Vergleiche mit QED Situationed Berechnungen von Resultaten mittels
Spinor-QCD sowie Studien verschiedener Eichungen werdegedtellt. Die Bedeutung destruk-
tiver Interferenzen bei Mehrfachstreuungen, der Landamdtanchuk-Migdal Effekt, kann im Fall
der Doppelstreuung betrachtet werden, wobei numeriscbielétne mit derartigen Berechungen
diskutiert werden.
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1 Introduction

Nuclear matter in ground state is built up from nucleons, $ads of hadrons, protons and neu-
trons, whose interaction is dominantly determined by thengfinteraction. The fundamental theory
which describes this strong interaction on the level of g@erd gluon degrees of freedom is Quan-
tum Chromodynamics (QCD). It is based on the existence otdoent elementary particles, the
qguarks, which are assumed to exist as six different typessdho-called flavours in increasing order
of the current mass parameter are the up, down, strangenchattom and top quarks. They carry
different electromagnetic charges and are fermions with 5p In contrast to the electromagnetic
analogue Quantum Electrodynamics (QED), this theory israatmelian gauge theory expressed by
colour charges which are not only assigned to the quarkslbatta the corresponding exchange
particles. These gauge bosons are called gluons and caadinsgth each other, contrary to photons
in QED. Quarks and gluons all together are often termed partQuarks have not been found iso-
lated but always bound in colour-less combinations in hasireither as quark-antiquark pai/@
these are mesons, or confined in three quark states as bagyomehich include the proton and the
neutront

Under conditions of high temperatures or high densitiessflly interacting matter is proposed to
appear in new phases. This is shown in Fig. 1.1 where the pegpQCD phase diagram is sketched
depending on the temperatufeand the baryon chemical potentjal The conditions required to
explore such regions in the laboratory are only realizedoifistons of heavy ions at relativistic
velocities, whereby these situations are comparable tedHg stages of the history of the universe,
that means shortly after the Big Bang. Cold dense hadroremiattelevant for neutron stars.

In the course of relativistic heavy-ion collisions in thente of mass frame (CMS) the colliding
nuclei are Lorentz-contracted in their direction of motidn high energetic collisions the individ-
ual constituent nucleons are resolved in partons whichescaind deposit a considerable amount of
energy in the mid-rapidity region with respect to the beais ax- 0.2 This energy density corre-
sponds to a particular temperature assuming thermalizédices place at a sufficiently short time
scale.

With rising temperature of strongly interacting matter expects quarks and gluons to become
the relevant degrees of freedom instead of hadrons. Fallptkie situation for electrons and photons
in QED such a deconfined phase is usually called the quadagilasma (QGP). The transition is
expected at a critical temperature@f~ 170 MeV, however it is not yet clear how this transition,
shown as "cross-over shape” in Fig. 1.1, would behave.

Due to a remaining intrinsic longitudinal motion of the nea$ constituents and the large pres-
sure of the strongly interacting matter, after a stage ofimar density the system expands. Be-
cause of this expansion a supposed plasma state subsgqumoid down belowl, and hadrons
are formed (this is the chemical freezeout), due to furtlxgaasion thermal equilibrium cannot

1currently the pentaquark is a highly discussed exotic hasjate, e.g. [Hic03].
°The reader may refer to Eq. (C.14) for a definition of rapidity
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Figure 1.1: The proposed QCD phase diagram taken from [HanO1].

be maintained (this is the thermal freezeout), and aftetsvéine hadrons move away and can be
detected individually.

Besides the denotation of different phases, phase trangities and critical points in Fig. 1.1,
the expectation value afy is additionally displayed. Chiral symmetry, the symmetijhwespect
to left- or right-handness of the quarks, is spontaneousligdn in nuclear matter, thus a large value
of the chiral condensat@)v)) accounts for the considerably higher dynamically createtstituent
masses of quarks. The smaller current masses of quarksearelévant parameters if the quarks
become the degrees of freedom since chiral symmetry isfeeli® be restored for high temperatures
and densities, expressed @s)) ~ 0 for negligible masses of the up and down quarks; —
0. The phenomena deconfinement (quantified by the expectadioe of the Polyakov loop) and
chiral symmetry restoration are in QCD related and happémeasame temperature. The proposed
phase diagram contains some more possible phases, superftuiperconducting phases and quark
matter, but since these are not important for our probleng #ve not discussed here. For more
details on the phase diagram we refer the interested reagfidéogHan01].

It is worth emphasising that relevant heavy-ion collisioqpe&riments are marked by crosses in
the proposed phase diagram for QCD in Fig. 1.1. As indicabexe in order to investigate the
QCD phase diagram, especially the deconfinement transiavell as chiral symmetry restoration,
strongly interacting matter is explored at high energy d&ss The first of such experiments were
carried out at the Alternating Gradient Synchrotron (AG8Brookhaven and at the Super Proton
Synchrotron (SPS) at CERN. More promising experiments witra-relativistic heavy-ion colli-
sions currently being performed at the Relativistic Heawy Collider (RHIC) at Brookhaven Na-
tional Laboratory, New York, and planned at the Large HadZoilider® (LHC) at CERN, Geneva,

3This is denoted by the ALICE (A Large lon Collider Experimpedétector in Fig. 1.1.



will provide data which allow the search for deconfined nrdtf€herefore it is of great importance
to fully understand the hadronic processes but also to grethdifications of hadronic observables
which arise if deconfined matter was created. There is a lishgflpossible observables which are
sensitive to the transient creation of QGP [QMO02, Won94].riémtion here modified flow patterns,
di-lepton signals,J/¥ suppression and energy loss [QMO02]. The latter one is tlatéhe focus of
the present thesis.

The basic physical idea behind this problem is that in caserdaed matter was produced in
a heavy-ion collision, partons with large transverse madomanwith respect to the collision axis
propagate through the medium and therefore can be usedlte e created phase. One believes
radiative energy loss to be an important mechanism for neadifins of the high energetic parton.
This is outlined in more detail in Chapter 2.

In this thesis we focus on very basic scattering processasrgzanied by gluon radiation of a
guark passing a deconfinement phase which might subsegadtet! the results of the hadroniza-
tion. Considerable attention is paid to the different gleamssion patterns for light or heavy quarks.

The thesis is organised as follows. In Chapter 2 we introchase the search for the quark-
gluon plasma is connected to hadron spectra from high-gineavy-ion collisions. The problem of
parton energy loss by induced gluon radiation and its caresseps for hadronic observables have
been studied extensively, so that different approacheaaiéable and will be summarized. With
[Kov03, Gyu03] one can find comprehensive review articlesanonsiderable amount of additional
references about these studies. The problem of radiatom freavy quarks is motivated.

Aspects of the radiation off fast particles traversing arogrhous medium are discussed in
Chapter 3 were we focus on electrodynamics. Further thetyaradiation amplitude”, which is
an important subject of our investigations, is introduc&thally the potential model of Gyulassy
and Wang [Gyu94, Wan95] is specified.

The results for the radiation pattern obtained numeridalhthe single scattering case are pre-
sented in Chapter 4. Especially we compare results from QiEDifferent contributions from
QCD. As patrticular point we mention our treatment of inducadiation. The previous work (cf.
[Kov03, Gyu03]) treats the corresponding evaluation ofrmatlements for the radiation process
by analytical means, thereby resting on several approxmst In contrast to this, we evaluate di-
agrams from the very beginning by a numerical procedureolnglso we can exactly account for
the kinematics, in particular in treating finite energies guark masses; the full colour structure
is included. The present thesis is to be understood as aXpsiratory study of the evaluation of
Feynman diagrams within QCD relevant for energy loss. Ounemical code for this evaluation is
written in C++. The idea for such a treatment of matrix eleta@merged from the studies in e.g.
[Tit99, Bar01], where hadronic processes are describedibly a large number of diagrams which
prevents the usual calculation of squared matrix elemgntsalse theorems. Analogue techniques
are implemented, for instance, in [Kra02].

Afterwards in Chapter 5 the case of double scattering isudsed. Problems which arise in the
numerical approach are explained. The last Chapter 6 is suynand outlook. Apart from this
some results are referred to appendices together withigegersupplements.

4Typical energies available in CMS in collisions with S, Pbfarions are2 AGeV for AGS, 18 AGeV for SPS,
200 AGeV at RHIC andb500 AGeV at LHC. Here,A stands for the nucleon number.






2 Energy Loss of Partons and the
Search for the Quark-Gluon Plasma

2.1 Motivation

In the search for the quark-gluon deconfinement phase atyafalifferent signals has been sug-
gested which might give information about this phase anéa&afly should help to identify such a

state experimentally. In this work we concentrate on thélem of energy loss by gluon radiation
off quarks passing an amorphous medium. More preciselyjulstion how the mass of an on-shell
guark modifies such emission processes will be the subjéctestigation. In the following chapter

these ideas are further motivated.

2.1.1 Theoretical Concepts

Unlike in QED the energy loss of a parton is not measurabkctir since partons are not observed
as free particles in the experiment. Moreover one has totiguethe effect of parton energy loss
on subsequently built hadrons, that means on jet formatdrpaoperties which are experimentally
accessible.

It is generally believed that at RHIC or LHC energies nuclausleus collisions will reveal new
physics compared to proton-nucleus or proton-protonsioltis due to the significant size propor-
tional to A'/? of the incident particles. Deviations from geometricallscpof various observables,
that means a violation of scaling from proton-proton cailisto the collision of two nuclei by the
number of binary nucleon-nucleon pairs, evidence this fBicts can be used to access properties of
the deconfined matter, e.g. parton densities.

Among non-linear modifications of QCD evolution equationg do higher partonic density,
initial state partonic energy loss, medium modificationd amultiple independent hard parton inter-
actions in one hadron collision, final state partonic endogg is expected to modify high, * ob-
servables which offer a link to characterize the details after produced in a collision. In particular
the effect that the yield of produced hadrons in an ultratnaktic heavy-ion collision is suppressed
with respect to the yield scaled from nucleon-nucleon swliis is also called "jet quenching” and
was already proposed as signal for high density matter @bawtears ago, see e.g. [Wan92]. For a
short summary of the underlying physics we refer to [Bai03].

Induced radiative energy loss has been suggested as mavetamipeffect in nuclear collisions
than elastic scattering, see e.g. [Gyu03]. Note that elfisial state energy loss has been already
proposed by J.D. Bjorken in 1982 to lead to jet attenuatiogven extinction; others have suggested

1The momentunp, = pr is the transverse momentum of observed particles measerpémicular to the heavy
ion collision axis.
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di-jet acoplanarity as further consequence, see [GyuO8feferences therein. The corresponding
experimental situation is described in 2.1.2.

Because of the high multiplicity of produced hadrons, jetstain not only the leading particle
but also particles from radiated gluons, this is why a diraeasurement of the energy loss effect
is difficult to isolate. Instead, an analysis of particletdimitions within a jet turns out to be more
accurate. The fragmentation is assumed to occur in the vaduence the energy loss of the parton
is reflected in the energy loss of the hadron.

jet

Figure 2.1: A di-jet (e.g. gq) is created in a primary hard collision of two gluons. Briefly
afterwards, softer interactions produce the QGP througttiwtine jets move. The jet going

a longer distance through the medium can experience a str@itgnuation or even may be
extinguished. In this picture the latter case of an awag-giissing jet is shown.

The parton energy loss can produce a pattern of jet attemyatihich includes information on
the initial effective gluon rapidity densityN, /dy if local thermal equilibrium is assumed. Therefore
the idea of jet tomography [Gyu02b] is to reproduce querghiata selecting the most appropriate
dN,/dy distribution. Basically this is the direct analogue to cemtional X-ray tomography. The
energy loss effect might even lead to partial absorptioetsf, fhat means to an so-called away-side
missing jet, see Fig. 2.1.

Note in addition that parton energy loss cannot only leadhéostuppression of highy hadron
yields but can also generate azimuthal anisotropy of lafggpectra in non-central collisions. This
is a geometrical effect caused by the azimuthal dependdnite alistance that a parton has trav-
elled before hadronization. Consequently, the energy dbghis parton is a function of the az-
imuthal direction and so the large transverse momentuntrspeicobserved hadrons will be as well
[WanO1la, GyuO01b].

Aside from this, jet imbalance or acoplanarity is expec®ad36, App86]. In a collision where
two opposite jets propagate outwards from the collisiorezitreir momenta would be confined to
a plane. However, because of parton energy loss of the jatlear an imbalance of the transverse
momenta can occur.

To make the problem of radiative energy loss of a jet partsree&reatable a potential model was
introduced by Gyulassy and Wang [Gyu94, Wan95], explainethore detail in Section 3.3. This
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model has been applied to the problem of final state radiatieegy loss and discussed within several
theoretical approaches. We present some of their key idehstanmarize crucial differences.

Two different analytic limits have been considered in theréture. Both apply the high-energy
limit, where no deflection of the initial parton is assumede3e approaches essentially differ in
their assumptions for the density of the deconfinement nmedilihe effect of the density can be
encoded in the mean number of scatterings of the jet in mediatso termed the opacity= L/,
wherel is the size of the traversed medium andenotes the average mean free path of the parton.

A continuous theory which may be applied for dense deconfinatter, hencé& > 1, has
been considered by Baier, Dokshitzer, Mueller, Peigné $etuff (BDMPS) [Bai97a]. Based on
asymptotic energy the solution of a Schrodinger like eguaed to the conclusion that the energy
lossAE grows with the medium thicknedsas L.? independent of the initial energy. This result is
achieved for a static medium, however it was investigatetiéu that in matter expanding according
to Bjorken’s hydrodynamical model energy loss can be evegetdBai98a]. Note, that this ansatz
has not been proven to be successful in realistic nuclebsiool scenarios. There one finds that the
jet parton suffers only a few scatterings (see also Sectibi2P

In contrast an approach for such thin media, an expansidreiopacity, has been worked out by
Gyulassy, Levai and Vitev [Gyu00a] in the high-energy eidoapproximation. That means assum-
ing a parton which remains on a straight-line trajectorg fiossible to evaluate all relevant diagrams
for an arbitrary number of elastic and inelastic interawdioecursively. On the level of probabilities
this recursion is carried out via a reaction operator. Detdithis reaction operator approach, which
is frequently called the GLV formalism, can be found in [G@aQGyu01, Gyu02a]. We emphasize
that this approach is capable to include kinematical caivgs and involves the interference effects
with the production amplitude of the parton. This restractlirect comparison of this approach with
our results, since interference effects with the produgtimmcess will not be studied here.

In combination with the LPM effect, explained in Section.2,lwhich reduce® to a smaller
number of effective scatterings, the first order of the dyasxpansion plays a very important role
for the general question of radiative energy loss. The rapi/ergence of the opacity expansion
allows to reproduce th&? dependence of the energy loss from first order in opacity Bt The
prediction of the GLV formalism in first order opacity is

CR Qg LQ,U,2 FE

AEY = log —
GLV N(E) )\g og —,

whereC' is a colour factorp; the strong coupling constant,the Debye screening mask, the
mean free path of a gluoi; the initial energy of the parton and(E) a numerical factor which de-
creases with higher energies and approaches the asymgtiot#V (E) — 4 for E — oo [Gyu00Db].
Hence the relative energy loss is predicted to be slowlyedesing proportional téog(E)/E for
higher initial energies. For finite energies howeVefF) suppresses this behaviour. This shows
the importance of finite kinematical boundaries and suggést numerical approaches can be very
instructive. Note that Wiedemann has independently dpeel@n opacity expansion [Wie00b]. A
path integral approach was first worked out by Zakharov [B§k9

The QCD analogue of the TM effect, see also Section 3.1.2¢caasidered in [Mu199, Kam00]
and [Djo03b]. In the last-mentioned work it was pointed dwttta modified dispersion relation of
the gluon may be the reason for a reduction of energy losbf ilmomentum charm quarks.

Another feature of this problem is that energy loss and gngegn mechanisms can compete
with each other. The concept of detailed balance was diedusg Wang and Wang [WanQ1b].
Especially hadron spectra for transverse momenta 2 GeV /c are influenced by the collisional
energy gain [Mul03].
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In the eikonal approximation, possible for high projectlieergies, it was assumed, that the
independently propagating partons only acquire a phaske\iliney interact with a target. They
do not change their transverse position and thus maintaen straight-line trajectory. This strong
assumption is not necessary for a numerical analysis ar lemergies.

2.1.2 Experimental Situation

High transverse momentum spectra of pion productiofint- Au collisions at,/syy = 130 GeV
at RHIC reveal a steeper slope in central collision data thaperipheral collisions, see Figs. 2.2,
for moderate highy, neutral pions, i.epr &~ 1.5 — 4.0 GeV /c. This was discussed in [Lev02] with
preliminary PHENIX dat&. Using the GLV formalism it was found in [Lev02] that the qubitg
effect on the pion yields in central collisions can be exptdi by an opacity./\, ~ 3 — 4 for a
static deconfined medium. As mentioned above, liggethe size of the medium ang is the mean
free path of the gluon, which enters since gluon rescatietiagrams become important.

In general the pion yields in central collisions are suppedswith respect tp + p data scaled
with the number of binary collisions, which points to stramgdium effects. This is interpreted

o

o 1.8

T Au+Au —> 7° at 130 AGeV : Au+Au —> 7° at 130 AGeV
O] N L
O r ¥ 1.6 . centr
<L Central D Ro Yield (Centr) /<N, ="">
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Figure 2.2: Transverse momentum spectra (a)7df produced inAu + Au collisions. For
central collision data the predictions including jet quang for different values of opacity are
exhibited. The central collision data show a steeper fiithan in peripheral collisions. This is
the observed jet quenching. The normalized ratio of cetdrpkripheral pion yields (b) reveals
the jet quenching in central collisions. These figures, ridkem [Lev02], indicate an opacity
L/Ag ~3—4.

as jet quenching, that means a higher energy loss prior tahaation due to the higher density
formed in central collisions. These observations are atsditned by more recent neutral pion

°The final data are published in [Adc02al].
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production data from RHIC foy/syx = 200 GeV [AdIO3] as can be seen in Fig. 2.3. In this figure
different centrality selections are compared and revesljét quenching is stronger if the collisions
are more central. Note in addition that jet quenching has laéen observed for charged hadrons,
see e.g. [AdcO03] for results gf; dependent charged hadron suppression at RHIC for energies

\/SNN = 130 GeV.

N

0 spectra;
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30-40% x 1077
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Figure2.3: 7¥ spectra as a function of transverse momentum for differemtralities inAu-+Au
collisions at\/syny = 200 GeV. This figure taken from [AdIO3] exhibits that jet quenching
increases with centrality.

The observation of disappearing away-side jets is a qtigsétaew phenomenon compared to
d + A collisions. The missing jet is interpreted as caught by atect deconfined phase of quarks
and gluons that has a higher stopping power than nucleaemattis was already shown in Fig. 2.1.

Data of transverse momentum spectra from semileptonicydeafiopen charmp — e X,
reveal information ompr spectra ofD-mesons (charmed mesons) and thus for charm quarks, see
Fig. 2.4. Surprisingly no significant energy loss is realif@ charm quarks. This was termed "null
effect” by Gyulassy [Djo03a]. An analysis of these data wéhpect to the strength of the possible
energy loss effect by the charm quark seems to point at bésttenergy losses [Gal03].

The important influence of the quark mass on the energy ldgsrpathat is to say the qualitative
difference between results for heavy or for light quarks tdune so-called dead cone suppression,
has been discussed by Dokshitzer and Kharzeev [Dok01] anttasluced in the next section.

This interpretation of data and the theoretical predictbthe dead cone suppression motivate
us to reconsider the gluon radiation spectra in the potentiael in detail. This is done numerically
and allows especially to abandon the high-energy limit,stess partons and the soft radiation as-
sumption. Furthermore all non-abelian diagrams and afiatences, except interferences with the
radiation amplitude, are included.

Encouraged by the suggestions from experimental data audythhat only few final state in-
teractions are relevant, which points to the case of thinimede will focus on single and double
scattering processes using a C++ program, which had to Ihemri

Advantages of this method are further that the full cologeata can be dealt with, in contrast to
the assumptions which use combinations of colour strustinoen different diagrams in the eikonal
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Figure 2.4: Electron spectra compared to the expectations from opamctiacays. Shown are
data for central and minimum bias collisions. The figure ketafrom [Adc02b]. Following the
analysis of these data [Gal03] suggests at best tiny enesgg$ of charm quarks.

limit. Besides this the calculations can be carried out éata but also for spinor quarks to elucidate
the importance of spin flip effects.

2.2 Dead Cone Factor

The probability for gluon emission off heavy quarks in patjle direction can be strongly reduced
at angled < 6, by a suppression factor which corrects the matrix elemesrigsetl in the approach
of Gunion and Bertsch [Gun82] for massless, high energetarks, see also next sections and
Appendix D. Hered, = m/FE wherem indicates the mass arfd the energy of the incident heavy
projectile quark. This factor was determined by Dokshitrel Kharzeev [Dok01] for small angles
as

k% sin? 0

- (2.1)

F =
k2 + w202 sin?6 4+ 63

and is termed "dead cone factorlts general form is depicted in Fig. 2.5. Dokshitzer and Kieaw
[Dok01] have estimated that the gluon radiation patterfedifqualitatively for heavy and light
quarks. However, their discussion is restricted to smajlesand the relevant angular regions are
not specified quantitatively. Moreover, this estimate i&Mar soft gluons, that means it focuses on
abelian diagrams only, and cannot handle intermediatenginergies. These shortcomings can be
analysed only by a numerical computation, which is the mastivation for the present work.

Figure 2.5(a) shows the dead cone fadfoitself. In order to motivate the terminology, which
will be referred to in our further analysis, we depict the @lagdependence of the squared radiation
amplitude| R, |?. Qualitatively this quantity describes the probabilitygiion emission and this
probability has to be multiplied by the dead cone factor ifsmaffects are taken into account. In
Fig. 2.5(b) the consequences of the fackbare compared to the results by Gunion and Bertsch

3In Appendix G more explanations on the derivation of the teane factor” are given.
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Figure 2.5: lllustration of the (a) general form of the dead cone fadioas a function of the
emission anglé for 6, = 0.01. Multiplied by the typicall / sin? § radiation pattern for massless
projectiles (b) reveals the suppression of emission offy@articles compared to Gunion and
Bertsch [Gun82], which equals the tesim~2 §, and suggests the sketched terminology.
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[Gun82] restricted to thé dependence. Therefore the typitdkin® # dependence of the radiation
amplitude, see Appendix D, is multiplied by?, since the squared matrix elements are relevant.
Hereby the so-called dead cone peak is situatég ahd implies to denot&, as dead cone angle.
Below 6y, the characteristic angle in this problem, radiation beg®suppressed due to the non-
vanishing mass of the projectile.



3 Radiation of Fast Particles Passing
an Amorphous Medium

Following the previous motivation of energy loss off quali¥sinduced gluon radiation in de-
confined matter of quarks and gluons we focus on importamcspf radiative energy loss from an
electromagnetic point of view. Finally we show how the rédiafrom light and heavy quarks can
be compared qualitatively.

3.1 Classical Electromagnetic Radiation

For simplicity and as an introduction to the problem of réidé&a energy loss in an amorphous
medium we recover the analogue problem in classical el@gtramics, e.g. [Jac98]. Particles which
carry electromagnetic charge are subject to radiativeggriess if they are accelerated. The follow-
ing discussion is restricted to the electron, the genextidina to arbitrary charges is straightforward,
that is to say the electron chargéad to be replaced by the appropriate charges. We consgter fa

In this classical context we discuss two effects which mpothie degree of radiative energy loss,
namely the Landau-Pomeranchuk- Migdal effect and the Tisadlian effect, e.g. [Ter72, Bai98c].
The terminology for the further consideration of the stramgraction problem is motivated.

3.1.1 Landau-Pomeranchuk-Migdal Effect

In a situation with successive multiple scatterings of attebn the spectrum of emitted radiation
depends on the distance between neighbouring scattermgese For small distances a suppres-
sion of radiation with respect to the sum of each scatteronsiclered separately appears. This is
known as Landau-Pomeranchuk-Migdal effect (LPM effect® phesent a classical approach to this
phenomenon [Pav97, MiilI99]. The energy spectrum radiageddiving charges is found from the
Lienard-Wiechert potential of the electron in motion. Wmm the discussion with equation (14.67)
in [Jac98], which describes the differential intenditsts a function of energy and solid anglé€) as

d21 €202 00 B (- 2
_ iw( nr)/c)dt 3.1
dwdQ  472c /Ocn (7 x B)e ’ (3.1)
where
I (
ko) (3.2)
IR ¢

We write explicitlyc at this stage, but work in conventional units= 4 = 1.
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Here,#(t) = d’;&” is the velocity of the charge moving along the trajects(s) andf is the wave
vector, which obeys the dispersion relatior= |k|. Relations for cross products of vectors allow to

transform this into a more appropriate structure

d?1 __62k2
dwdQ  4r?

00 o 2
/ 17 % F(1)] ) gy (3.3)

— o0

In what follows we are interested in the soft photon appration,w — 0. Furthermore, we
consider a dilute medium. Then the scattering process caintygified by an abrupt change in
the direction of the electron’s velocity at the scatterirnp. Outside the scattering centres the
particle is assumed to move on a straight line with consteldoity. Given these simplifications,
one can exploit Eq. (3.3) to achieve a transparent undefisigof the radiation process. In doing
so we consider first the single and double scattering preseaassome detail in order to generalize
afterwards the important aspects to the case of multipltesoays. Note, that the integration over
infinite times in Eq. (3.3) is to be covered by a suitable cogerce factoe ¢ in the integrand and
the subsequent limit — 0 has to be performed finally.

Single Scattering

The situation for a single scattering process is depictédgn3.1.

=0 Uy
A
>

01 t=20

Figure 3.1: Single scattering.

After integration of Eq. (3.3) the phase factors vanish ia limits ¢ — 4oo. The intensity
spectrum of emitted radiation

2

< d?r ) e? 7 X —:1‘ B X UQ (34)
S.S

dwd2

is focused in the directiofi|| » because in this case the denominators in Eq. (3.4) becomg sma
So to say they yield large contributions to the radiationugthe spectrum is strongly peaked into
the forward direction of an ultra-relativistic electrof#|(— ¢). It becomes also evident from this
expression that only with a change in the velocity of the tetecemission appears, otherwise the
radiation vanishes.

Double Scattering

From the spectrum for double scattering in Fig. 3.2 one dsrithat the dominant contributions
in the soft photon limit result from the integral parts b&fdhe first scattering and after the last
interaction, which correspond to the first and the third terfaq. (3.5), respectively,
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7 t=0 t= At
Figure 3.2: Double scattering.
7o
d21 o2 7 X . 7 X Ty zw<1—7>At ,
= (&
dwd(2 U U

2

L 1——>At
SR CRaR. ( ¢ . (35)

The intermediate contribution, namely the second term in(BE&), can be expanded for small
w (soft photon limit). This yields a condition which allowsrfeeglecting the second part in the sum
of Eq. (3.5)

1

w<1_@>
C

Here the formation time, for the radiation is introduced. Additional the same coeditcan be
expressed in terms of the travelled distandeetween the scatterings. Then the condition for de-
structive interference reads

= tf > At. (36)

|V

w|l———=
C

where the formation length is defined. Hence, one expects a suppression of radiatibe ggatial
separation of the two scattering centres is small enough.

Technically termed, the emission process described by E§) (s decomposed into a pre-
emission term from the first scattering, a post-emissiam teom the first scattering, pre-emission
form the second scattering and post-emission from the sescattering. Condition (3.7) evidences
that a large formation length implies a destructive intenfiee where the post-emission of the first
scattering and the pre-emission of the second scatteriadyneancel. Comparison with Eq. (3.4)
highlights that under these conditions the double scatidaoks effectively like a single scattering.
Usually this is called LPM effect.

Physically it is clear that in the soft photon limit the longwelengths of emitted radiation do not
resolve the very details of the scattering centres, andptinisof the spectrum must be correspond-
ingly equivalent to a single scattering spectrum.

In the opposite cask < d however note that the spectrum in Eq. (3.5) can be rearraaged
then looks like the sum of two independent scatterings ea¢ha form Eq. (3.4), one from,; to
v and the second one from to 5. This is due to the large fluctuations in the exponentialoiagt
which allow for the neglect of interference terms connaghnth scattering processes.
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Multiple Scattering

A similar physical picture as for double scattering can benfibin the generalized case of soft
radiation from multiple scatterings at centres displayed in Fig. 3.3. One expects a certain number
of scattering centres to contribute destructively to therall spectrum. Fig. 3.3 visualizes that

Uy
—_—
I: lf =I< lf :I: lf 4)'
— ,I—_)’f

Y

Y

Figure 3.3: Multiple scattering. In the LPM regime scattering centriésaged within one for-
mation length/; act as one single effective scattering centre denoted bfjllé circles in the

lower graphic.

on average the electron on its path through an amorphousumeslperiences particular numbers
of scatterings which together act as effective scatterinse length it traverses in the target of
thicknessl while one effective scattering is taking place is the foipratengthl,;. In generalization
of Eqg. (3.7) the formation length

|_‘|

gl

lf:W
wll——
&

is determined by the parallel componeitof the electron’s velocity, that means the projection into
the initial direction of the particle. Clearly, this reges that the actual distance of neighbouring
scattering centres is small compared tod < ;. As we have discussed in the double scattering
case, the radiation spectrum from such an effective saagteentre looks like one generated by a
single scattering event, thus the net radiation patterrbeapbtained as superposition 8 = ﬁ

effective single scattering spectra, assuniing L.
Hence, forN.s < N we obtain a suppression effect in the radiation spectrum

427 427
— N - : 3.9
<dwdQ>N ff <dwdQ>—S.S. (3.9)

in contrast to the Bethe-Heitler limjtwhere the radiation fronV-times multiple scattering is addi-
tive in the number of scatteringd,. — N. The subscrip§.S. in Eq. (3.9) indicates that an average
single scattering process is meant.

(3.8)

°Note, that Bethe and Heitler have first considered brentdsing for a relativistic electron in Born approximation,
e.g. [Lan80].
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We will further comment on the main condition of the LPM effetn Eq. (3.4) we have seen
the radiation to be concentrated into the electron diraedtiside a cone with opening angg.q =
yl = =, which implies that electron and photon will be separatdgl after a certain time of flight,
or formation length;. The mass of the electronis and E its energy. The electron and the photon

will propagate independently if the electron is scattengibdits radiation cone®?.,, > ©2 ,. Here

scat rad*

©2.,; stands for the mean squared scattering angle of the eleckorestimate of this scattering
angle in a random walk picture relat®g.,, to ; to yield/; ~ % [Pav97]. Therefore the spectrum

Eqg. (3.9), and thus also the energy spectrﬁfm becomes proportional tég in the LPM regime
with ©2,, > ©2 ., otherwise, fol®2,, < ©2 ,, in the Bethe-Heitler limit the spectrum is constant

rad’
with respect to the initial energly and the frequency of the emitted radiation.
In summary, in the true sense the LPM effect is the destrectiterference of radiation from
a certain number of scatterings arranged within a formdgagthl;, whereby the electron having
passed; is scattered out of its radiation cone due to multiple sdatje Besides this meaning
one often meets other destructive interference effectettebmed LPM effect. A description of
both effects, the LPM effect and the Ter-Mikaelian effect,be considered below, on quantum-

mechanical grounds has been developed by Migdal.

3.1.2 Ter-Mikaelian Effect

Besides the radiation suppression effect of multiple edatys the polarization of the medium in-
fluences on bremsstrahlung off ultra-relativistic elecolt was found by Ter-Mikaelian that this
effect can further reduce the radiation spectrum espgérathe soft frequency limit. We present an
explanation based on classical coherence arguments fofidive method of Galitsky and Gurevich
[Gal64].
Here the formation length given by Eq. (3.8) in Section 3.1.1 can be identified with aszehce

length /, which is the path length the emitting particle travels owdrich the radiation remains
coherent. The geometrical condition to maintain cohereletmes the coherence length

A v - cos O

l(w,0) =2 -
(@.0) 2 1/\/e —wv-cosbs-cosb

(3.10)

as the electron’s path length where the phase differencaalsaguor% in terms of the wavelength
A. This coherence length depends on the emission angle dlti@ap, its frequencyw or wave
length \, 6, denotes the multiple scattering angle of the electron@rd, the average value, but
most importantly hereﬁ stands for the increased phase velocity of the emitted wteaidung.
The dielectric constart takes into account the polarization effects of the mediurnteNhat this
expression corresponds to Eqg. (3.8) for the formation kehgapart from a constant factarif we
focus on the LPM effect in Eq. (3.10) by setting= 1 for the vacuump = 2= and |7 | = v - cos 6.

In order to target the polarization effect we state that #tkation intensity per unit frequency
interval I (w) can be expressed in terms of the Bethe-Heitler expredsipi),

I(w) = q - Ipn(w). (3.11)
modified by a reduction factor

_ lw,0) 0"
B lo(w,()) B lS,

(3.12)
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which is the ratio of the forward emission coherence lengths(w, 0) in medium and; = I, (w, 0)
in the absence of medium effects, that meansfer 1 andcosf;, = 1. Using Eg. (3.10) and the
familiar relations

e=1- —zg (w > wy), (3.13)
—  E?1

2 __ s "0
62 = 55 (3.14)

together with expansions GJF—E and cos #;, under the assumptionsa~ 1 andcosf ~ 1 one then
obtains

<

(3.15)

Here the parametey, is the plasma frequency and formally corresponds to a massfte the
photon, E is again the energy of the electron amdits mass. FurthermoreY is a characteristic
radiation length and’; a typical energy scale, both arising from the Bethe-Hegfactrum.

The reduction effect is purely due to medium polarization if

F?wi  E?E? ¢

14+ ——= —_ 3.16
+ m? w? - m*t Xw ( )
Then the reduction factor becomes
2
v <1. (3.17)

1= w? + (E%/m?)w?

In reversing the inequality (3.16) one can find a regime foML$uppression. For more details on
this situation, the calculation itself and a subtle distussf the competing contributions from LPM
effect, TM effect and the absorption of quanta the readehtrbg referred to [Gal64].

In conclusion we repeat that the polarization of the mediamses the bremsstrahlung spectrum
off an relativistic electron passing an amorphous mediubreteeduced for lower frequencies. This
is the proper Ter-Mikaelian effect.

The importance of the TM effect for the energy loss of quarkdeconfined matter was already
qguestioned in [Mul99] and [KamO0Q]. It was confirmed thatigedt analogue of this effect in QED
also exists in QCD.

3.2 Quantum Description: Cross Section and Radiation
Amplitude

Guided by the above classical considerations we turn to atqoadescription of the radiation

process within perturbation theory. The analogue to atassiectrodynamics is QED. This section
introduces quantities which are suitable to discuss thatiad pattern in inelastic collisions in the
soft radiation limit in detail.
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3.2.1 General Cross Section

The differential cross section for a process with two ihiéiad » final particles with initial (final)
energiesE, (E,) and initial (final) momenta, (p)) generally takes the following form as can be
found in many textbooks, e.g. [Bjo90],

do = — (N (Mo e NidR o Nadp
’171 - ’172 2E1 2E2 2F" 27 3 2E! (27 3
1 n

(Qﬂ)45(4) (pl +p2 — ZP;) S. (3.18)
i=1

The factorsV; are 1 for spinless particles, photons and gluons. Othepwisthe case of Dirac
particles,N; = 2m; if the spinors are normalized to 1. The dynamics is now caetiin the matrix
element)M, the delta function takes care of energy-momentum consernvarlhe statistical factor

S = H ll—, accounts fof; identical particles of sortin the final state.

3.2.2 Radiation Amplitude

In order to motivate the quantity "radiation amplitude” wensider first the situation where the
emission of one photon is induced by the scattering of twotedas. From a comparison of the

elastic and inelastic differential cross sections one &dimé a ratio which represents the probability
of a photon being emitted. The respective cross sectionshadglong to the diagrams depicted for
the quark-gluon case in Fig. D.1 and Figs. D.4(a)-D.4(d)ye¢omodified by replacing gluon and

qguark lines with photon and electron lines, are

doi i — S-(2m)*™W (py +p2 —ph —ph — k) [ Ny Na
el Ty — s 2F, 2F,
Nld3 ! Nld3 ! d3k
| Minel|? 197Dy 24Py . (3.19)
2F1(2m)3 2F)(2m)3 2w(2m)3
S (21)46™ —p N N. N'd3».  N'd37p'
dog = (2m) Epl +ﬁp2 Ph — D3) 1 2 My? } p13 ? p13- (3.20)
Ty — Uy 2F, 2F, 2F(2m)3 2FY(27)

Before the ratio is taken, the squared matrix elements arem&d over all final polarizations and
an average over initial polarization configurations isiearout. The overline at the matrix element
indicates this summing and averaging procedure. We defeeathation amplitude by means of

dP = dainel _ |]\4inel|2 . d3k .
doe |My2  2w(2m)?

(3.21)

The idea behind this quantity is a factorisation into a pagadibing the emitted radiation and an
underlying part for the elastic scattering. This factai@aholds only true if the momentum of the
photon is negligible compared to the momenta of the otheigbes, an assumption, which is called
soft radiation limit. Eq. (3.21) describes the probabitfyone photon emission under the condition
that an elastic scattering has occurred, that is to/3ay a conditional probability. Usually, one
defines the photon number distributiéy

R, =uw — ' (3.22)
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(see for instance Egs. (15), (16) and (45) in [Gyu00a]).
Besides the kinematical or constant factors the relevaygiptin Eq. (3.21) is, very close to the
definition of 2., described by the fraction

W: ‘Mine1‘2

: (3.23)

which is the sufficient quantity to compare different raiatpatterns in such processes in the next
chapters. We will call this the radiation amplituée or strictly speaking the summed and averaged

squared radiation amplitud®|?, but for convenience the term “radiation amplitude* wilhalys be
used in the following if the meaning is obvious.

The above considerations apply directly to one gluon emnssihe matrix elements have to be
summed additionally over final colour states and averaged ionvtial colour states. The relevant
QCD diagrams are shown in Fig. D.1 and Figs. D.4, where a ned & diagram due to the three-
gluon vertex, or sometimes also called triple-vertex, ogckig. D.4(e). Corresponding colour
factors have to be implemented. A detailed discussion veispect to the colour states is presented
in Appendix A.

The radiation amplitudes for single scattering processdsamilarly defined for double scatter-
ing processes with one photon, or gluon respectively, bemited, are described explicitly in the
following chapters.

For completeness, we mention that another different giyaatso called radiation amplitude, is
introduced (cf. Eq. (16) in [Wan95]),

M rad

iR = TjBTgDFl, (3.24)

With M,.q = Miner. Substituting this into Eq. (3.23), Withle = TS 576 - Meino colour ONE ObtaINS

TP RMe no colour 2
A7 = Moo coone (3.25)
‘Mel‘Q

and sinceV/y no colour 1S cOlour independent one can divide the overline in the denator

T |RMel,no colour|2

R[> = .
‘T/ZBTE’D‘Q ' ‘Mel,no colour|2

(3.26)

The colour structure gives, ., for more details refer to Eq. (A.13), and the overline intihenerator
can also be split if? is independent of those stat&g, ,,, o1our Still depends on. This could only be

spins, thus for scalar QCD the summing and averaging proeadun be divided ande) .0 colour |
cancels

Tz _ 1
R?2 = .
| ‘ Cl,el

(3.27)

Hence, the radiation amplitudésand R differ by a constant colour factor.
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3.3 The Potential Model

In order to describe the radiation effects if a high enecgptirticle is passing an overall colour-
neutral deconfined phase, a potential model was employely ting Gyulassy and Wang [Gyu94,
Wan95]. They have justified that in a particular gauge, AHegauge, see Appendix C, the radi-
ation contributions from target lines can be neglected. ppéndix C this is also demonstrated
numerically.

Therefore, the target particles can be modelled by locdkzatic screened potentials in the form
(cf. Eg. (1) in [Wan95])

e—i(ffi

Vig(q) = gT,?‘Bi(jQ oy (3.28)

which arises as Fourier transformatip(y) = [ d*xf(z) of the screened Coulomb potential

- T¢ -

Ve, (7) = ﬁe—w—% (3.29)
Therebyz; denote the space points where these Yukawa type potentglsalized. Successive
scatterings are assumed to be well separated; 1~!', where) is the average mean free path
length of an incident projectile partoh/ . is the Debye screening length ands called the Debye
screening mass. The value @fs not varying here. The term$, stands for the original colour
structure of the target and is explained in Appendix A.

3.4 Divergences

Different types of infrared divergences caused by vanghiass parameters may arise. Firstly, due
to the massless gauge boson, which is the photon in QED arglube in QCD, respectively, a so-
called soft divergence is expected. Secondly, the coltideergence is expected to follow from a
massless matter field. The introduction of a gluon medsseaks gauge invariance, but in this manner
the soft divergences from gluon propagators can be sumates&eeping the mass parameters for
the quarks, collinear divergences are ruled out, too. Thiaodefor the gauge boson propagator is
known as mass regularization, another possible schemeenmate problematic regions in the
phase space by a cut-off method.






4  Single Scattering with One-Gluon
Emission

The aim of this chapter is to clarify the one-gluon emissioa single scattering event. Analogue
to [Wan95] we employ the potential model to simulate thetecaty of on-shell quarks. Despite
of the simplicity of the formal expressions we will meet atoasshing complexity of the radiation
pattern. Furthermore, we will compare the potential mod#i evquark-quark scattering calculation.

4.1 Kinematical Situation and Declarations

We first introduce the necessary diagrams and matrix eleswétttin the potential model approach.
Additionally, we construct the relevant kinematical cdratis and emphasize the important approx-
imations. Here, we explain the QCD situation, whose exprassan easily be reduced to the QED
case.

pi, A

; pf7B

Y

(7917:?7 C7D

Figure 4.1: Feynman diagram for single elastic scattering in the p@knmtodel described by
the amplitudel %"

From the Feynman rules, see Appendix B, one directly obtamsnatrix elements for the rele-
vant Feynman diagrams. The matrix element for the singkielacattering process Fig. 4.1, which
we need as normalization in the radiation amplitude Eq.3)3/2ads

— QT
MQCD e 2qel

lel — TisTép - (—ig)(pf —l—pi)u ) (_ig)gou (4.1)

G + 12
The fact, that the potential can only impart spatial momertransfer to the projectile, but no energy
transfer, essentially simplifies the kinematics and thstelanatrix element becomes

MlQe(ljD =TigTcp - (_92) 2E - f;@elf?- (4.2)
’ el +,U/
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There are three possible diagrams of lowest order, whererthission of a gluon takes place.
Note, that initial state radiation of an incoming particléhnhigh virtuality, which is for instance
studied in [Gyu00a], does not take place, because we carigde on-shell particles. We denote the
diagrams Fig. 4.2 and Fig. 4.3, which appear also in QED witholour factors, of course, as abelian
diagrams and distinguish between the case when the emmstomns before the potential scattering
(pre-emission) and the opposite case (post-emission). tdd¢teique of indexing the individual
diagrams withi7,, ,,,, was introduced in [Gyu00a] and is explained in more detafestion 5.2.

k,g

pi, A > ps, B

Iy
e

bi

—

q? :Z", C?‘D

Figure 4.2: Feynman diagram foMSS(?, i.e. the single scattering with one gluon emission in

the potential model. This diagram will be referred to as@massion diagram.

The matrix element for the pre-emission situation (see4).is derived similarly as before
7
(p; — k)2 — m? + ie

MY = (TIT9) agThy - (—ig) (ps +pi — k) -

-
—iqT

. . . e
- (—i9)(2pi — k)€ -(—zg)go”cngrug, (4.3)

and can be reduced to
e~ pie

. ) 4.4
q*+p? pik (44)

MY = (T'T) 4TSy - ¢° - 2(E —w) -

In the same manner, the corresponding equation for theguosstsion process (Fig. 4.3) is
7
(pr+ k)2 —m?+ie

MRS = (TIT!) apThy - (—ig) (2ps + k)oe” -

-
—iqT

. . (&
(—ig)(ps + Kk + i)y - (—zg)go”q_,g y (4.5)

and subsequently yields

e 47T

Dre (4.6)

cD
MSI,O = (T9T)asTYp - (—9°) - 2F - 72+ p? prk

For a complete terminology, the non-abelian diagram Fgwdll be often called the three-gluon
contribution. The structure is slightly more involved doetie appearance of the three-gluon vertex,
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pi7A

Y

—

q7 f? C? ‘D
Figure 4.3: Feynman diagram foMlQlc(])) i.e. the single scattering with one gluon emission in
the potential model. This diagram will be referred to as fgsission diagram.

pi, A S ps, B

A
» ~

bi — Py

k,g

—

7f7C7D

Figure 4.4: Feynman diagram fob %, i.e. the single scattering with one gluon emission in
the potential model. This diagram will be referred to asekgion diagram.

1,0,1 f n+AB (pz p )jg q—'! 2°CD
. (Zl])(lfegi)[(pz p? k)pg’TO' ( k; Q)’Tgo'p (q pl pi)o'ngL ( I‘)

which can be written in the form

MQCD _

CD
M =T PasTen 6 o
)

2w (pi +pr)e—e€o- (pi +pr)k+q) + (2E —w) - 2ge]. (4.8)

So far, we have only applied the on-shell condition for thetem gluon,k? = 0, the Lorentz
condition,ek = 0, and the general conservation of the total four-momentum,

pi+q=ps+Fk, (4.9)

especially the simplified energy conservation wjth= 0. Now, we want to evaluate the matrix

element expressions further with the aim to obtain an aitalytdependence, which can be used
later to understand the exact numerical results. Therefegaestrict the kinematical situation and

assume an on-shell projectile quark incident in z-diregtio

pi = (F,0,0,pi.). (4.10)
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For brevity, we have declared; = E. The energy is determined by the positive root of the ontshel
conditionp? = m?, wherem is the quark mass and remains constant4frgauge it is suitable to
work in light-cone coordinates,

pi = [p+:p77ﬁl] = [p’io =+ Pi.s Po _pz:ﬁj_]

- [E+\/E2—m2,E—\/E2 "2, 0, | (4.11)

We consider situations where is small compared t&'. An expansion in the mass of the projectile
yields

m? m? -
2 |2F — —, — 4.12
bi |: 2E: 2E: OJ_:| ) ( )
where we only kept the terms up to the ord¢®. Note, that in this formulation the on-shell
condition is only satisfied in the zeroth ordey E)°.
Also, the momentum of the gluon and the polarisation vecanesfixed by choosing thd *-
gauge, refer to Appendix C,

—

k2 -
k= |2Fx, — . k 413
DY (4.13)
G—U;L S
— |0, &2 4.14
€ 3 EIE , €L ( )

The plus-component of is parameterised by relative to the plus-compone# of the incident
particle. The value of

w

Sy

(14 cosf) = %6082(9/2) < % (4.15)

is restricted to) < = < 1, because the maximum energy available for the gluak&is In our
discussionz will always be sufficiently smaller than one, since we asstingesoft gluon limit,
where

E>w. (4.16)

Furthermore, we assunte > |, | andE > m. This is why we will carry out expansions iry E
and neglect higher orders vf E when we simplify kinematical expressions.

We begin with the pre-emission Eq. (4.4) and find

1 m?\ ek @k
o=t (opo ) R Ak 4.17a
bie =73 ( 2E> Ex x ( )
A VS WL By L (72 1 a2m?) (4.17D)
k== _ . e — . 9Fr ~ — xm”), .
Pt =75 °F ) 2Br ' 2 2B 21t

1According to the definition of light-cone coordinates as i f4.11) also the metrigh” is modified, such that
apb” = (atb™ +a"bt +aiby).
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which yields
pe @k (4.17¢)
pik K2+ 22m?2

The conservation of energy,

can be expressed in terms Bfby

1 1 k2 1
E‘f:E—w:E—E(k++k):E——(QE:U+;) zE(l—x)—i—O(E). (4.19)

2 2Fx
Since, in the limit of small gluon emission angles,a_’—% =, see Eq. (4.15), we might write the

energy pre-factofE — w) in Eq. (4.4) as¥(1 — z) and obtain

v - M (—29)(1 — ) - (T/T%) 45T} ks (4.20)
— e _2)- 5 R _
oo T4 T op k2 + x2m?
where the elastic part Eq. (4.2) is factorised out underrtipgortant assumption
Grad = ¢ = (el- (4.21)

Sincex < 1 in the soft gluon limit, Eq. (4.16), we will usually omit thadtor(1 — z) in the matrix
element expressions and work with the form as in Eq. (4.33a).

In the post-emission and three-gluon vertex terms Eqs) &h@ (4.8) also the final quark momen-
tum enters. Therefore, we have to solve the kinematicaltensaat first. The momentum transtgr
in light-cone variables reads

q = (OaiL:QZ) - [qz: _qz:(ZL}- (422)
With
1 m2 1 m2 m2
==y ———q, [2E—— | =q.|——-E], 4.23
qp2q2E2q< 2>q<2E ) (4.23)
1 E2 1 . k2 .
h==q,- =g, 2Br— Gk =q | = — Ex | — ¢k, 4.24
k=5 0 5p-— 54 r—q k. q<4Ex T q ki (4.24)

squaring of the momentum conservation Eq. (4.9) finallydgel in terms of the given quantities
q., k andp;. Furthermore,

p;=(pi+q—k)?

Py =p; + ¢ + K +2q(pi — k) — 2pik,

o 7’I”L2 EJ_Q - 1 -
m2 =m? — qf — qf + 2q, (ﬁ — E) — 2q, (E —FEx | +2q k — ;(kf +:E2m2),
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ELQ m2 . ) I 2 )
= 2¢. | B(1— — k —dq —(1 - :
0=4q;+2q ( :c)+4Ex 55 +(k—q)+—1—z)+zm
EL2 m2
. =— | E(1 - - — |+EQ-
o N - 2
k. m? (kL —q1)? 4 1 ki 9
——-m
20E%*(1 —x) E?(1—2)2 E?(1—2)? 16EY(1—2)??\ « ’
/Zf 2
L~ — | EB(1- — — — |+ E1 -
1 /Zf m? (Ei - @)2
4rE?*(1 —2) 2E*(1—2)?2 2FE*(1—2)% )
We focus on the positive root solution
E2 E _ =2\2 2
NSRRIy Ul 1) m (4.25)

2Bx  2E(1—1z) 2E(1-x)

because we are interested in scatterings with small momretnansfers, that is to say forward scat-
tering of the incident particle. The second soluti@ﬁﬁ,) ~ —2F(1 — x), corresponds to momentum
transfers in the range @, which is the excluded backward scattering scenario.

Hence, from Eq. (4.9), we find the final quark momentum

pr=pi+q—k

E (1—-2z) 2E(1—2x)

1 2 Lo 72 .
2E(1—$)+O<_>,2Em +(kl a) ,(ﬁ—/ﬂ], (4.26)

where, as fop; in Eq. (4.11), the on-shell condition holds true in the loa@sler of (1/E).
We are now in the position to analyse further the remainingimelementsi/i i and M%7
In EqQ. (4.6) we write out the four products and obtain

1 ek .
‘ S 2B(1—2) - = — (@ - R
e _ 2 N . (4.27)
pf 1 kl 1 m kl—(ji 5 = .7
S 9B(1— 1) -y 9Bz — (§. — kK
y =) 9pr 43 <2E(1—x) 2E(1—x)> T (@~ Rk

where we kept our strategy to neglect terms of higher ordey i

(1)

Dk 7.2 m2 1_—»2 Lo
Y (I—I)-ki—f-(Z(l_x)—i-(;(l_q’;;)-I—(Cﬁ—/ﬂ)/ﬂ

2We have numerically verified that the results for backwaattscing are usually suppressed by orders of magnitude
compared to the corresponding forward scattering scenario
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_ %i[(l—x) 'EL—x(iL—EL)]
— m [(1 — x)21%_2 4+ x2m2 + x?(]a_ —§)? - 22(1 —2)(q. — EJ_)EJ_
1. -
_ Eel(kl —xq)
m [((1 — o)k — (g — /;;))2 + meg}

(k; — xq)? + x2m?

Thus, the post-emission matrix element Eq. (4.6) becomes

MQCD oz ,I; o —
MIQIC[? — % (=2¢)(1 — 2) - (Tng)ABTéD R ﬂ(j xq)) , (4.29)
h Thp 16 (kL — xq)? + x2m?

yielding finally Eq. (4.33b) below in the soft gluon approxtion, respectively.
For the non-abelian three-gluon vertex matrix element E®) (we evaluate the denominator

(pi — p)® = 2m* — 2pips

2 E i -»)2 m2 1
—om? — |2E- m (h —di 9B - o)
" <2E(1—x) A=) Tap U0 T O &
1 -
S {(kL—qL)Q—l—meQ], (4.30a)

and the contributions

I, =2w - (pi + py)e

ek 1 ek . 1
= ~ . 2FE(1 —z) - — (. — —
w [ " + 9 ( ) Er (qL J_)GJ_"’O <E2>
2w -
~ —Q_(ij_—l'ql)
—2F - & (2k, — 2q.), (4.30b)

using Eqg. (4.17a) and ~ xE for small gluon emission angles,

Iy =€ (pi+ps)(k+q)

B (k= (B

= gﬁ; - [2pig + 2pik + ¢* — K7

~ %; | —2Eq, + %(/Zf + 2’*m?) — @2 ~ % (4.30c)
where we made use of Egs. (4.17b), (4.23) —¢.?, andey = (e"+¢7)/2 = % was determined

by Eq. (4.14),
I. = (2E — w) - 2qe
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=EQ2-1z)|q- ezl;l - 261@]
~—2E(2—1x)é q. (4.30d)
The total result is then given by the sum of Egs. (4.30b) arD@),
I+ 1,+1,=2F -8 2k —2q. — (2—2)q.) = 2E - 28, (k. — q0), (4.31)

since the second term Eg. (4.30c) is suppressed by a factor Substituting this into Eq. (4.8)
finally yields the three-gluon result
My —éi (k. — di)
MQCD = Lel . —29 1—x)- Tf; 17 Tf = —= @ ’ (432)
1,0,1 T,E\’B’TCC”D’ ( )( ) [ ]AB CD (lﬁ _ @)2 1 a2m2

which subsequently gives Eq. (4.33c) below for soft gluons.
In summary, we have obtained the approximate matrix elesneanthe soft gluon limit corre-
sponding to Figs. 4.2, 4.3 and 4.4 as follows,

QCD MchljD f e‘il;l
MEP = 2 (_9g) (TITN T, ———— 4.33a
1,0,0 TS0 Ter (—29) - ( )aBT¢p A 22 ( )
yecp _ _Mia” (=29) - (T9T*) 45T &l (ks — 2q1) (4.33b)
— # (= g . A . - = , .
BTy T pren (kL — 2q1)? + 2?m?
=t (2g) [T T apT - : .33c
1,0.1 TA’B’TC’D’ “p (kJ_ - qJ_)2 + meQ

They build the basis for our further discussion. In the liofitnassless quarks we recover the well-
known expressions which where firstly derived by Gunion aad$h (see Egs. (12a-c) in [Gun82]
or Egs. (D.9), (D.12) and (D.21) in Appendix D). Compared tpulassy, Levai and Vitev the
equations (4.33a)-(4.33c) generalize the terms (53)4(bB¥yu00a] besides constant factorisation
factors in the regiorjl%ﬂ > z|q.|. Further, in [Gyu00a] the additional influence of the produc
tion amplitude)M; Eq. (6) has to be neglected using the liit— —oo for reasons of identifica-
tion. Also, the remaining common exponentials there candgdacted, since only phase differences
count.

4.2 Radiation Amplitude in QED

The expressions for the one-photon emission process ingéegnotential scattering event are ob-
tained if the relevant colour group is reduced il ), thus the colour factors are set to unity. Since
a photon triple-vertex is absent in QED, the total matrixredat in first order equals the sum of the
pre- and post-emission diagrams, Figs. 4.2 and 4.3,

ED ED ED
Ml(?rad = MSO,O + Ml(?l,o . (4.34)
This will be discussed under the conditions which we havesaly prepared. It is important to note

that in the limitz — 0, which will be applied in the case of QCD, the approximataltotatrix
element

ek &Lk, — 2q
Mﬁi’izMQED-(—zg)< ik ___ &k —of) ) (4.35)

Lel l;f +22m? (k. — 2q))? + 22m?
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vanishes due to the destructive interference of the prepastiemission diagrams. Let us therefore

consider the case of smallin some detail. .
Note, that in the limitsn — 0 of light particles andk, | > z|q| | it is even possible to carry out
the sum Eq. (4.35), whereby in doing so the often quoted aranekpression

— 222
MR = M2 4g? e (4.36)
’ ’ ki2(kL — 2q1)?
is obtained, in accordance with Eqg. (6) in [Gun82], and tharsasponds to the Bethe-Heitler photon
cross section in QED in the limit of high energies (Eq. (19VR3]).
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Figure 4.5: Radiation amplitudeR""|2 of a light particle as a function af for m < |71],

i.e. 6y < 6,. The chosen parameters are; = 0.007 GeV, p; = (0,0,10) GeV,
pr. = (0.3,0.2) GeV,p = 0.5 GeV,w = 0.001 GeV,¢ = = /2. The angle marks
lieatd, = 1.4 - 10°°, 6, = 7 - 10-*andd, = 3.6 - 10 2. The position of the peak is
determined by the non-vanishing particle mass, which &srtiereens the infrared divergence in
them — 0 limit.

We consider the behaviour of this matrix element for difféneegions of the photon emission
angled. Suppose this angle lies in a region whére> xq, , S0 one can expand the second term for

smallzq, in Eq. (4.35),
0 QED

MQED — MQED + MQED + — . :Eq-l, (437)
1,rad 1,0,0 1,1,0 2, =0 a(qu> 1,1,0 —
and obtains the first expansion contribution as remainder
T L 2@ k) (R
MO — NP (g T (g HEAR)EG) ) (4.38)
k2 + 22m? k%2 + 22m?

Hence, the squared and summed radiation amplitude

2k 7 )2 201 7 \2
2Mka)” | ko) | (4.39)
(kf + x2m2) (kf + x2m2)2

2

X

RV =497
(kLQ +$2m2)2

¢ +
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implies a dependence proportionalitgw?6*) for angles and parameters which satisfy

|| > i, (4.40a)
k| > am?. (4.40b)

For small emission anglesn 6 ~ 6, these conditions can be summarized by
6 > max(6y, 6,), (4.41)

where we have defined the angles

=

Oq , (4.42a)

tij_|3tg‘

0y = (4.42b)

Note, thatf, = 1/v, wherey = (1 — v?)~!/2 for a particle with the velocity, relates the so-called
dead cone angl&,, see Section 2.2, to the well-known relativistic factor
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Figure 4.6: Contributions of individual diagrams to the total resulpibed in Fig. 4.5. In
the regiond > 6,, the pre- and post-emission contributions interfere destrely to yield the
1/(w?0") slope of the total radiation amplitude depicted in Fig. 46r 0, < 6 < 6, the pre-
emission term dominates causing th&w?6?) behaviour in the intervad, < 6 < 6,, while in
the intervald. < 6 < 6, the amplitude (4.43) delivers the dependercé?/w?. At < 0. the
constant post-emission term dominates.

In Figs. 4.5 and 4.7 the numerically calculated exact ramtisamplitude| R** |2 is exhibited
for two kinematical situations. Fig. 4.5 refers to the cése 6,, while Fig. 4.7 shows the situation
for the reversed casé, < 6,. These situations are qualitatively different and thexefue classify
them as light and heavy particle cases, although by a seitdddice of the momentum transfer this
classification of course does not only depend on the quarls.nath figures reveal the/(w?0?)
shape atl > max(6y, 6,).
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In the situatiord, < 6, for anglesd, < 6 < 6, the dominant fraction itR®"" is given by the
pre-emission process, i. Mﬁi’? dominates. Hence, going to smaller angles, the previgs?6*)
dependence turns intold (w?¢?) dependence & = 6,, as can be seen in Fig. 4.5. Indeed, in this

regime, the radiation amplitude is

- E 2
IRPP) = dg? ——————— (4.43)
(kJ_Q +x2m2)2

The radiation amplitude becomes peaked at the afygl€or angles below, the denominator
in Eq. (4.43) becomes constant and the radiation amplitegécted in Fig. 4.5 turns in 6% /w?
behaviour. Obviously, the term (4.43) would tend to zerd fobuangles even less, < 6., wheref,

is introduced as

2

m
0. 7B (4.44)

the constant post-emission part now becomes relevant afdbyanl /w? dependence. This is illus-
trated by the crossing &t in Fig. 4.6, where the individual contributions are dis@dy Note, that
the angles we have defined so far in Egs. (4.42a), (4.42b)4aad)(are not independent, since

62 0, <6, for 0, <86
fo=-L=1< ¢ 7 4.45
gq {00 > 00 for 00 > 0,]. ( )
108 T T T
— 0
7107 L H
E 16
108 |
NU:
~
s 10°
a
€3]
S
K
10% }
103 1 1 1
104 103 102 101 10°

Photon emission ang®  [rad]

Figure 4.7 As Fig. 4.5, but for a heavier particle so that > g |, i.e. 6, < 6y. The
parameters are as in Fig. 4.5, except that = 1.5 GeV. The angle marks lie &, = 0.15
andf, = 3.6-1072

It remains to comment on the reverse case Wjtk: ¢,, which is exhibited in Fig. 4.7. Here, the
expansion in Eq. (4.38) holds true for all angles abyvand thel /(w?6*) behaviour is approached
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Figure 4.8: Contributions of individual diagrams to the total resultFig. 4.7. The destructive
interference of pre- and post-emission amplitudes ocang £ 6,, as in Fig. 4.6, but due to
6, < 6y the radiation pattern is changed, as seen in comparing &igsnd 4.7.

in the whole rangd > 6,.2> For angles below,, but still larger thard,, the radiation pattern is
implied by Eq. (4.39) which has a maximum for parallel or gudrallel orientation of the transverse
photon momentunt; and the perpendicular momentum transferfrom the potential. It can be
shown that for smaller angles a constant behaviour occuwrtaualways dominating post-emission
term form > |7 |, as shown in Fig. 4.8. This again yields a result

RYED|2 — 4,42 i ! for 6 < 0 4.46
|1 |_g'x2m4NE or < Uy ( )

In summary, the important feature of this discussion is th@tQED radiation amplitude in light
and heavy projectile situations is qualitatively differelepending on the ratio ofi and|q| |. For
smallerm a maximum occurs, otherwise the pre- and post-emissiomatiag)interfere destructively
and no peak is exhibited. From an analytical point, the afigldescribes the validity range of
the expansion Eq. (4.37), so one can intergyeds borderline between the destructive interference
regime abové, and the domaifl < #,, where single diagrams dominate.

Comparing Figs. 4.5 and Figs. 4.7 reveals that the emissatiernp of a heavy particle differs
from that of a light particle: The radiation of a heavy pddiis suppressed at anglés< ¢,. This is
the famous "dead cone” effect.

4.3 Radiation Amplitude in QCD

One difference between QED and QCD is the colour structure.waht to distinguish the effect
of colour factors from the influence of additional non-aheldiagrams. Therefore we begin the

3Strictly we should writd) > 6, instead of) > 6, which explains that the numerical result in Fig. 4.7 doesshoiv
the exact predicted behaviour. For convenience we will ivedigs emphasise throughout the discussions in this chapter
that estimates are valid for angles much smaller or grelagertypical values.
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discussion with the abelian diagrams in QCD.

4.3.1 Abelian Diagrams

The abelian total matrix element, like in QED, is found as sartihe pre- and post-emission matrix
elements

bel.QCD __ 1 ,QCD QCD
My ) =My + M5y, (4.47)

but the additional feature of colour factors essentiallgrafes the analogue discussion from QED.
Figs. 4.9 and 4.11 exhibit the numerically evaluated redolttwo kinematical situations which we
are going to discuss. The approximate total matrix elemewtneads

apager M’ o (i) e SR
brad e e PR

—

€L (kL —2q))
N YT s A G . (4.48)
( JanTen (kL — 2q)? + x?m?

under the kinematical and gauge constraints which we hagadyt supplied. As in the QED case
one may carry out the sum of matrix elements and the polaizaum of the squared total matrix
element form — 0 and|k,| > z|q. | to yield

I T 4TH P 1

pacne o ey a2 2T anTenl L (4.49)
T 2
TS 5 Té | k)

Similarly to the QED argument we focus on different regiohthe gluon emission angkat fixed
gluon energyv. Angles greater thafg, |/ E, i.e. 0, < 6, allow to reduce Eq. (4.48) to

Mg i
pEbelQep e oy L (Tng TS — (T9T!)apT., ) 4.50
1,rad TS Tor (—29) 2+ 22m? ( )aBTép — ( JaBTép ), ( )

where the colour structure factors out and can even be suedanto a colour commutator

72beLQCD _ ﬂ - (~2g) - A (T, T9) 45T (4.51)
1,rad TS 5 TE k2 + x2m?2 y L7 ]AaBLCp- .

This leads to the occurrence of the common dead cone factai2Eq, which we have introduced
in Section 2.2 as stated by Dokshitzer and Kharzeev, migdtifdy a colour constant

- ];2
|R?bel.QCD|Q — 492 N L . CA; (452)
(k12 + 22m?)?

where the colour part, see also Eq. (A.16), arises from

T4, T9)4TLp|? = Crer- Ca. (4.53)

In the limit of massless projectile particles, — 0, the radiation amplitude becomes proportional
to 1/k,2, that is to say an infrared divergence emerges. An advardhgfee calculation in the
massive case is that collinear divergences are ruled caisesgtion 3.4. It is important to note that
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Figure 4.9: Radiation amplitudeR, |2 of a light particle as a function @f for m < |7.|. The
parameters and angle marks are as in Fig. 4.5. The abelian c@&Dlation agrees with the
results for the full set of diagrams. The occurrence of caanterestingly modifies the pattern
in Fig. 4.5. Ford > 6,, instead of the bending 4}, the slope remains constant but the curve is
shifted upwards by/4.
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Figure 4.10: Contributions of individual diagrams to the total resuft$-ig. 4.9. The three-gluon
contribution is suppressed by orders of magnitude and stuth@CD result does not deviate
from the abelian QCD radiation amplitude.
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the argument for the appearance of the dead cone peak, regblen Fig. 2.5, as in Eq. (4.52) is
restricted to a kinematical situation wheig| < m. Otherwise, ford, < 6,, angles) > ¢, are
automatically out of the range aroufigl

Firstly, we will proceed to focus on this case, < |7, | or 6, < 6,, respectively, as exhibited in
Fig. 4.9. Here, the dead cone formula explainsithe,?6?) decrease fof > 6, but its derivation
does not cover the regiay < 6§ < 6,. For such angles the pre-emission diagram is dominant and
predicts an averaged and summed squared radiation angplitud

k2

e (4.54)
(kL2+x2m2)2 F

|R?bel.QCD|2 — 492 .

and a dead cone formula is recovered. However, anotherrcfalotor is relevant because only one
projectile colour structure, namely the post-emissiogdien, is taken into account, see Eq. (A.15),

(TIT9)anThpl? = (T9T) apTLp? = Cra - i (4.55)

Note, that the expressions Eq. (4.52)flor 6, and Eq. (4.54) fof < §,, respectively, differ only in
the colour part, which explains the relative shift by a facte /C'4 = 4/9 from greater to smallet
neard, in Fig. 4.9. The plot Fig. 4.10 demonstrates how the postsiomn diagram again dominates
small angles below, and thus the radiation amplitude

|R£11bel.QCD|2 — 492 . . CF (456)

in Fig. 4.9 becomes constant, where we made ugg aff, for 6, < 6, as in Eq. (4.45).

We allude again that the squared individual amplitudes, g Figs. 4.10 and 4.6, are very
similar in the QED and abelian QCD case, but due to diffenetgrference effects from the colour
factors, the total radiation in the region®f> 6, differs significantly; aty < 6, the radiation patterns
are similar.

Let us now consider the second case, whgn < m, i.e. 6, < 6y, which is illustrated in
Fig. 4.11. From Eg. (4.52) one findsld(w?#?) dependence fof > 6, and a#*/w? slope for
0 < 6y. This typical dead cone behaviour is replaced by a consgtastt behaviour in Fig. 4.11,

52

TR _ g2 ;ﬂ e (4.57)
xrem

which follows from Eq. (4.48) for angles < 6,. This is, like in QED, due to the dominance of the
post-emission process as shown in Fig. 4.12.

Fig. 4.11 highlights the striking importance of the coloactbrs: The radiation pattern dif-
fers significantly from that exhibited in Fig. 4.7 for the sakinematics. In contrast, the individ-
ual squared amplitudes are rather similar, except smd#rdiices due to the colour factors, see
Figs. 4.12 and 4.8.

4.3.2 Non-Abelian Diagrams

We continue to discuss to which degree the three-gluonwdrégram Fig. 4.4 contributes and how
it may change the behaviour of the abelian QCD single stadgteadiation amplitude. In fact, the
results for the kinematical situations considered so faafielian diagrams are not effected by the
additional three-gluon vertex diagram. The statementttiiatcontribution is negligible is already
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Figure 4.11: Radiation amplitudgR,|? of a heavy particle as a function &f for the case
m > |q.|. The parameters are as in Fig. 4.7, the additional typicglesnaref). = 0.63

andfs,, = 36. Again, there are no differences betwedt"*"““"|2 and|R2“" 2. The
pattern dramatically differs from the QED calculation,cgira dead cone behaviour is developed.
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Figure4.12: Contributions of individual diagrams to the total resulfig. 4.11. The differences
compared to Fig. 4.8 arise from colour factors.
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numerically verified in Figs. 4.10 and 4.12, and indeed themete QCD radiation amplitude is
given by the abelian approach, which is fairly well confirnfigdrigs. 4.9 and 4.11. We explore now
the relevant regions, where the non-abelian part modifieglilnon radiation characteristic. Within
the full QCD result, derived with the approximations givarSection 4.1,

QC MlQ(ljD f gJ_EJ_
MOCP — L (oo) [ (TFT) 4 TL,
€] lzl—qu) Q(EL—‘TL)
(T T T TN BT — . (4.58)
( JanTen (kL — x4 )% 4+ x2m? | lanTco (kL — @)% + 22m?

the extra term with respect to the abelian case, the thrg@agiontribution, suggests to define an
additional typical angle

=
=y

E
93g1u = 7 = f; = gq/l‘ (459)
This implies
O3g10 > 04, (4.60)

that is to say this new angle is always greater than the cteairstic angled,, which was introduced
to discuss the importance of the post-emission diagram.

Again the sum of matrix elements in connection with the poéion sum recovers the well-
known expressions (cf. Egs. (15), (16) in [Gun82], also cfisEH17) in [Kov03] and (3.32) in
[WieOO0b]),

2 =9
cD cD [T1, T9) 45T p | qr
|M8rad |2 — |M8e1 ‘2 ’ 492 ’ ‘TC Te C"g TS 27 -\’ (461)
aplcop E2(k —q.)
supposedn — 0 and\l?l| > z|q |-
As long as
|q1| > w, (4.62)

that is to says,, > 1, the gluon emission angleis always smaller thafis,;,,. We will explain
analytically, when, under the weaker condition

0 < 03514 (4.63)

the three-gluon vertex diagram might be omitted to obtagncttmplete QCD result. The inequality
Eqg. (4.63) implies that, is small with respect t@|, which is why the three gluon term becomes
constant,

-2

threeGluon |2 __ 2, 4qr
|R1,n(e)eC010?1r - 4g ((ZLQ + x2m2)2 ’ (464)

for fixed potential momentum transfer and gluon energy. Nibtat due to the conditiofy | > w,
the effect oft in the four-momentum conservation Eq. (4.9) is negligibige will disregard the
colour parts in the following discussion.
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Figure 4.13: Radiation amplitudéR;|2 as a function of), which reflects the changes fér>
f3¢1u- The parameters are chosendgy, < 1, so thatsy), < fis possiblemy = 0.007 GeV,

pi = (0,0,10) GeV,py = (0.03,0.02) GeV,pu = 0.05 GeV,w =1 GeV,¢ = 7/ 2.
The angle marks lie &, = 1.4 - 10,6, = 7 - 107,06, = 3.6 - 1073,0, = 5 - 1073
andfsg,, = 3.6 - 1072. Forf < 0341, the radiation pattern is due to the abelian diagrams
and has the same form as in Fig. 4.9 but #her 62 slopes are not visible since the window
aroundd; is too small and fof < 6, the constant behaviour sets in. However a small shift in this
range is caused by the three-gluon term. A drastic differeppears fof > 3,4, refer also to
Figs. 4.14 and 4.17 - 4.22.

For the casé, < 6,, acomparison of Eq. (4.64) with the relevant abelian QCDItse&qgs. (4.52)
in the regime) > 6,, as well as (4.54) fof, < § < 0, yields

-2 72
qr ky

(@2 +2°m?)* (2 + 22m?)?’

(4.65)

for 6 > 6,, due to

1
< =0,
k2

0 < 03g1u-

1
;2

Here, 63,0, > 6, required for approximations in the three-gluon tefid, > 2?m?, is realized by
our assumptions.
Also, in the region of lower angle§, < 0 < 6y, EQ. (4.54) shows due to

k2
4

(4.66)

1
G2 o atm?

which is equivalent to

xf, < 0,
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that the three-gluon vertex is less important for the taauit.
For angled) < 6. the constant terms from post-emission Eq. (4.56) and thhesn diagram
Eqg. (4.64) obey

1 1
e 4.67
q—lg 1‘2@2, ( )

sincez < 1 andf, < 6,. In the situation of Fig. 4.9 the typical three-gluon angjg, = 3.6 - 10

is much greater than 1, or in other words Eq. (4.62) is trueretfore from the above derivation we
understand why the abelian QCD approach is sufficient at lleaisis light particle situation. Also,
in Figs. 4.13 and 4.14 one finds the abelian dominated radiamplitude for a region of angles
6 < 054,. The deviations in Fig. 4.13 for anglés> 05, are commented on in the next section.
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Figure 4.14. Contributions of individual diagrams to the total resuhisHig. 4.13. The three-
gluon term suppression fér< 63, is not as strong as in Fig. 4.10 and causes some minor shift
between the QCD and abelian QCD results. #or 63,4, clearly the specific non-abelian part
dominates and yields the increase of the radiation amglitinpared to the abelian outcome in
Fig. 4.13.

In the heavy particle situationg,| < m, one has to distinguish the casgs< 654, and vice
versa. However, notice that a consideration of the radigtattern at) ~ 6, in the second case is
not realizable in the very soft gluon limit Eq. (4.62), sirice 05,4, < ), contradicts the precondition
m < E. In the first situation, the previous approximation in EQ6#) remains valid. Therefore, the
explanations from the light particle paragraph can be rtegefard > 6,. If we look atf < §,, here
EqQ. (4.57) leads to

1 7.2

— < 4.68

= < o (4.68)
for 0. < 034, and the non-abelian part becomes negligible, too, undsraitiditional restriction.
This is exactly the situation in Figs. 4.11 and 4.12, whemesstimates explain, why the abelian and
complete QCD calculations are in agreement to very goodracgu
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Otherwise, ford, > 6s,,, we again predict a constant behaviour of the radiation anujg but
at the total value

RV =4g” - — - Cy, (4.69)

1
72
instead of Eq. (4.57).

On the other side, fafs,, < fy, which belongs to the heavy patrticle case sif\ce: 634, < 0y,
Eq. (4.60), the three-gluon term can be simplified,

—

|RthreeG1uon 2 _ 492 L (470)

1,n0 colour imd’

and compared to the corresponding radiation amplitudes &belian QCD. Note, thak,, < 6,
implies the angular ordering, < 3,1, < ty < 6., and that, furthermore, the chosen parameters
should allow forfs,, < 1. The cas# > 6, is excluded because we investigate: fs,,. In the
angular intervab, < § < 054, Egs. (4.70) and (4.52) give

=2 7.2
qr k
gy iR g (4.71)
sincefsy, > 6. This indicates that the radiation amplitude becomes emst
N (jj_g
[RFPR2 =49 ——— . Cy, 4.72)
r=m
due to the three-gluon contribution. Fbk 6, by comparison with Eq. (4.57), we obtain
-2 -2
© o, u (4.73)

rim4 T x2md’

sincex < 1, which causes the previous constant behaviour Eq. (4.#2%. pattern of the radiation
amplitude is illustrated in Fig. 4.15 in the angular rarfige: 5., where our discussion is valid.
The opposite interval > s, is explored in the next section.

Hence, we have demonstrated that the abelian QCD approfidesuo describe the radiation
amplitude in the light particle situation < |g, |, wheref, < 6, < 6, < 6s4,, and for the selected
heavy particle casé, < 6, < . < 6s,4,, as long as the condition Eq. (4.63) is satisfied, which
especially holds true in the very soft gluon situation Eq624. It was found, that in some heavy
particle situationsn > |\ |, namely forf, < 65,4, < 6y < 6. and in the range of < 6, also
for 6, < 0y < O3, < 6., the non-abelian diagram is the origin of a constant ramhesimplitude
independent of.

If we want to extent our discussion to the regibn s, it will be necessary to choose param-
eters which allow fofs,,, < 1. However, by the definition Eq. (4.9), the influencekadn ¢ cannot
be neglected anymore for fixed initial and final particle matae In other words, the momentum
transfer in the kinematical situation for the radiationgess begins to differ significantly from the
corresponding value in the elastic scattering, which seagereference system for the definition of
the radiation amplitude. The factorisation, which was ggapin the derivation of the matrix ele-
ments Egs. (4.33a), (4.33b) and (4.33c), becomes insuificidnerefore, we refer the consideration
of this problemati@ range, which will turn out as mainly non-abelian dominategion, to the next
section.
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Figure 4.15: Radiation amplitudéRr?"*2“P|2 of a heavy particle as a function éfor the case
m > |qL|. The parameters are as in Fig. 4.13 but with a mags= 1.5 GeV instead. The
characteristic angles aég = 3.6 - 1072,6, = 5 - 1073, 654, = 3.6 - 1072,6p = 0.15
andf. = 6.3. The dead cone peak in the abelian result is shifted due toethection effect
given by fi;, defined in Eq. (4.75).
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Figure 4.16: Contributions of individual diagrams to the total resutigHig. 4.15. BetweeH,
andzf. = 0.63 the abelian diagrams are expected to be larger than the-dghrer contribu-
tion. The neglect of colour factors, which differ for abeliand non-abelian contributions by
Ca/Cr = 3 shifts this region.
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4.4 Elastic Factorisation and Non-Abelian Contributions

We have already pointed out, how close the investigatiorhefradiation amplitude for angles
6 > 054, is connected to the problem of the matrix element factagsatAs we commented on
previously, if the very soft gluon case Eq. (4.62) is abamaihrnwhich is essential to leave the pre-
dominantly abelian QCD situation, the gluon four-momentuocannot be neglected with respect to
the momentum transfer

§= Graa =Py +k—pi = qy+F, (4.743)
where the momentum transfgy is given by

Qo1 = Dflrad — Dis (4.74Db)

and differs kinematically from the pure elastic momentuamsfer

Qe = Dflel — Di- (4.74c)

Here, the momentum of the final quark state is determined byotiishell condition with fixed
transverse final momentup}, and additionally, in the radiative process, by the giveroglanergy
w. Itis therefore not allowed to factor out the denomindi@t,®> + 1), which arises from the
potential ansatz. Moreover one has to add a factor
-2 2
el +:U’
fiin = 0—5—— (4.75)
« QradQ + M2
to the expressions Egs. (4.33a-4.33c) in order to correckihematical factorisation problem. Nev-
ertheless, as long as> w no effect on the radiation amplitude appears, but otherthisgermf;,,
Eqg. (4.75), alone is a source for an additiohalw'6*) dependence of the radiation amplitude, since

k!

52 (o 72 2 7.2
Grad — (Qel + k)J_ + q, ~ ki + 4E21‘2

9 . o sin’ @ .
= w”sin 0<1+4c032(9/2)>ng (4.76)
for small§ but with 54, < 6.

Furthermore, we have to keep in mind thelependence aof;.q for fixed p, andp, in the ap-
proximate matrix element expressions itself. In the dedinibf characteristic angles, Eqs. (4.42a),
(4.44) and (4.59)q. | is to be understood d&, | |.

After these preliminary remarks we will turn the attentiortiie radiation amplitude for the case
6 > Bs4,. With this assumption, the three-gluon term

—_—m 7 2
RthreeGluon|2 — 4,2 . del L Oy, 4.77
|’y | g (Gu 2 + 22m?2)? A ( )

becomes constant and explains in combination with the katiead correction factof,;, the1/(w*6*)
dependence of the three-gluon contribution in Fig. 4.14c@ifrse, in the rangé > 05, also the
predictions for abelian QCD situations and contributioresraodified by this factofy;, and have to
be multiplied byl /(w*6?).

It is of interest, where the non-abelian term Eq. (4.77) dgearthe abelian outcome besides the
factor fiin. Therefore, we consider the two distinct situations< 041, andfsy, < 6, in order to
simplify the expression Eq. (4.77).
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Firstly, for 6, < 655, < 6, the term arising from the three-gluon contribution alloies a
comparison with the abelian behaviour of the radiation &g

2.2
el I 1 1
- N> o, (4.78)
(Qeli2 + l‘ng)Q Qeli2 kl2

due tofl > fs,. Thus,f > 05,4, > 6, is a non-abelian region, where the non-corrected matrix
elements predict a constant radiation amplitude with retpethe gluon emission angle. One has to
keep in mind, that the factdf;, finally yields the behaviour proportional tg (w*6?) as exhibited in
Fig. 4.13 ford > 0,,,,. The expected behaviour of the complete QCD result, as weti@predicted
slope of1/0° for the abelian result, which is the product of the origiha#? behaviour and the
correction dependence frofiy,, are only realized approximately. The deviations of oudptons
from the correct outcome are depicted in Figs. 4.17 and 4d.&E abelian and non-abelian case,

respectively.
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Figure4.17: Comparison of the radiation amplitude from Fig. 4.13 in thel@n QCD approach

to the corresponding prediction from Eq. (4.48) multiplieg the factor(1 — z), which was
neglected there. F@r > 03, the correctionfy;, decreases the radiation pattern with respect to
the prediction, see also Figs. 4.19 and 4.20. Thus the aligj#* slope becomes suppressed by
fxin ~ 1/6* and shows an approximate#® behaviour.

In order to trace back these modifications, we present in Bid®, 4.20 and 4.22 a comparison
of the correct result to the predictions for the individuglgtams, that is to say we plot Egs. (4.33a)
- (4.33c). Clearly, these predicted curves confirm our etgiens derived above, but deviate for
angles? > max(6,,0,). As third line in this figures, the so-called "corrected petidn”, the old
prediction is multiplied by the factorfd — x), this corresponds to the forms Egs. (4.20), (4.29) and
(4.32), and multiplied byf;,. The correction of this latter factgf;, dramatically suppresses the
radiation pattern with respect to the old prediction. Evarsimall angles one observes a systematic
shift of the standard prediction in all figures due to the imig$actor(1 — x)?, which amounts to
0.9? in this situation. The corrected prediction agrees withrtheerical result fairly well for the
abelian diagrams, for the three-gluon vertex, Fig. 4.2%idver a difference for large angles remains.
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Figure 4.18: Comparison of the radiation amplitude from Fig. 4.13 inahgdthe complete set
of QCD diagrams to the corresponding prediction from Ecb&tmultiplied by (1 — z). For

6 ~ 0.5 the correctionfy;, ~ 1/6* is not the reason for the depicted minimum. This deviation
can be ascribed to the three-gluon contribution, see Fig&.anhd 4.23.

Whereas the radiation amplitude increases towérdsl, the prediction is decreasing. This effect is
even better illustrated in Figs. 4.21 and 4.23. Figs. 4.2&ai(d (b) show that our corrections so far
suffice to describe the result for arbitrary emission andgBsstrary, for the three-gluon diagram we
have to return to the derivation in Section 4.1. Indeed, wderthe important assumption~ zF
when we developed Egs. (4.30b) - (4.30d). A precise treatosng the definition of in Eq. (4.15)
together with the helpful notation

, W T
T E cos?(0/2) (4.79)
at this stage yields
1—2—w*(213 —zq ) =2FE-¢ L—x’* (4.80a)
« = €L (4R q) = €L cos2(6/2) qr .
and
I.=—-2(2F —w)é gy = —2F(2 —2")é.q. (4.80b)
to give
2k,
I+L+I.=2FE-¢ | ———— —2'¢. — (2—2)q
+ 1Ly + €L (COSQ(9/2) 'q —(2-= )m)

L R }
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It was already pointed out, that the tefig Eq. (4.30c¢), is suppressed. Thus, the expression that we
have plotted in Figs. 4.22 and 4.23 as "three-gluon cordagtediction” reads

QCD .
- 0/2) —d4)
QD _ e oL (9g)(1—a) - [T, T9)upTY, - 1 (1 / cos’( 481
mn c c g z ) g
1 k TS o Te ( )( )| JasTcp (R — q)? + 22m? ( )

and can explain the peak structure in the contribution todkdetion amplitude.
Secondly, in the casiy, < ), we have to divide the comparison of the estimated threergluo
part

o1 o1’
~ . 4.82
(G2 + 22m?)2  z*m? ( )

On the one side, wherg < 054, < 6§ < 6, the abelian result is dominant, since

2 > 2
ky el I
4 4

(4.83)

x4m* T atmd

is equivalent tod > 6,,,. Otherwise, the inequality changes for the angular colasi@h 6, <
03g1u < 00 <0

i > Ger”
g2 = xtm!

(4.84)

depending o, = 6. That is to say, iftf. > # no non-abelian modification takes place. Contrary,
for 20, < 6, this argument predicts a behaviour of the radiation patsémilar to1/w* multiplied
by fun, thus an all-oven /(w®@*) proportionality. In general this can be seen in Figs. 4.1 an
4.16. However the modification due #@;, shadows this predictions, furthermore the dominance
is only small and so interference effects give rise to themete modification of the total result in
Fig. 4.15. Figs. 4.24 - 4.28 show that the modifications whvehhave discussed in the light quark
case, Figs. 4.17 - 4.22, also apply for the heavy quark sioat

Of course the derivation of the matrix element expressiass &.20), (4.29) and (4.32) becomes
insufficient for large values ab. Therefore at this stage we will not continue with an anafti
interpretation of these numerical results.
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Figure 4.19: Contribution of the pre-emission diagram to the radiationpbtude in Fig. 4.13
as a function o) compared to the prediction Eq. (4.33a) and the improvedigiied which
equals the expression Eq. (4.20) multipliedfRy,. Taking the factor$l — z) and f;, obviously
suffices to describe this contribution. The general pattexs discussed in the abelian section.
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Figure 4.20: Contribution of the post-emission diagram to the radiatiomplitude in Fig. 4.13 as
a function off compared to the prediction Eq. (4.33b) and the improvedigtied which equals
the expression Eq. (4.29) multiplied By:,,. The numerical result can be explained usihg- )
and fy;, corrections in addition to the ordinary predictions frore traragraph on abelian QCD.
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Figure4.21: Contributions of the pre-emission (a) and post-emissiagrm@im (b) to the radiation
amplitude in Fig. 4.13 as a function &f The figures are the same as Figs. 4.19 and 4.20 but show
the behaviour for the full range < # < 27 and demonstrate the importance of the correction
factors outside the forward emission cone. A peak at 7 is due to the denominators of the
matrix element. Note, that fér — 7 also singularities in the polarization states in tiie-gauge
arise, see Appendix C. Singularities are not drawn to iyfingcause the numerical calculation
and the drawing program are restricted to finite values.
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Figure 4.22: Contribution of the three-gluon diagram to the radiatiorplimde in Fig. 4.13 as

a function off compared to the prediction Eg. (4.33c) and the improvedigied which equals

the expression Eq. (4.32) multiplied By;,. As in Figs. 4.19 and 4.20 the correction works well
but here a minimum & ~ 0.5 appears whereby such a pattern is not in accordance with any
correction factors so far. Moreover, Eq. (4.81) insteaddd3?) is required to reproduce at least
the rough pattern, see Fig. 4.23.
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Figure 4.23: Contribution of the three-gluon diagram to the radiatiorphtude in Fig. 4.13 as
a function off). This figure is the same as in Fig. 4.22 but shown for anglesd < 2x. The
peaks ford — = are due the denominators of the relevant expressions.
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Figure4.24: Comparison of the radiation amplitude from Fig. 4.15 in thel@n QCD approach
to the corresponding prediction from Eq. (4.48).
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Figure 4.25;: Comparison of the radiation amplitude from Fig. 4.15 inahgdthe complete set
of QCD diagrams to the corresponding prediction from Ech&%.
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4.5 Potential Model versus Quark-Quark Scattering

In the limit of soft radiationv — 0 the physical details of the scattering processes are retamel.
We confirm this while we contrast the scattering of an incigearticle in the potential model with
an analogue scattering of the same projectile on a targek @iizest.

The results of a scalar QCD calculation are exhibited in Fg89 and 4.30. Four distinct sit-
uations are selected, where we consider the different amatibns of heavy and light quarks in
collisions. In Fig. 4.29 we choose a light projectile pdetiand contrast the cases of light and heavy
targets. In general both pictures show no differences amd same common features which are
worth noting. The behaviour of the potential calculatiosiisilar to Fig. 4.9 where due to modified
parameters of the momentum transfer the afigie shifted. The appearance of the dead cone fac-
tor in the potential model has been discussed in the lasbssctWe have studied that the shift of
the radiation amplitude is caused by the fact that only tleegmnission contribution dominates the
behaviour at the dead cone peikand thus gives a colour factétr instead ofC 4.

For comparison we also plot the prediction for the radiatimplitude from the dead factor

- EL2
|R1 ‘QGenDokKhar = 492CA (E 2

—_—, (4.85)
% + $2m2)2

which comes from the combination of the pre and the post-swonsiagrams, this yields a colour
factorC, in a more generalized version than Eq. (2.1). This gereaiadin is not restricted to small
angles, a detailed explanation can be found in Appendix Ge dédviation between the dead cone
factor and the potential and quark-quark calculations in &i29 equals the rati® 4 /Cr = %

As technical detail we mention that contrary to our othecuakations for radiation amplitudes
in this case we have used a slightly different way of normasilis. Since we work with fixed



60 4 Single Scattering with One-Gluon Emission

gluon momentum and input initial conditions, the remainmngmenta are determined by the given
transverse momentum transfer. Usually we calculate thatielpart under the assumptian= 0,
this time, for Figs. 4.29-4.30, we apply the inelastic seahoimenta to evaluate the elastic part. Note
that this modification, the correction of the elastic partibglastic kinematical results, becomes
important when we abandon the soft radiation limit but do&tseffect the result for situations with
w = 0.001 GeV andp; . = 10 GeV as being displayed in this part.

For smaller angles, @< 6. in Fig. 4.9, the dominance of the constant post-emissiotriton
tion was the reason for the constant radiation amplitudee démad cone factor does of course not
apply in this regime.

The new aspect of Fig. 4.29 is that the radiation amplitudieutated in a quark-quark collision
coincides well with the potential model result as long asdhglesf are small. Thus for light
projectiles, especially those which are not considerabbwfer than the targets, the potential model
indeed recovers the radiation amplitude obtained in a ggaekk scattering calculation. However
for greater) the radiation amplitudes from quark-quark scattering astémtial model deviate.

Analogue findings for the test of the validity of the potehtreodel can be seen in Fig. 4.30(b),
where the scattering of a heavy quark on a heavy target ibigatli As a first estimate in Fig. 4.30(a)
we show that for light targets the potential model might bellemged. The assumption, that no
energy would be transferred to the target, of course will ldated in such an arrangement of
colliding masses.

This is intended to possibly point to the need of an improvediehto describe the scattering
processes in a deconfined medium in the presence of heawcpi®guarks. Strongly connected to
this problem the composition of the colour-neutral matted to be taken into account.
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Figure4.29: The radiation amplitudeR, |2 as a function of the emission anglés compared for
the potential model, the quark-quark scattering on a ligigdt and the general dead cone factor
Eq. (4.85). The chosen parameters arg = 0.007 GeV (light quark),m. = 1.5 GeV
(heavy quark)p; = (0,0,10) GeV, piTarget = (0,0,0), 1 = (0,0.01) GeV, up = 0,

w = 0.001 GeV,¢ = 3n /2.
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Figure 4.30: The radiation amplitud¢R, |2 as a function of the emission anglds compared
for the potential model, the quark-quark scattering on ayéarget and the general dead cone
factor Eq. (4.85). The parameters are as in Fig. 4.29.
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4.6 Summary

To summarize our findings we note that the dead cone effedistsrof a suppression of radiation
in forward direction by orders of magnitude. One can theeéxpect that the radiative energy loss
of heavy particles is substantially decreased in compangith light particles. We have demon-
strated the importance of cancellations and interfereffeete between contributions from different
diagrams, as well as the qualitative differences betweeb @& QED, that is to say charged and
non-charged gauge bosons.

In Section 4.4 the question of largewas dealt with. For completeness it is worth noting that the
numerical result for the “normalization®, the summed andraged squared elastic matrix element
|M|?,, is always evaluated in the kinematical situation fixed bysttaime set of parameters as are used
to obtain the inelastic kinematics. The reader should beathat this is a problem for larger values
of w since it means basically to compare kinematically veryimistsituations. In this case one may
even question the concept of the radiation amplitude. This already indicated in the introduction
where we interpreted the radiation amplitude as conditiprabability for gluon emission.

In general the inclusion of the screening massuppresses the spectrum for gluon energies
w > p. The validity of the potential model was confirmed for fordi@mission of radiation in the
limit of small projectile masses, but estimates for heawjqutiles seem to suggest that the potential
model might be reconceived.






5 Double Scattering with One-Gluon
Emission

In this part we discuss the problem of double scattering imraerical approach. A complete
calculation of all relevant diagrams unfortunately faitedfar. Therefore we explain the numerical
problems which arise and present some key ideas. It wasdglsdeown that for multiple scatter-
ing a QCD analogue of the LPM effect exists [Gyu94, Wan95]er€honly abelian diagrams were
considered analytically. It turns out that especially tbe-4abelian diagrams might become numer-
ically complicated for the parameter range that we haveadireonsidered in the previous chapter
on single scattering.

5.1 Elastic Scattering

p’iJA

jlaflach q_‘27j‘27E7F

Figure5.1: Elastic double scattering in the potential model.

The scalar matrix element for double elastic scatteringhengotential model (the expression
corresponds to equation (A4) in [Wan95]) reads as follows

d3l e~ 1@2T2 i
M) = (T°T?) opTE, T /_ —ig)(l (—ig) g™ .
el T :
* _7/ l+ Z 1 ‘ _Z Oyﬂi.
(—ig)(I +pi)o - (—ig)g R

Here,l is the intermediate momentum of the incident particle imieein the two scattering centres.
Especially,ly = E = piy = pyo, Since energy transfer is not possible in this model. Sinee w
consider the non-tagged case where the recoil momenta tarthegts are not measured, the unknown
momentun has to be integrated ovér.

Momentum conservation at the vertices relates the intemmhentum/ and the momentum
transfers of the scattering centres to yield

q =1—pi (5.2a)

1Contrary in the tagged case the calculations are straigtwiol since all momenta are known.
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g =py— L (5.2b)
Theﬁindependent terms can be factored out and we obtain the&sipn
d3l 6if(52—fl)

(2m)3 (12 = m? 4+ ie) (@12 + p?) (@2 + /LQ)J

Méf) = (TaTb)ABTCa’DTgF . 194(2E)2 . eﬁiflfﬁ‘fo /

where we will discuss only the integral.

5.1.1 Integration in Cylindrical Coordinates

In [Wan95] one of these three integrations is performedyaitally, that is to say thé integration is
carried out with the technique of residues. We present thdtein a more general way and discuss
the approximations which are used in [Wan95]. In order toycaut this integration we rewrite the
denominator into a product of linear factorsiof

; / 42, /dlz _ i@ —1)
4 (271')2 2 (lz - lz1+)(lz - lzlf)(lz - leJr)(lZ - 1227)(lz - l23+)(lz - lz37),
(5.4)

/ d2l, /dlz ¢llE=71) (5.5)
B (27T>2 271' szl(lz - leJr)(lZ - lzkf) . .

Thus, the relevant residues can be found directly. The dies\,;. indicate the zeros of the de-
nominator with respect th, where the index: characterizes the sign of the imaginary part

Lie = £4/72 — 2 £ ie, (5.6a)
Lot = piz £ i\ (T — )2 + g2, (5.6b)
l:3+ = Dpy2 ii\/(ll — Pp)? 4 p (5.6¢)

We define the spatial distance vector of the potenﬁais 79 — 71 and consider the case when the
componentl, is positive. Then, the integration can be carried out in tha@ex plane where the
path is closed in the upper half. Hence, théntegral follows from the sum of the residues of the
integrand with positive imaginary part as

3

d?1 U id.l, lz _ lz
I, = _/ . LgezlldL . ZZ - € ( ]+) . (57)
( 7r) j=1 Hk:l(lz - lzk+)(lz - lzk—)

Additional in this approach, we require at least a small alescattering taking place since the
casep; = py leads to degenerated residues and the calculation had tabiied. Now, it was
argued by Wang, Gyulassy and Plumer [Wan95] that the daurttans from Egs. (5.6b) and (5.6¢)
are suppressed by the factor“®: given the assumptiod, > 1/, that means if the distance of
the scattering centres is much greater than the screemgthlef the potential. This integral can
be carried out and the investigation of different residieestss to confirm the latter assumption of
[Wan95]. The integration was dealt with using various suriomamethods, e.g. [Yak89]. However
the calculation of this integral requires to cut out the siagty at/? = 5;2, thus in order to estimate
the error of this integration we suggest an approach in sgaidike coordinates as explained below.

la=lz5+
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5.1.2 Integration in Spherical-like Coordinates

The aim of this co-ordinate choice is to avoid the previousinate singularity, therefore one
wants to integrate over the modulus/ofthere only angular integrations would remain. The inte-
gration over|/ | would run from zero to infinity but should be extended to thefival [— oo, +0c]

to make the residual calculus applicable. This is done bigatsinodification of standard spherical
coordinates as follows. The region of space which usualtiesscribed by, < 6 < 7 is now in-
cluded by negative values of the radius, this quantity df@tienoted.? This yields the co-ordinate
definition

l, =1lcos¢sind, (5.8)
l, =lsin¢sin, (5.9)
[, =1lcosb, (5.10)

with —oc <1 < 400,0 < ¢ <27 and0 <0 < 7.
This coordinates will be used to evaluate the integralefined in Eg. (5.3) in the same manner
as in Section 5.1.1. The integration ovéeads to the solution

o (1—1;4)-12
I, = _/ d¢/ 6 smGZ [ j+) - ’ (5.11)
2m)? IT;- 1(l — ) =) ],
where
Ly = +p e, (5.12a)
by = p(&;&) £ i/ 12 + p?[1 — (€:6)7, (5.12b)
s = p(E;@) £ iy/1i? + 21 — (). (5.12¢)

Here the explicit relations in the elastic kinematics weready applied. Furthermore we have
introduced the abbreviations= |p;| = |p}| and the unit vectors;, = 11, & = pi/|p| ande; =
71/ |77 -

In this expressions no singularity occurs, assuming aga#;. The infinite integration we had
to deal with in Section 5.1.1 is transformed into an angulgggration with finite boundaries. We
could show that these two approaches yield identical resiiereby the precision of this compari-
son was restricted by the choice of cutting out the singtyl#or the cylindrical integration. Having
developed this approach we apply the same procedure todlasiit diagrams.

5.2 Inelastic Scattering

The diagrams for inelastic double scattering with one gloeimg emitted are displayed in Figs. 5.2
and 5.3.

The notation}/,, ,,,; follows the classification of the time-ordered diagramsadtced by Gyu-
lassy, Levai and Vitev [GyuO0a]. The labelcounts the number of scatterin@isg m < n denotes
that the gluon is emitted after the-th scattering, especially, = 0 means the emission takes place
before the first scattering, aridabels the different possible final state interaction pateafter the

2This should not be confused witlas four-momentum, since we deal only with three-dimengiomegrations.
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gluon is emitted. This numbeéican even be organized to represent the interaction patt@rbinary
array

G=(01=0,...,0m=0,0m11,...,00), (5.13)

where all scattering variables up to the emission process are zerp= 0 for 1 < i < m. For
m < i the binary numbers; arel if the gluon rescatters at centi@therwise0 for a scattering of

the quark. Therefore the labkek= (Zn aj21> /2™+1 numbers the diagrams for fixedand/ in

a unigue manner. =

It might be instructive to consider for examplé, ; ;, Fig. 5.3(d). The number of scatterings
isn = 2, the emission takes place after the first scattering cestpassed;n = 1, the allocated
binary arrays = (0, 1) gives! = 1. In contrast\/, o, Fig. 5.2(b), without gluon rescattering gives
7 = (0,0) andl = 0.

We can now also count the total number of possible diagrarisasie gluon emission for a given
number of scattering centres For fixedm there exist,,., + 1 arrangements, with,., realized for

00,...m = 0 andam+1 ..... n = 1 one finds
1 - Vi n—m
lmax = om+1 Z 20 =2 -1 (5.14)
j=m-+1
and
D lmax+1) = 2" =2""" 1 (5.15)
m=0 m=0

as the combinatorial number of all diagrams where one gladreing emitted and scatterings
occur. Note, this information can be derived directly frome binary array, since the number of
possible arrangements of the two "stat@sand 1 in a field of fixed lengthn corresponds to the
number of possible diagrams. The numberof these combinations has to be doubled to account
for emissions prior to the first scattering, one may assumenaginary zeroth centre with,, and

the total number must be reduced bgince the purely elastic diagram, at|.. , = 0, has to be
excluded. Again we find that the number of relevant radiatimgrams grows with the number of
scatterings as2"*! — 1. In the casen = 1 these are the 3 diagrams Figs. 4.2, 4.3 and 4.4, fer2
there are 7 diagrams, Figs. 5.2 and 5.3,fet 3 one already has to compute 15 diagrams.

In order to evaluate the diagrams in Figs. 5.2 and 5.3 agé&egials over the unknown internal
momentum have to be performed, where we have applied the @apneach which was introduced
in the section on the elastic case above. The calculatioh tifearelevant residues is a straightfor-
ward even though extensive task. Comparisons of both iatiegrmethods, which are the cylindrical
and the spherical-like coordinates, and different sunwnatchemes reveal considerable problems
for the diagrams\/, o » (Fig. 5.3(c)),M, 3 (Fig. 5.3(b)) and\/;; o (Fig. 5.2(b)). This makes com-
plete numerical calculations for the moment being impdes#wven a pure abelian discussion is not
possible due to the complications with integrationd4n, ,. Two main reasons can account for the
deviations between the different integration approachesirst the cutting of the integration inter-
val to avoid singularities becomes impossible in some cashss is to say there are singularities
which fall in the range where the integrand has its dominantributions. Secondly, the numerical
subtraction of large numbers might be a further restrictootine increase of precision. Therefore the
numerical analysis of these diagrams and the integratigemeral should be under deeper investi-
gation. The application of additional program packagesterintegration of singular functions, e.g.
[WedO00], could be useful.
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A full understanding of these integrations is especiallgassary to check assumptions that
where made in [Wan95] to derive the LPM analogue in QCD. We lasjze that in their work
the actual full integration is avoided in the way that onddases out the radiation part of the in-
tegrand after the, integration assuming it would not depend lon A continuation of the double
scattering calculations could provide a valuable checkisfapproximation.



6 Summary and Outlook

In the present thesis we have investigated how the mass paaof an on-shell quark passing
a deconfined medium influences its radiative energy lossgibty.

The importance of the basic single scattering diagrams enthgluon emission is emphasized
by various aspects. Among of them data from RHIC, which ssgthen plasmas, imply that only
a few scatterings are taking place. The existence of an gnaltw the LPM effect in QCD, which
would reduce the effective number of scatterings furttseanother indication of the significance of
these diagrams. Moreover the fast convergence of the ggagansion, where the first order in the
GLV formalism describes the radiative energy loss consiolgrwell in this approach, suggests the
relevance of the single scattering processes. Therefoeeyadetailed discussion of these diagrams
was done in the potential model by numerical means.

We have shown and discussed the exciting features of thatiadamplitude in QED and QCD
and disentangled interference effects and especiallyrtheence of the non-abelian diagram in
QCD.

The dead cone suppression factor was shown to emerge ifisagular regions, however the
radiation amplitude deviates from this prediction for eitlsmall angles, due to the post-emission
process, or in case of higher gluon energiesFor the latter possibility the three-gluon diagram,
including the three-gluon vertex, becomes responsiblsuinmary we have confirmed the suppres-
sion effect due to the heavy quark mass, but the dead corwr fagtot the correct modification to
light quark scenarios in all kinematical situations.

We have explicitly shown that not the mass parameter of thggtile itself but the ratio to the
transverse momentum transfer is relevant to categoribé digd heavy mass situations. As stated
above for large gluon energies, that is to say greater tharrémsverse momentum transfer, the
non-abelian effects become important.

In literature various approaches assume soft radiatien 0, small momentum transfetg— 0
and light particlesn — 0. With this investigation we give a detailed insight into therplay of
these assumptions in the potential model approach. Be#lides/e have confirmed that thé*-
gauge is appropriate to neglect radiation contributioosftarget lines. Also comparisons of scalar
and spinor calculations did not reveal significant diffexes

We have indicated that the potential model might be chaédnfheavy projectile quarks are
present. In addition, it was emphasized that for considgtalge values of the gluon energy one is
confronted with factorisation problems with respect toglastic scattering part in matrix elements.
In such situations the missing unique interpretation ofrdtdation amplitude questions whether it
is sufficient to consider ratios of inelastic and elasticssreections.

One should be aware that the integration of the radiaticiepain order to obtain the total energy
loss might smooth out the distinct scenarios we have elteidarhe problem of integration using
numerical results for the radiation amplitude can be a ehglhg subject of further research.

The evaluation of all double scattering diagrams to satiefg precision, which failed so far,
should be analysed further in order to discuss the QCD anelofithe LPM effect numerically. Itis
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worth noting that these situations already require comallg more calculation power and for fur-
ther generality, e.g. higher scattering processes orratiegs to obtain the net energy loss, maybe
even with spinors instead of scalar particles, analyticapsfications seem to be unavoidable.

Various other aspects could be implemented, at first the Tietelia a finite gluon mass or
the interference with the production amplitude of the quarknake contact to the GLV formalism.
Having done an integration to yield an energy loss one coutdider further contributions of higher
orders, as e.g. diagrams with two gluons being emitted . Titkerged variety of parameters might
dramatically enlarge the number of kinematical regionsciviiad to be considered analytically. The
level of tree diagrams considered here does of course netinédk account the dynamical effect of
QCD. Therefore the inclusion of radiative correctionst tin@ans the calculation of loop diagrams
could be a further topic of investigation. A further step htige the test of predictions for hadronic
observables with respect to our findings, that is to say aalation of the numerically found radia-
tion amplitude with appropriate fragmentation functioRmally these results could be implemented
into a model of detailed balance to account for absorptiehséimulated emission effects of gluons.

In closing the main result is that various equations froeréiture are checked numerically, and
also analytically, where especially the dead cone factarfaand to be correct but not sufficient in
all kinematical configurations. How this shortcoming woeftect the net energy loss still remains
an open question to be clarified by further detailed invesiogs.



Appendix A Remarks on Colour
Algebra

In general the algebra of the grod/ (V) is defined by the commutation relation
[T T = ifoT¢ a,bc=1...N?>—1, (A.1)
whereT" are the generators of the groyf,. denote the structure constants and, c, . . . stand for

the colour indices. Fa$U(3), the colour group which is used in the program code, the atiomal
colour matrices are, e.g. [Hua92],

010 0 —i 0 1 0 0
A=1(10 0], =13 0 0], A3=10 -1 0],
000 0 0 0 0 0 0
001 0 0 —i 000
AM=1(0 0 0], As=10 0 0|, =10 0 1],

1 00 i 0 0 010

00 0 ; (100
Ar=1(0 0 —if, d=—101 0|, (A.2)
0 i 0 V3 00 =2
whereby these matrices are related to the matrix repragantd# the generators via
Aa
T = —. (A.3)
2
Very important features are, that the colour matrices arsitian
T =19, (A.4a)
and traceless
TrT* = 0. (A.4b)

The colour parts of the matrix elements can however be etedwmnalytically. Therefore some
useful relations should be given. The generators are naeuaby

Tr[T°T") = %5@”. (A.5)
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From the very useful equation
o 1
T = <6Z~16jk - Néij6k1> : (A.6)
one especially obtains
T”T”-—1 douN 16- = CFpé A7
( )zl—§ il _Nzl — YFU, ()

where the Casimir of the representation of the group is

N2 —1

Cr = SN (A.8)
We further need the relation

N?2-1

Z facdfbcd — 5abCA: (Ag)

c,d=1

which defines the Casimir of the adjoint representafign= N'. In particular, forSU(3) we obtain
Cr = % andCA = 3.

In every matrix element a colour structure, that is to say raangement consisting of colour
matrices and structure constants is enclosed betweenratliasy . Thus, the abbreviation

(Cptiim) ap = XRCHE™ XA (A.10)

is used, as also in [Wan95], with arbitrary numbersandn of colour indices. There ar&’ in-
dependent colour states which we denote by capital lettessibscriptd, B,C' = 1...N. In the
terminology of matrices, these colour states are repreddnt/V-dimensional unit vectors, thus for
SU(3) they read

1 0 0
X1 = 0 s X2 = 1 and X3 = 0 . (All)
0 0 1

The overline at a colour expression means an average ovartall colours and a sum over
all final colour states, under the modulus squared the ptoailic the adjoint matrix structure is
understood,

1
ORI 2 = e > (e o)) e

Al L AL=10LN,
911G =L (N?-1),
gl: :gn_l (Nz_l)

wherem initial gluons,s initial quarks,n final gluons and final quarks are assumed.

As clarification it should be demonstrated, how the impdrtafour parts Eqgs. (4.53) and (4.55)
are obtained. The colour structure of the elastic singléestag Figs. 4.1 or D.1, which serves as
precondition, is evaluated first. Note, due to the sum rdlecaial indices have to be summed over.
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Thus, we do not write the sum sign férand we will later also neglect the sum signs for the colour
states. The quantity ., in Eq. (3.27) reads

Cra = ‘T,Z;BTg*DP

1 N

= 2. BT xaxpT xe) - (BT xaxpT'xc)'
A,B,C,D=1

1
N2 — BT xaxbT xe) - (T xaxpToxe)'
1
el
1

= mTr(Tng)Tr(Tng)
_ fg frrg
= 2N26 Tr(T'TY)
_Cr (A.13)
2N
Within this derivation, we have used Eg. (A.7) but with thensconvention, Eq. (A.4a), cyclical

exchange in the trace of a matrix product and the matrixiclat

XTI xaxbT xexETx o X\ T9xs)

N
d_xaxhi=E and > XMy =Tr(M), (A.14)
= A=1

with [E as identity matrix an®1 as arbitrary matrix, each of them has the forifisitx V). Now, the
colour element Eqg. (4.55) can be evaluated where it is coemeto find the elastic colour paft, ,

1
(TIT9) apTYp|? = N XTI T b T xex T X pX T T x5

1 e €
= mTr(TfT9T~<7T VTr(T7T¢)

]' e e
=Cp - mTr(TfT )Tr(TIT®)

= Cr - Cha. (A.15)

This is similarly carried out for Eq. (4.53), the colour commiator structure, that is also denoted by
[T/, T9)apT,p = —Clp 45 (cf. EQ. (7) in [Wan95]),

HTf’Tg}ABTéDP = |ffgeTleTg*D‘2
- %f foe FraaX 5T Xaxp T xeXET XX T X8
= %ffgefbgaTr(T‘fT“)Tr(TfTb)
- iffgefbgalaeaTr(TfTb)

- 2N2 ffgefbgeTT(TfTb)

=G 2N2
=Ca-Cha. (A.16)

—— 8 Tr(TITY)






Appendix B Feynman Rules

The following conventions for the Feynman rules are appliedughout this work. We also
display the naming scheme used in our C++ code for the c@ssiparts, colour factors are shown
in curly brackets, refer also to Appendix E. The differenfesufor scalar and spinor QCD are
distinguished. The corresponding expressions for QEDear@vered if all colour generators are set
to unity and the colour structure constants become zeraghwheans that photon self coupling does
not occur due to th& (1) symmetry.

In the case of fermionic particles incoming spinor linesaita factoru(p, s) - x4, outgoing
spinor lines a factoti(p, s) - x',, for antiparticles there should bénstead of.. The bispinon(p, s)
is given in Appendix E. A factoe” is assigned to outer gluon or photon lines. For scalar pestic
the relevant factors reduce to the colour partsor Xil’ respectively. The colour factoss:, 7¢, T 5
and f,,. are explained in Appendix A.

The delta functions which ensure momentum conservatidmeatértices are neglected.
ScalarPropagator(ContraVectop*double *my)

i

— . {0;;}
2 _ 2 ; { ]
i 5 . p° — mgy + 1€
p SpinorPropagator(ContraVectop? double *my)
1
6
prY, — mg + i€ { ]}
ScalarVertex(ContraVectory, ContraVector *p,
. um,c ;. |nt&. /L)
p’ Z ) & ) p )]
—ig(p+ ). {T};}
SpinorVertex(int &)
—i!]% ’ {T]Cz}
GluonPropagator(ContraVector* int & p, int & v)
POLEETTETTTE S 0 U T AL
K k2+ie<g =N 57 ) owl

A — 1: Feynman gauge\ — 0: Landau gauge
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Appendix B Feynman Rules

P, s a

P3,0,C

pZayab

ThreeGluonVertex(ContraVectory, int & 1,
ContraVector *p,, int & v, ContraVector *ps, int & o)

ig[(P1 — D2)o * Guv + (P2 — P3)u " Guot
(pS - pl)u : gau] : {ifabc}

StaticDebyeScreenedPotential(ContraVectgyiht & v)

1 .. .Debye screening mass



Appendix C  Gauge Invariance

C.1 General Restrictions

The canonical quantisation of the field strength
A# = Netemike, (C.1)

starts from an expansion in Minkowski space. Hence, therd golarization vectors required, which
serve as a basis. We consider massless photons with moménttfm= 0, N is a normalization
constant. The same holds true for gluons when we negleculd=or brevity, we speak about
photons.

The free photon fieldi# obeys the wave equation

OAH = () (C.2)

in Lorentz gauge), A* = 0. This implies the four-dimensional transverse conditibr= 0. How-
ever there are only 2 transverse polarizations realiseg&photons. In the quantisation formalism,
the method of Gupta and Bleuler, which is based on the Loamnditiond, A* = 0, shows that the
contributions of scalar and longitudinal photons to exaech values cancel each other. Note, that
in the case of QCD the formal introduction of ghost fields tguiead to cancel internal contributions
form non-transverse gluons.

In the following section we discuss the question, how pa&tron vectors are to be chosen
especially for the numerical calculation. The connectimithie A*-gauge, which is often applied,
e.g. in articles on energy loss by gluon radiation [Gun82n9%], is demonstrated.

The solution4” of Eq. (C.2) is not fixed by the Lorentz condition. Any soluttio

Al =AM gEA (C.3)

with OA = 0 satisfies the relevant equations. If we chodse ¢~*7, this allows for a modification
of the polarization vectors according to

e = e + Bk, (C.4)

wheref is an arbitrary constant.

The four-dimensional polarization vectors for free phatare usually constructed from an intu-
itive generalisation of the three-dimensional orthondrpudarization vectors which are perpendic-
ular tok. This three dimensional transverse gauge with= 0 corresponds to the Coulomb gauge.
However, this relation is constrained to the form of polatian vectors, and the Coulomb gauge,
defined byV A = 0, allows A° = 0 only if no charges are present. Thus, we restrict the teriogyo
to the notationd’-gauge as a particular choice from the class of Lorentz gaugeeads

eV = (0,eM), (C.5)
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€ = (0,22, (C.6)
eM.z@ 2. Foe@. F=y, (C.7)
eM. e 22 .22 -1 (C.8)
In general the polarization vectors have to obey the folgadonditions
Wk =@ =W = 0, (C.9)
D) = (2,2 = 1 (C.10)

It is straightforward to show that these condition are irasatr with respect to the transformation
Eq. (C.4).

C.2 Tests of Gauge Invariance

C.2.1 Gauge Invariance for Polarization Vectors
A% = 0 gauge

The z-direction is generally fixed by the direction of thearming projectile quark. The momentum

of the emitted gluon is expressed in spherical coordin@itesform of the three-dimensional trans-
verse polarizations can be obtained if one starts from angmomentum in z-direction, where

polarizations are in x- and y-direction, respectively. Tgeneral situation for an arbitrary mo-

mentum direction is then obtained by application of rotatatrices. For completeness we note
the expressions which are especially employed in the progiade in the function "getPolariza-

tion_Azero(...)",

k=w-(1,cos¢sinb, sin¢psinf,cosh), (C.11)
eV = (0, cos ¢ cos B, sin ¢ cos B, — sin ), (C.12)
e? = (0, —sin ¢, cos ¢, 0). (C.13)

The emission angléis related to the gluon rapidity, sometimes denoteg via the ratio of the plus
and minus momentum componeits = ky + ks andk™ = ko — ks,

1.kt 1+ cos®
y==-In—=In———

2 k- sin 6 (C.14)

The central rapidity regiop ~ 0 corresponds to transverse gluon emission.

AT = 0 gauge

In light-cone coordinates the remaining freedom of the piodé A* is fixed with the condition
A* = 0. In terms of the usual coordinates this refers to the form

€112 = (e, "7, —¢), (C.15)

M. e® =y, (C.16)
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Depending on the parameterisatiorkéfthe explicit form of
_ak
ko + ks

is obtained from the Lorentz conditieh = (. For the transverse polarization vectors we q@é:

(1,0) andel(2> = (0, 1) in the numerical calculations. It is necessary to take casgngularities of
coordinates. Such a problem ariseggrior # — 7. So this gauge is restricted to forward emission
angles.

It was generally stated above that the set of polarizatidniaioed here may be transformed
under (C.4) whereby physical observables remain invarf@learly, this transformation can be used
with 3 = —e¢g/w to eliminate the component . Then, the situation is as in thé’-gauge case,
but the three-dimensional polarizations may differ from slet used in thel®-gauge by an rotation
about the momentum direction. If we investigate circulalapmations or carry out a summation
over polarizations this point has no importance, only fattipalar linear polarization states it has
to be taken into account to test gauge invariance with respehe transformation (C.4). Note that
B — 0for® — 0, hence thed*- and A°-gauge should agree for angles close enough to zero.

€0

(C.17)

A~ =0gauge
In a similar manner the conditioA~ = 0 can be achieved
((1/2) — (e, 61(1/2>, e, (C.18)
gM.e® =y, (C.19)
where
e = koel_lﬁkz. (C.20)

This choice of coordinates is numerically well defined fockaard emission but diverges fér— 0.
As argued in the case of the'-gauge the transformation equation (C.4) witk= —¢(,/w suggests
agreement of thel —-and A°-gauge in the limit) — .

The A~ -gauge is of interest, since in the CMS the diagrams withgatdg emission in thel -
gauge should refer to the target emission contributionsenit -gauge as follows. Say we consider
a collision of equally heavy projectile and target parsdiethe CMS with the emission of the gluon
from the projectile line where we obtain a specific anguldtgra of the radiation amplitude. Let us
assume now that thedirection is reversed, which in the CMS means equival@h#yinterchange of
projectile and target. What follows is that the previouggectle emission pattern now becomes the
new target angular emission behaviour. But if also all otheomponents are exchanged, that is to
say in the momentum of the gluon we get— —£k, (this is realized by the substitutigh— = — 0)
and in the polarization we write, — —e¢,, one would expect that the new target distribution is
identical to the previous radiation behaviour from emissié the projectile line.

In particular,e, — —¢, leads toA™ — A~ and vice versa. Therefore we find a symmetry of the
radiation amplitudes in the CMS with respect to the "excleaimgnsformation”

projectile < target
At o A (C.21)
< m—10

This is of course restricted to a symmetric kinematicakditn, that is to say, equal quark masses
and small transverse momentum transfer.
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Numerical Tests of Gauge Invariance in Polarization States

The three gauges are compared numerically for the processeofluon emission induced by the
single scattering of two quarks in Figs. C.1, C.2 and C.3. Symemetry properties between tHe -
and A~ -gauge are very well confirmed by comparison of Figs. C.1 ar&d Gloreover one finds
that the graphs for thel®-gauge obey an axial symmetry about the a@kis %, which can clearly
be understood since Egs. (C.12), (C.13) are invariant uthder = — 6. Note that the three-gluon
contribution diagram, Fig. C.3(a), fits well in this symnmyesirgument forA°. The behaviour of the
A°-gauge result fof — I is due to the specific coordinates where fors % only z-components
remain from products with polarization vectors in the maéiement expressions in contrast to the
other gauges. Thus the sharp decreasé fer 7 is explained, it is not a divergence.

In spite of this comparingl™ and A~ for the three-gluon contribution, Fig. C.3(a) reveals devi
ations in the angular range~ 7. These result from the fact that we have not reversed that&itu
properly, since the fixed momentum transfer is defined atdget line in thed™-gauge but not
redefined to the projectile in the calculation of the casdnef4A -gauge.

It should be pointed out that the single contributions i thiree gauges are quite different but
the total matrix element is in this kinematical region gaugariant, Fig. C.3(b).

The transformation equations between these three gaugeseshwhich gluon emission angles
there is agreement between the three cases. Thusi’tgauge is equivalent to thé"-gauge for
forward emission of the gluord(— 0) and equivalent to thel -gauge for backward emission
(¢ — 7). In Fig. C.1 we find this agreement betweén- and A~-gauge as well as in Fig. C.2 for
the combinationd~ and A°-gauge. However the angfeis not close enough te for the A~- and
AY-gauge to meet in Fig. C.1, ds— 0 is not reached in Fig. C.2 for an identification of the and
AY-gauge. These relations based on Eq. (C.4) are all satisfieid.i C.3(a) for the three-gluon case.

In summary, besides the discussion of symmetry propergasden different gauges and con-
tributions, we emphasize the numerically confirmed gaugariance of the total result. It could
be shown that target contributions are negligible in thegauge. This is an important feature to
justify the potential model, which applies the"-gauge and thus needs only to evaluate emission
contributions coming from the projectile.

C.2.2 Gauge Invariance for the Gluon Propagator
Numerical Tests

Besides the freedom of fixing the polarization states th@ggator of the gluon, which so far has
been used in Feynman gauge, can be modified according to

B —1
k2 4 e

D (k)" (sz C o). MM ) . (C.22)
k? + ie
The introduced gauge parameferecovers in particular the Feynman gauge-¢ 1) or the Landau
gauge § — 0). In Fig. C.4 we exhibit results for different choices of figithe gauge freedom by
The numerical results show gauge invariance with respecirall single contributions, not shown
here, and in the total matrix element, Fig. C.4. Howeves thay be also due to the smallness of
the transverse momentum transfer which restricts the atwddine gauge varying term in the gluon
propagator. The same calculation using spinor rules doeshoov any significant differences.
Analytically and numerically we restrict all calculatiots the Feynman gauge. Although it
is possible to show that a gauge term proportionat/tk” vanishes at least for the simple elastic
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(a) Pre projectile contributions.
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(b) Post projectile contributions.

Figure C.1: Projectile contributions to the summed and averaged sduasrix element for

gluon emission in the scattering of two down quarks fromac@(CD as a function of the emis-
sion angled compared for different gauges. The parameters are spetiffed. C.3, where one
finds gauge invariance for the total outcome.
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(a) Pre target contributions.
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(b) Post target contributions.

Figure C.2: Target contributions to the summed and averaged squaret rel@iment for gluon
emission in the scattering of two down quarks from scalar GG function of the emission
anglef compared for different gauges. The parameters are statéd.i€.3. It shows that in the
AT-gauge the target contributions are negligible with respethe contributions from emission
off the projectile, Fig. C.1.
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(b) Total matrix element taking all diagrams.

Figure C.3: The summed and averaged squared matrix element for glussiemiin the scat-
tering of two down quarks from scalar QCD is exhibited as acfiom of the emission an-
gle # compared for different gauges. In (a) the contributionsnfritie three-gluon vertex are
found to be relevant in all gauges. The total matrix elembht gdbtained as coherent sum of
all diagrams, however is gauge invariant, that is to say #selts in different gauges fall to-
gether. The results are for forward scattering in the CM®é@HReynman gauge with parameters
m; = my = Mgown = 0.007 GeV/c?, g = (0,0,5) GeV/e, p1 = (0,0, -5) GeV/ec,
w=20.001 GeV,0=0...7m,¢=7/2,q, =0, gy = 0.01 GeV/c, /s = 10 GeV /c.
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scattering diagram Fig. D.1, we will not pursue this probfemther. The latter independence of the
gauge fixing term written in terms of the relevant spinor piciti

w(pg)vuu(pa) KMk a(p)) vou(p;) = ulps)fu(p)u(p}) fu(p;) =0
results because the spinors obey the Dirac equation

u(p—m) = (p—m)u=0.

(C.23)

(C.24)
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o \ s A = 100 /
~ ! /
o \ /
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GEE 10 - \‘ / ]
\. /
\\\ '//
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\\\.\ ,-/'//
101? . . s .
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Gluon emission anglé@ [rad]

Figure C.4: The summed and averaged squared matrix element for glussiemiin the scat-
tering of two down quarks from scalar QCD is exhibited as acfiam of the emission angle
# compared for different gauges of the gluon propagator (@ehby the gauge parametsy.
The total matrix element is gauge invariant, that is to say résults in different gauges fall
together. The results are for forward scattering in the ChIfhe A+ -gauge with parameters
m; = my = Mgown = 0.007 GeV/c?, 5 = (0,0,5) GeV/e, p1 = (0,0,-5) GeV/e,
w=0.001 GeV,0=0...7,¢=17/2,q, =0, g, = 0.01 GeV/c, /s =10 GeV/c.

C.3 Polarization Matrix
The degree of polarization can be expressed in terms of aipatian matrix
:1<1+£3 fl—z&)
Pab =5\ +i6, 1-& )7

which includes 3 real parameters, namely the Stokes paeasdeté, and&; with allowed values
—1 <& < 1. The probability for a particular polarizatienis then obtained from the projection

(C.26)

(C.25)

Pe) = € pe.
1The slash symbagl stands for the contraction of a Lorentz quantity with the Gamma matrices,, 4 = At+y,,.
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The parameters§ carry information on the contribution from the followingugin polarization states

: o 1
(1 linear polarization vectar™) = — () 4 @),
& = V2 (€.27)
—1 linear polarization vector™) = — () — ),
( V2
(1 circular polarization vectof™) = — (e +ie®),
§2 = i‘/i (C.28)
—1 circular polarization vector'™) = — (el — i),
\ V2
1 linear polarization vectos(",
& = near poanzat ) (C.29)
—1 linear polarization vector®.
The numerical calculations yield the values for
pay = Ve pay = éPpe®, (C.30)
ey = ePMpe® p Ly = I pel), (C.31)
Sincep is an adjoint matrix and the relation
E+6+6=1 (C.32)
holds for a completely polarized gluon, we may express tbkestvalues by
&1 = 2/P1)P () (C.33)
52 = 2p(+> —1=1- 2p(_), (C34)
53 = 2p(1) —-1=1- 2p(2). (C35)

Furthermore, in the case when = 0, that is to say, the gluon is fully linear polarized, the
direction of the transverse polarization vector becomegssgible by the following argument. If
there is no circular contribution, the general linear paktion vector is spanned by

e = aeV) + be®. (C.36)

This corresponds obviously to a rotation about thaxis. Note, that this rotation does not
influence on the results for circular polarization vectokscomparison with the four-dimensional
generalization of the polarization matrix

=
<

|
= 5 (D6 - ef?) + %1 (e 1 D)

L2 (e — @0y 4 8 () (02 (C.37)
yields
a = :I:, /p(l), b= :|:1 /p(2>. (C38)

In this manner, we can detect the realized polarizatiorctioe from the results foe(V), e(?),
e*) ande(~). The results for the polarization directions obtained ia thalculations refer to the
three-dimensional transverse basis defined in Section1(C.2
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In Fig. C.6(a) we demonstrate this for the case of compléiedar polarizatiors()). The ratios
of different polarizations contributions to the total nwatelement as a function of the emission
anglef are shown for linear polarizations in Fig. C.6(a) and focualar polarization vectors in
Fig. C.6(b). The sum of each ratio pair of course equals 1.idnE€.5 we check that the choice of
polarizations does not effect for the summed and averageated matrix element. Furthermore the
same calculations were carried out with spinor rules butifierdnce was found.
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= 102! } e ande® (linear) 1
) ande™) (circular)
=
~
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&% 107t :
1019 1 1 1 1 1 1
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Gluon emission anglé@ [rad]

Figure C.5: The summed and averaged squared matrix element for glussiemiin the scat-
tering of two down quarks from scalar QCD is exhibited as acfiom of the emission an-
gle & compared for linear and circular polarization vectors, akse Figs. C.6. The result is
invariant with respect to this choices, that is to say theditfiall together. The results are
for forward scattering in the CMS in thd’-gauge and the Feynman gauge with parameters
mi = my = Maown = 0.007 GeV/c?, 51 = (0,0,5) GeV/e, p1 = (0,0,-5) GeV/c,
w=0.001 GeV,0=0...7,¢=17/2,q, =0, g, =0.01 GeV/c, /s =10 GeV/c.
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(b) Circular polarizations, both lines fall together.

Figure C.6: Relative polarization contributions to the summed and ayed squared matrix
element for gluon emission in the scattering of two down ksifirom scalar QCD as a function
of the emission anglé compared for (a) linear and (b) circular polarizations. Paeameters are
specified in Fig. C.5.






Appendix D  Gunion-Bertsch Limit

The first discussion of induced gluon radiation was done byi@uand Bertsch (GB) [Gun82]
in the limit of high quark energies and soft gluon energiesrttiermore, they have used thie -
gauge, massless quarks and neglected the spins, thus tHedwoscalar QCD with particle masses
m = 0. The calculation was carried out in CMS. For completenesgiweethe relevant expressions.

This first approach could be used as check for the programa®ttdlows. The matrix elements
for induced gluon radiation are calculated numerically M&for the case of transverse gluons. The
results are compared to the approximation of Gunion ancsBlert

Note that a different naming for the momentum tran$ferp’f — pi instead ofy used elsewhere
in this thesis is written. This corresponds to the definigoren in [Gun82].

D.1 Elastic Scattering

The investigation of the elastic scattering matrix elemé&rg. D.1, is a necessary prerequisite for
the induced gluon radiation processes because the elastiis ffactored out to obtain the radiation
amplitude. Therefore the GB approximations for elastidteciag are checked in Fig. D.2. In the
down quark scattering no considerable differences to niadeesults appear in the regime of small
momentum transfers, Fig. D.2. The curves lie on the GB liheparse they deviate if the transferred
perpendicular momentum becomes larger with respect tantti@limomenta of the quarks in CMS,

lJ_Np.

Di, A > O > Dy, B

i, C > P}, D

Y

FigureD.1: Elastic scattering of two quarks with one gluon exchanged.

The relevant expressions for elastic scattering are

C1e1astic = (Tf)AB (Tf)CDa (Dl)
. o (pr i) u P+ P
Meslcaaélta;c = Celastic * 192 - L 2 ) (D.2)
(pr — i)
MG, = Copate - (~ig?) 2 D.3
elastic = Celastic * (—197) (D.3)

3
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Figure D.2: Elastic scattering of two down quarks. The normalized suthieued averaged
squared matrix element is shown as a function of the trasev@omentum transfer .

Note, that in the high-energy limit and for small momentuansfers it is straightforward to
obtain the invariant differential cross section

do 2w’ s? + u?
P TIEC C R (D.4)

for the elastic scattering from a spinor calculation, whetre % is the coupling constant, the colour
factorC  is defined in Eq. (A.13) ang, t andu are the usual Mandelstam variables, cf. Eq. (3) in
[Wan95].

However, suppression of the GB matrix element can be seetv@r mass configurations. If we
extend the GB approach including finite masses it is not seiffi¢o calculate the changed invariant
CMS energys in Eq. (D.3). This problem is due to the identity= 2p in CMS which does not hold
for m # 0. A new derivation fom # 0 yields

|M|2e1 = K?. ‘M‘Qel,GB (D.5)
where

2 2
K=1- Tty (D.6)
V1422 + /142

and the masses are given in units of the initial momenguai the colliding particles in CMS,

xr = % andy = mT Since K < 1 this results in a reduction of the matrix element compared
to the GB result. In Fig. D.3 this factor is visualized. In timait =,y — 0 one recovers the GB
expressionsik — 1. Therefore in order to make reasonable comparisons with @BvilV restrict

the following calculations to light particles.
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Figure D.3: The mass dependence of the raiié = |M |2, /|M|2 | ;g is shown. In the limit of
massless particles GB is recovered, otherwise suppressaurs.

D.2 Inelastic Scattering

D.2.1 Single Contributions to Gluon Radiation

We consider the emission of gluons perpendicular to théalmtomenta of the colliding quarks.
Since the GB approximations use massless quarks we comsiol@qually light quarks with mass
m = 0.007 GeV (down quarks) and each carrying the momenjug 10 GeV in CMS. These mo-
menta define the-direction. The transverse momentum transfer is taken o bel, = 0.01 GeV
for example. The transverse componkntof the gluon is also measuredgrdirection.

The plots compare the squared summed and averaged maitniergke(colours and polarizations)
for the single radiation contributions in Fig. D.4. The fariafor GB are used as shown, in the target
line radiation case, we have shown the terms which come frenGB calculation although these
terms are not taken into account for the GB approximatiohefdtal matrix element.

In the three-dimensional plot, Fig. D.11, the situationddferent angles is considered, as well.
All numerical calculations are in good agreement with theapBroximation for smallb. Of course,
this is not true if the soft radiation limit is abandoned.
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D, A

p;, C

Di, A

p;, C

k‘7 g k, g
> > > ps, B pi, A > > > ps, B
f f
> > plfa D pi, C > > Py D
(a) Pre-Projectile. (b) Post-Projectile.
> > Dy, B Di, A > > Py, B
f f
> > > py, D p;, C > > > Py D
k, g k. g
(c) Pre-Target. (d) Post-Target.
Di, A > > Dy, B
e
k, g
f
i, C > > py, D

(e) Three-Gluon.

Figure D.4: Contributions to the inelastic scattering of two quarksdwaihe gluon being emitted.
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Pre-Projectile Contribution

The relevant expressions for the pre-projectile diagrag,[®.4(a), which are numerically compared
in Fig. D.5 are

CprePro - (Tng)AB (Tf)CDa (D7)
(py +pi — k)P +P)" - (20 — k) e
M = Chrepra - ig” e : (D-8)
pete = Gt (i — k)2 = 2] - ) — )P
MGB C ek (1—mx)
prePro prePro 1l
= (=29)———=. D.9
M(eGI}a]ztic C1elastic ( g) ki ( )

1020 T T T
c\l',_‘ 1018 i
>
[«]
O ot 1
@ -
> 10 —— Calculation .
~
P —— GB
g 102 | ]
g
=9
¢
i" 1010 B i
108 1 1 1
102 102 101! 10° 10'

k. of transverse gluon  [GeV]

Figure D.5: For thepre-projectile contributiorthe summed and averaged squared matrix element
as a function of the perpendicular momentum component afsterse emitted gluon calculated
numerically is compared to the GB approximation.

Post-Projectile Contribution

The relevant expressions for the post-projectile diagiaign, D.4(b), which are numerically com-
pared in Fig. D.6 are

CpostPro = (Tng)AB(Tf)CDa (DlO)
+pi + k) (0} + o) (2pf + k)ue”
Myt = Cposipro - 19° Pyt o Julpy + 11 s + F) ; (D.11)
’ [(py + k)? —m?] - (0 — p})?
MG C —& (kL —xl)(1 -
st _ oot () = Z2)C 1), ©0.12)
Melastic C(elastic (kj_ - l‘ll)2
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|M|2PostPrOjectile / 96
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Figure D.6: For thepost-projectile contributiorthe summed and averaged squared matrix el-
ement as a function of the perpendicular momentum comparfemttransverse emitted gluon
calculated numerically is compared to the GB approximation

Pre-Target Contribution

The relevant expressions for the pre-target diagram, FE#(dp which are numerically compared in
Fig. D.7 are

ChreTar = (Tf)AB(Tng)CD, (D.13)
(0} + 0 = k)u(py +pi)* - (2p; — k)€
MEER = Cprerar - 16— Z , (D.14)
prefar = prel (0 — k)2 = m™] - (p; — pi)?
MSGB. =0. (D.15)

preTar —

The divergent part arises from the singularity due(jip — p;)*>. This can also be found in the
post-target and three-gluon contribution. A further dsssan is given below.

Post-Target Contribution

The relevant expressions for the post-target diagram,=#(d), which are numerically compared
in Fig. D.8 are

C’postTar - (Tf)AB (Tng)CD: (D16)
pyscalar ig3 (p,f +p2 T k)/‘(pf +pi)u ) (2p’f + k)yﬁy (D 17)
ostTar — ostTar * s .

postitar P (1 + k)2 —m”] - (py — pi)?

el (2-1)(x - 1)

MEB = Chostrar - 21 A (D.18)
postT: g l‘(l{l _ ll)Q

postTar
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Figure D.7: For thepre-target contributiorthe summed and averaged squared matrix element as
a function of the perpendicular momentum component of astrense emitted gluon calculated
numerically is compared to the GB approximation. Note irs ttase the predicted GB result

equals zero.
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Figure D.8: For thepost-target contributiorthe summed and averaged squared matrix element
as a function of the perpendicular momentum component aiswerse emitted gluon calculated
numerically is compared to the GB approximation.
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Three-Gluon Contribution

The relevant expressions for the three-gluon diagram,iye), which are numerically compared
in Fig. D.9 are

CthreeGlu = ifegf(Te)AB (Tf)CDa (Dlg)
ig3
(pi —ps)? - (0 — P))?
[(ps + pi)" e - (pi — s + k)" (0 + D)o
(

scalar  __
MthreeGlu - C1threeGlu :

+ (pr +p)" (0 — k= p)u - 0 + i) e
Py + 1)), (D.20)

MESB reeGlu € 'I; _f 1 -
threeGlu __ Cihreeci . (_2 )EL( L L)( l‘) (D21)

MSE B Celastic (EL — l-l)g

elastic

v

+ (0 — 1 = pi +pp)len - (ps +pi)

1022 T T T
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—— Calculation -
—— GB

1012 B ]
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1010 B _

|M|2ThreeGluon / gﬁ
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103 102 101 10° 10!
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Figure D.9: For thethree-gluon contributiothe summed and averaged squared matrix element
as a function of the perpendicular momentum component aiswerse emitted gluon calculated
numerically is compared to the GB approximation.

D.2.2 Total Matrix Element

Within the GB approach, the contributions where the emissaxurs at the target line are neglected.
In addition, ther — 0 limit is assumed. In this kinematical situation with traesse gluonsk, =

0, w = k) and quark masses much smaller than the initial momentupasticle P+ = 2E = s)*

the value ofz is determined byr = % = 3 ée\/' This accounts for the deviation of GB

1The positive momentum fraction, termétd, of the projectile is worked with in [Gun82)].
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for large transverse momenta of the gluon. For arbitrarjemnthe value of: is defined byx =
w
— - (1 4 cos¥).

NG

The expression which is displayed in Fig. D.10 reads

Mgt _ ifers(F*)ap(F )cp .29 (61’;L (ks 1)) (D.22)

MSB B C1e1astic ki ( 1 — ZL)Q

elastic

1022 T T T

10%°
1018
1016
1014

[GeV 2]

—— Calculation
—— GB

1012

10t L
108 t
10¢
10¢ |

|M|2Total / g6

103 102 10! 10° 10!
k, oftransverse gluon [GeV]

102

Figure D.10: For thetotal resultthe summed and averaged squared matrix element as a function
of the perpendicular momentum component of a transversieghgjluon calculated numerically
is compared to the GB approximation.

Comment on the singularities The singularities in the diagrams for pre-target, posjetand
three-gluon contribution are found at the same valuk,ofThis is due to the expressidp; — p;)?

in the denominator of the relevant matrix elements. The pase p; corresponds to the equation
P — p'f = | = k, which reduces in the transverse gluon emission to the tondi, = w = k. In
general the singularity is expected for= w - sin 6.
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10

1

Figure D.11: The ratio between the numerically obtained total resultsrfelastic scattering to
the GB outcome is shown as a function of gluon enesggnd emission angle. The projected

straight line shows where singularities are placed.



Appendix E  The C++ Program

The numerical investigation of the radiation diagrams @ltdeith using several C++ programs,
which are built up from a set of objects and functions.

Technically, the basic objects are three- and four-dinmeradicomplex quadratic matrices to-
gether with complex row and column vectors of the same dimess These objects use the built-in
class of complex numbers and are provided with the usuabtipas of matrix calculus.

The three-dimensional objects represent the colour paitie eynman rules, the four-dimensional
objects realize the spinor algebra.

For the sake of reproducibility of the numerical results we@ compilation of important defi-
nitions and conventions. Lorentz indices are denoted irekcletters and run over. . . 3, if spatial
indices are meant these are written in Latin letters and venTo. . . 3.

We define the metric tensor as

1 0 0 0
0 =1 0 0

wy _

9 1o o =1 o0 (E.1)
00 0 -1

For the sake of numerical calculation of spinor results weshiaplemented the Gamma matrices

1 0 0 —o*
7“2(5 _—1>, ’y’“=<0—k 0—>, (E2)

with properties(y°)" = 70, (v¥)T = —+*, (4°)?2 = 1 and(v*)? = —1 based on the conventional
definition of Pauli matrices

() e-CF) 26l

Here the matrices
(10
1= <0 1) and (E.4a)

0= (8 8) (E.4b)

are used, the matriceg are thus four-dimensional.
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Finally we require to implement Dirac bispinors normalize@m as

(o)

W (5) = VE@) +m o :
op 1
i o)

()

W () = VE@) +m N (E.5b)
i 1)

The matrix elements we finally want to evaluate as complexbersare organized as objects.
They provide various functions as for exantple

(E.5a)

¢ void square(),

e double sumAndAverageSCALAR(),

e double sumAndAverageSPINOR(),

e double sumAndAverageSquaredSCALARQED(),

¢ double getPolarizationSCALAR(int epsilonnumber),
e double getSpinResult(int spinIN1, int spinOUT1),

e complexxdouble> getMatrixElementSPINOR(int spinIN1, int spinOUT1, intlaozation,
int colourIN1, int colourIN2, int colourOUT1, int colourOIL2, int colourGLUON),

for the inelastic matrix elements specified for the potémti@del.

These matrix elements keep track of all colour configurateswell as spin arrangements via an
array of complex numbers. The arrays, meaning the matrmees, can easily be summed by the
overwritten +” operator. Generally this allows a powerful handling of acsfediagrams, where the
squaring, averaging and summing procedures, a task withsidgrable number of nested loops, is
actually hidden inside the construction of the matrix eletwbjects. They are to be given the com-
pletely determined momenta in order to evaluate the baifiroducts of Feynman rules. Therefore
prepared functions are called, as can be seen in AppendihB.liitse — 0 in Appendix B are
not carried out but substituted in the programeby 0. The colour structure is calculated separately
and paired up with the colourless parts afterwards.

\We do not need for the calculation.
2We do not discuss this in detail, but mention that the retypes are given, the basic meaning of these functions is
self-explanatory.
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Besides this there are two other groups of functions availdbrstly these are kinematical func-
tions were the remaining moments, given a set of initial ¢dos, are obtained from, e3.

¢ int kinematicsPotentialSingleScatteringOneGluonPGantraVector& momiIN1, ContraVec-
tor& momOUT1, ContraVector& momGLU, ContraVector& momTRS).

On the other side the selection of polarization states femdiht gauges is performed by

e intgetPolarization(string gaugename, ContraVector&lep8, ContraVector& epsilonl, Con-
traVector& gluon, double checkBound),

as the transformation of polarization states is, too,

¢ intchangeLinearToCircularPolarization(ContraVect@gsilon0, ContraVector& epsilonl, Con-
traVector& gluon, double checkBound).

Parameters which are not supplied to a function are adjustexh external definition in the main
program. Particularly these are the gauge parameter the gluon propagator, a labat, A=, A°
as naming of the polarization gauge and for double scatferivhole set of integration parameters.
For numerical tests of kinematical, gauge and on-shell tiomd additional relative and absolute
check boundaries are introduced on a global level.

3The "Plus” in the naming scheme always stands for forwartteséag. Most of these function return integers which
contain information on the correctness of various checkmgahat for a return valued” no problems were found.






Appendix F  Conventions and
Notations

At this place we declare and comment on some conventiongwére applied throughout this
work. General remarks on notations are stated and additiemearks to the numerical calculation
are given.

The Feynman diagrams considered here are restricted ttetreleprocesses, thus the coupling
a = ¢*/4r is constant. The radiation amplitude defined in Sectior232shown in units of;? in
our figures, in the calculation this is realized dy= 1. The actual though constant valuegpfloes
not play a significant role since we only compare differentagions for the angular dependence of
the radiation amplitude.

Mainly the calculations are carried out using scalar QCI2sudince this spin effect can be
neglected in the high-energy limit. For the reason to keepdiagrammatic correspondence to
spinor QCD the sea gull vertex is not included, of course.

The attentive reader may also question the neglect of egehdiagrams in spinor calculations.
However one should keep in mind that we would have a mixtuidiftdrent preferred light quarks
the heavy charm quark is passing and thus we do not focusect®for identical particles, although
we sometimes use equal mass parameters for projectile ayad.ta

We contrast the case of light and heavy quarks. Thereforeswally apply the mass parameters
mg = 0.007 GeV/c? for the down quark andr. = 1.5 GeV/c? for the charm quark as typical
representatives of these two distinct cases.

We work in natural unitg = 2 = 1. The sum convention is used, thus expressions have to be
summed up over equal indices.

Lorentz indices are denoted by Greek letters, o, . . ..

Colour indices are termed in small Latin letter$, ¢, . . ..

Capital Latin lettersA, B, C, . .. label colour states of the quarks.
With this we follow the conventions in [Wan95].






Appendix G Dead Cone Factor for
Arbitrary Angles

In Section 2.2 we have introduced the concept of a suppressabor that can strongly reduce
the probability for gluon emission in projectile directiohhis factor was given by Dokshitzer and
Kharzeev [Dok01] for small angles, see Eq. (2.1), and shooitcect the matrix elements derived in
the approach of Gunion and Bertsch [Gun82], see Appendixdbcémpleteness we remember that
the factor (2.1) is

k% sin? )
= = G.1
o+ W sin’ 0+ 63 (G.1)

wheref, = m/E, m indicates the mass arfdthe energy of the incident heavy projectile quark.
This appendix is intended to offer insight how the dead cawéof arises technically. It aims to
present a simple derivation of this factor for arbitrary ssion angles.

Correction Factor for Arbitrary Angles for the Pre-Project ile Emission Diagram

In general, the dead cone effect arises from the screeniaglivergence due to a non-zero mass pa-
rameter in the corresponding propagator. Within the carsii contributions to one gluon emission,
Fig. D.4, there is the internal propagator of the exchandgeaigwhich remains massless and causes
a divergence in quark-quark scattering. The internal gpaokagator, however, yields a divergent
matrix element only in the Gunion and Bertsch approach ofsteas quarks [Gun82]. For the case
of the pre-emission process, Fig. D.4(a), we present aateivof the dead cone factor.

We rewrite the pre-projectile matrix element Eqg. (D.8)

s (pp i =)@ i) - (2pi — ke

lar __
MS?SParo - CprePro . Zg [(pl — I{;)2 — mQ} . (p,f — p;)Q (G2)
in order to obtain the correction factor
: +pi) (0 +0i) k) + D
Mrs)igi)ago — CprePro X Z-g?, <_E> (pf ’p)(p{ ; p) B (’pf 392) . (G3)
pik (pf —p}) (pf —p})

The on-shell conditiong? = m?, k* = 0 and the Lorentz conditionk = (0 are applied, thus the
elastic matrix element Eq. (D.2)

+p) (P + Pl
Mscalar — Celastic : 292 (pf ,p )(p{ ) pZ)
(pf —p})

(G.4)

elastic
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can be substituted if the four momentum of the gluon is négkgn the kinematical calculation,
that is to say the final momenta of the quarks are assumed tteh&dal in the inelastic as well as
in the elastic scattering situation

Msﬁsif;o:cpmpm_g<_%> (1_( K +v)) ) G.5)

\[scalar Celastic pik Dy + pi) (p’f + p;)

elastic

We use light-cone coordinates and express the polarisatictors inA*-gauge

2
k= |:2pl‘7 k—La kl:| ) (G6)
2px

ek
€= [o, L a] . (G.7)
Tp
An expansion in the mass of the projectile is carried out

2
pi = (\/p2 —|—m2,0,0,p> ~ <p+ m_9070:p> ) (G8)

2p

. m? -
pi = [P0+ D2yDo — D2 D1L] & [210, %,OL] : (G.9)

The suppression factor follows from the p%}%. In the Gunion and Bertsch approach far= 0

o 28, k . . . .
this yields the term% and the second bracket in the factorised matrix element in(Gdp)
€L
corresponds to the terfi — z). This is not calculated here but for a non-zero mass there are
additional corrections in this part. Note, that a similastéaisation is possible using spinor rules

which yield the same result for the suppression factor [VB&n9

Di€ 28k,

—_ = G.10
pik k2 + 2?m? ( )

Hence the Gunion and Bertsch matrix element has to be cedégta factor

k2 in? 0 in? 0

= J_Q ;= S —— 51211 . . (G.11)

k7 4+ x*m - , [ 1+cosf sin” @ + 65 - cos*(0/2)

sin 0 + 6§ — 5

Furthermore, only the momentum of the initial projectilei®sen, that means the results for this
diagram are not restricted to a specific Lorentz frame, whiotounts for the fact that numerical

results in CMS and in LAB frame are in agreement with the desagk@orrection factor.

Finally, this factor shows the missing symmetry betweenvésd and backward emission of the

gluon. For small angles in forward direction it reduces ®fictor of Dokshitzer and Kharzeev, on

the contrary, for angle$ — 7 the Gunion and Bertsch resylf — 1) is reproduced.

The effect of this dead cone factor on the radiation ampdéitddpends of course on all other
possible diagrams. The same form of this suppression faatobe found in the post-emission and
in the three-gluon contribution only for specific kinematisituations. The interplay of different
contributions is a main subject of Chapter 4.



Appendix H  Scalar versus Spinor
Calculation

In this thesis the discussion of radiation amplitudes wasiynaoncerned with results obtained
from scalar Feynman rules. However the program packagg@naed to deal with spinor rules as
well. Although we do not present this in detail, comparisofboth calculation methods were in
agreement if light particles with high energies, small mataen transfers and soft radiation were
assumed. Thus the program allows further investigaticisdfiects of spins.

_ 1 i r T T T T
E
z
8'0 0.8 -
of i
L - Spins:(0,0) — (0,0)
sl | Spins:(1,0) — (1,0)
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=}
S 04t -
£
)
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0 0.5 1 1.5 2 2.5 3
Gluon emission angl@  [rad]

Figure H.1: Relative contributions from different spin configuraticiesthe summed and aver-
aged squared matrix element for gluon emission in the soajtef two down quarks from spinor
QCD as a function of the emission angleThe non-vanishing contributions fall together. The pa-
rameters arer; = my = my = 0.007 GeV,p; = (0,0,5) GeV,ps = (0,0,-5) GeV,

w = 0001 GeV,0 = 0...7m,¢ = 7/2,¢L = (0,0.01) GeV, /s = 10 GeV.

Exemplary we present results for spin flip effects in the psscof single scattering with one-
gluon emission. In Figs. H.1 and H.2 therefore the relataaticbutions from different spin config-
urations to the total squared and averaged matrix elemerdigplayed as a function of the gluon
emission anglé. For the case of two equally light quarks in CMS, Fig. H.1, @inds four non-
vanishing contributions with the same weight. They coroesito spin configurations where no spin
is changed. In general there are sixteen different poggiifor spin configurations of initial and
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final states of two quarks, which are denoted by
(initial projectile spin, initial target spin— (final projectile spin, final target spin

The distinct spin states of each particle are termed wittrarlp numbers 0 and 1. Note that the
factor 4 in the denominator of the displayed ratios is due to the @eever initial spins and is
required to ensure that the sum of all ratios equals

In Fig. H.2 we exhibit the non-vanishing contributions ie ttase that a heavy projectile scatters
on a light target at rest. Besides configurations where thes gye not changed, Fig. H.2(a), also
situations with one spin being modified become relevants ihdepicted in Fig. H.2(b). Moreover
this calculation shows, that only configurations where thie ®f the light target is changed are
non-zero.

In closing, we have seen that as in our second case spinsefifiegt be important for the emission
processes of gluons. Note for example there appears anaardgpendence in Fig. H.2, which
remains a question to further investigation. This secorse ¢s closely related to the calculation in
Section 4.5 for Fig. 4.30(a), thus possible improvementi®potential model should be contrasted
with spin effects.
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(b) Configurations where the spin of the target is changed.

Figure H.2: Relative contributions from different spin configuraticiesthe summed and aver-

aged squared matrix element for gluon emission in the soaitef a heavy on a light quark from

spinor QCD as a function of the emission anglelrhe non-vanishing contributions in each plot
fall together. The parameters ateg = m, = 1.5 GeV,mgy = myg = 0.007 GeV,

p1 = (0,0,5) GeV,po = (0,0,0) GeV,w = 0.001 GeV,0 = 0...7, ¢ = 7/2,

gL = (0,0.01) GeV, /s = 1.524 GeV.
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