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Abstract

The induced soft gluon radiation processes of light and heavy on-shell quarks passing an amor-
phous colour-neutral deconfined medium are compared in a perturbative approach on tree level.
Therefore the potential model of Gyulassy and Wang is applied, and its validity is numerically
verified with respect to one gluon emission from single quark-quark scattering. The processes of
single and double scattering with one gluon being emitted are investigated in detail by analytical
and numerical means in the scalar QCD approach. Subtle dependencies on a variety of parameters
are outlined and, in particular, the dead cone effect for specific kinematical situations is analysed.
Comparisons to the QED situation and calculations of spinorQCD results as well as studies of dif-
ferent gauges are presented. The importance of destructiveinterferences in multiple scatterings,
the Landau-Pomeranchuk-Migdal effect, can be considered in the double scattering case; numerical
problems with these calculations are discussed.

Kurzfassung

Die Prozesse weicher Gluonenabstrahlung von leichten und schweren ”on-shell” Quarks, die ein
amorphes farbneutrales ”deconfinement” Medium passieren,werden im störungsthereotischen An-
satz auf dem Niveau von ”tree level” Diagrammen verglichen.Dazu wird das Potenzialmodell von
Gyulassy und Wang angewandt und dessen Gültigkeit in bezugauf die Emission eines Gluons in
der Quark-Quark Einfachstreuung verifiziert. Die Einfach-und Doppelstreuprozesse, bei denen
ein Gluon emittiert wird, werden mittels analytischer und numerischer Methoden im Rahmen der
skalaren QCD genauer untersucht. Dabei werden subtile Abh¨angigkeiten von einer Vielzahl von
Parametern hervorgehoben und insbesondere der ”dead cone”Effekt für spezifische kinematische
Situationen analysiert. Vergleiche mit QED Situationen und Berechnungen von Resultaten mittels
Spinor-QCD sowie Studien verschiedener Eichungen werden dargestellt. Die Bedeutung destruk-
tiver Interferenzen bei Mehrfachstreuungen, der Landau-Pomeranchuk-Migdal Effekt, kann im Fall
der Doppelstreuung betrachtet werden, wobei numerische Probleme mit derartigen Berechungen
diskutiert werden.
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1 Introduction

Nuclear matter in ground state is built up from nucleons, twosorts of hadrons, protons and neu-
trons, whose interaction is dominantly determined by the strong interaction. The fundamental theory
which describes this strong interaction on the level of quark and gluon degrees of freedom is Quan-
tum Chromodynamics (QCD). It is based on the existence of constituent elementary particles, the
quarks, which are assumed to exist as six different types. These so-called flavours in increasing order
of the current mass parameter are the up, down, strange, charm, bottom and top quarks. They carry
different electromagnetic charges and are fermions with spin 12 . In contrast to the electromagnetic
analogue Quantum Electrodynamics (QED), this theory is a non-abelian gauge theory expressed by
colour charges which are not only assigned to the quarks but also to the corresponding exchange
particles. These gauge bosons are called gluons and can interact with each other, contrary to photons
in QED. Quarks and gluons all together are often termed partons. Quarks have not been found iso-
lated but always bound in colour-less combinations in hadrons, either as quark-antiquark pairsqq,
these are mesons, or confined in three quark states as baryonsqqq, which include the proton and the
neutron.1

Under conditions of high temperatures or high densities strongly interacting matter is proposed to
appear in new phases. This is shown in Fig. 1.1 where the proposed QCD phase diagram is sketched
depending on the temperatureT and the baryon chemical potential�. The conditions required to
explore such regions in the laboratory are only realized in collisions of heavy ions at relativistic
velocities, whereby these situations are comparable to theearly stages of the history of the universe,
that means shortly after the Big Bang. Cold dense hadron matter is relevant for neutron stars.

In the course of relativistic heavy-ion collisions in the centre of mass frame (CMS) the colliding
nuclei are Lorentz-contracted in their direction of motion. In high energetic collisions the individ-
ual constituent nucleons are resolved in partons which scatter and deposit a considerable amount of
energy in the mid-rapidity region with respect to the beam axis y � 0.2 This energy density corre-
sponds to a particular temperature assuming thermalization takes place at a sufficiently short time
scale.

With rising temperature of strongly interacting matter oneexpects quarks and gluons to become
the relevant degrees of freedom instead of hadrons. Following the situation for electrons and photons
in QED such a deconfined phase is usually called the quark-gluon plasma (QGP). The transition is
expected at a critical temperature ofT
 � 170 MeV, however it is not yet clear how this transition,
shown as ”cross-over shape” in Fig. 1.1, would behave.

Due to a remaining intrinsic longitudinal motion of the matter’s constituents and the large pres-
sure of the strongly interacting matter, after a stage of maximum density the system expands. Be-
cause of this expansion a supposed plasma state subsequently cools down belowT
 and hadrons
are formed (this is the chemical freezeout), due to further expansion thermal equilibrium cannot

1Currently the pentaquark is a highly discussed exotic baryon state, e.g. [Hic03].
2The reader may refer to Eq. (C.14) for a definition of rapidity.



8 1 Introduction

Figure 1.1: The proposed QCD phase diagram taken from [Han01].

be maintained (this is the thermal freezeout), and afterwards the hadrons move away and can be
detected individually.

Besides the denotation of different phases, phase transition lines and critical points in Fig. 1.1,
the expectation value of  is additionally displayed. Chiral symmetry, the symmetry with respect
to left- or right-handness of the quarks, is spontaneously broken in nuclear matter, thus a large value
of the chiral condensateh  i accounts for the considerably higher dynamically created constituent
masses of quarks. The smaller current masses of quarks are the relevant parameters if the quarks
become the degrees of freedom since chiral symmetry is believed to be restored for high temperatures
and densities, expressed ash  i � 0 for negligible masses of the up and down quarksmu;d !0. The phenomena deconfinement (quantified by the expectationvalue of the Polyakov loop) and
chiral symmetry restoration are in QCD related and happen atthe same temperature. The proposed
phase diagram contains some more possible phases, superfluid or superconducting phases and quark
matter, but since these are not important for our problem they are not discussed here. For more
details on the phase diagram we refer the interested reader e.g. to [Han01].

It is worth emphasising that relevant heavy-ion collision experiments are marked by crosses in
the proposed phase diagram for QCD in Fig. 1.1. As indicated above in order to investigate the
QCD phase diagram, especially the deconfinement transitionas well as chiral symmetry restoration,
strongly interacting matter is explored at high energy densities. The first of such experiments were
carried out at the Alternating Gradient Synchrotron (AGS) in Brookhaven and at the Super Proton
Synchrotron (SPS) at CERN. More promising experiments withultra-relativistic heavy-ion colli-
sions currently being performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Na-
tional Laboratory, New York, and planned at the Large HadronCollider3 (LHC) at CERN, Geneva,

3This is denoted by the ALICE (A Large Ion Collider Experiment) detector in Fig. 1.1.
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will provide data which allow the search for deconfined matter.4 Therefore it is of great importance
to fully understand the hadronic processes but also to predict modifications of hadronic observables
which arise if deconfined matter was created. There is a long list of possible observables which are
sensitive to the transient creation of QGP [QM02, Won94]. Wemention here modified flow patterns,
di-lepton signals,J=	 suppression and energy loss [QM02]. The latter one is related to the focus of
the present thesis.

The basic physical idea behind this problem is that in case deconfined matter was produced in
a heavy-ion collision, partons with large transverse momentum with respect to the collision axis
propagate through the medium and therefore can be used to probe the created phase. One believes
radiative energy loss to be an important mechanism for modifications of the high energetic parton.
This is outlined in more detail in Chapter 2.

In this thesis we focus on very basic scattering processes accompanied by gluon radiation of a
quark passing a deconfinement phase which might subsequently alter the results of the hadroniza-
tion. Considerable attention is paid to the different gluonemission patterns for light or heavy quarks.

The thesis is organised as follows. In Chapter 2 we introducehow the search for the quark-
gluon plasma is connected to hadron spectra from high-energy heavy-ion collisions. The problem of
parton energy loss by induced gluon radiation and its consequences for hadronic observables have
been studied extensively, so that different approaches areavailable and will be summarized. With
[Kov03, Gyu03] one can find comprehensive review articles and a considerable amount of additional
references about these studies. The problem of radiation from heavy quarks is motivated.

Aspects of the radiation off fast particles traversing an amorphous medium are discussed in
Chapter 3 were we focus on electrodynamics. Further the quantity ”radiation amplitude”, which is
an important subject of our investigations, is introduced.Finally the potential model of Gyulassy
and Wang [Gyu94, Wan95] is specified.

The results for the radiation pattern obtained numericallyfor the single scattering case are pre-
sented in Chapter 4. Especially we compare results from QED to different contributions from
QCD. As particular point we mention our treatment of inducedradiation. The previous work (cf.
[Kov03, Gyu03]) treats the corresponding evaluation of matrix elements for the radiation process
by analytical means, thereby resting on several approximations. In contrast to this, we evaluate di-
agrams from the very beginning by a numerical procedure. In doing so we can exactly account for
the kinematics, in particular in treating finite energies and quark masses; the full colour structure
is included. The present thesis is to be understood as a first exploratory study of the evaluation of
Feynman diagrams within QCD relevant for energy loss. Our numerical code for this evaluation is
written in C++. The idea for such a treatment of matrix elements emerged from the studies in e.g.
[Tit99, Bar01], where hadronic processes are described by such a large number of diagrams which
prevents the usual calculation of squared matrix elements by trace theorems. Analogue techniques
are implemented, for instance, in [Kra02].

Afterwards in Chapter 5 the case of double scattering is discussed. Problems which arise in the
numerical approach are explained. The last Chapter 6 is summary and outlook. Apart from this
some results are referred to appendices together with descriptive supplements.

4Typical energies available in CMS in collisions with S, Pb orAu ions are2 AGeV for AGS, 18 AGeV for SPS,200 AGeV at RHIC and5500 AGeV at LHC. Here,A stands for the nucleon number.





2 Energy Loss of Partons and the
Search for the Quark-Gluon Plasma

2.1 Motivation

In the search for the quark-gluon deconfinement phase a variety of different signals has been sug-
gested which might give information about this phase and especially should help to identify such a
state experimentally. In this work we concentrate on the problem of energy loss by gluon radiation
off quarks passing an amorphous medium. More precisely, thequestion how the mass of an on-shell
quark modifies such emission processes will be the subject ofinvestigation. In the following chapter
these ideas are further motivated.

2.1.1 Theoretical Concepts

Unlike in QED the energy loss of a parton is not measurable directly since partons are not observed
as free particles in the experiment. Moreover one has to question the effect of parton energy loss
on subsequently built hadrons, that means on jet formation and properties which are experimentally
accessible.

It is generally believed that at RHIC or LHC energies nucleus-nucleus collisions will reveal new
physics compared to proton-nucleus or proton-proton collisions due to the significant size propor-
tional toA1=3 of the incident particles. Deviations from geometrical scaling of various observables,
that means a violation of scaling from proton-proton collision to the collision of two nuclei by the
number of binary nucleon-nucleon pairs, evidence this fact. This can be used to access properties of
the deconfined matter, e.g. parton densities.

Among non-linear modifications of QCD evolution equations due to higher partonic density,
initial state partonic energy loss, medium modifications and multiple independent hard parton inter-
actions in one hadron collision, final state partonic energyloss is expected to modify highp?1 ob-
servables which offer a link to characterize the details of matter produced in a collision. In particular
the effect that the yield of produced hadrons in an ultra-relativistic heavy-ion collision is suppressed
with respect to the yield scaled from nucleon-nucleon collisions is also called ”jet quenching” and
was already proposed as signal for high density matter aboutten years ago, see e.g. [Wan92]. For a
short summary of the underlying physics we refer to [Bai03].

Induced radiative energy loss has been suggested as more important effect in nuclear collisions
than elastic scattering, see e.g. [Gyu03]. Note that elastic final state energy loss has been already
proposed by J.D. Bjorken in 1982 to lead to jet attenuation oreven extinction; others have suggested

1The momentump? � pT is the transverse momentum of observed particles measured perpendicular to the heavy
ion collision axis.
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di-jet acoplanarity as further consequence, see [Gyu03] and references therein. The corresponding
experimental situation is described in 2.1.2.

Because of the high multiplicity of produced hadrons, jets contain not only the leading particle
but also particles from radiated gluons, this is why a directmeasurement of the energy loss effect
is difficult to isolate. Instead, an analysis of particle distributions within a jet turns out to be more
accurate. The fragmentation is assumed to occur in the vacuum, hence the energy loss of the parton
is reflected in the energy loss of the hadron.

jet

jet

Figure 2.1: A di-jet (e.g. �qq) is created in a primary hard collision of two gluons. Briefly
afterwards, softer interactions produce the QGP through which the jets move. The jet going
a longer distance through the medium can experience a stronger attenuation or even may be
extinguished. In this picture the latter case of an away-side missing jet is shown.

The parton energy loss can produce a pattern of jet attenuation, which includes information on
the initial effective gluon rapidity densitydNg=dy if local thermal equilibrium is assumed. Therefore
the idea of jet tomography [Gyu02b] is to reproduce quenching data selecting the most appropriatedNg=dy distribution. Basically this is the direct analogue to conventional X-ray tomography. The
energy loss effect might even lead to partial absorption of jets, that means to an so-called away-side
missing jet, see Fig. 2.1.

Note in addition that parton energy loss cannot only lead to the suppression of highpT hadron
yields but can also generate azimuthal anisotropy of largepT spectra in non-central collisions. This
is a geometrical effect caused by the azimuthal dependence of the distance that a parton has trav-
elled before hadronization. Consequently, the energy lossof this parton is a function of the az-
imuthal direction and so the large transverse momentum spectra of observed hadrons will be as well
[Wan01a, Gyu01b].

Aside from this, jet imbalance or acoplanarity is expected [Bla86, App86]. In a collision where
two opposite jets propagate outwards from the collision zone their momenta would be confined to
a plane. However, because of parton energy loss of the jet particles, an imbalance of the transverse
momenta can occur.

To make the problem of radiative energy loss of a jet parton easier treatable a potential model was
introduced by Gyulassy and Wang [Gyu94, Wan95], explained in more detail in Section 3.3. This
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model has been applied to the problem of final state radiativeenergy loss and discussed within several
theoretical approaches. We present some of their key ideas and summarize crucial differences.

Two different analytic limits have been considered in the literature. Both apply the high-energy
limit, where no deflection of the initial parton is assumed. These approaches essentially differ in
their assumptions for the density of the deconfinement medium. The effect of the density can be
encoded in the mean number of scatterings of the jet in mediumor also termed the opacityn = L=�,
whereL is the size of the traversed medium and� denotes the average mean free path of the parton.

A continuous theory which may be applied for dense deconfinedmatter, hencen � 1, has
been considered by Baier, Dokshitzer, Mueller, Peigné andSchiff (BDMPS) [Bai97a]. Based on
asymptotic energy the solution of a Schrödinger like equation led to the conclusion that the energy
loss�E grows with the medium thicknessL asL2 independent of the initial energy. This result is
achieved for a static medium, however it was investigated further that in matter expanding according
to Bjorken’s hydrodynamical model energy loss can be even larger [Bai98a]. Note, that this ansatz
has not been proven to be successful in realistic nuclear collision scenarios. There one finds that the
jet parton suffers only a few scatterings (see also Section 2.1.2).

In contrast an approach for such thin media, an expansion in the opacity, has been worked out by
Gyulassy, Levai and Vitev [Gyu00a] in the high-energy eikonal approximation. That means assum-
ing a parton which remains on a straight-line trajectory it is possible to evaluate all relevant diagrams
for an arbitrary number of elastic and inelastic interactions recursively. On the level of probabilities
this recursion is carried out via a reaction operator. Details of this reaction operator approach, which
is frequently called the GLV formalism, can be found in [Gyu00a, Gyu01, Gyu02a]. We emphasize
that this approach is capable to include kinematical constraints and involves the interference effects
with the production amplitude of the parton. This restrictsa direct comparison of this approach with
our results, since interference effects with the production process will not be studied here.

In combination with the LPM effect, explained in Section 3.1.1, which reducesn to a smaller
number of effective scatterings, the first order of the opacity expansion plays a very important role
for the general question of radiative energy loss. The rapidconvergence of the opacity expansion
allows to reproduce theL2 dependence of the energy loss from first order in opacity [Gyu00b]. The
prediction of the GLV formalism in first order opacity is4E(1)GLV = CR �sN(E) L2�2�g log E� ;
whereCR is a colour factor,�s the strong coupling constant,� the Debye screening mass,�g the
mean free path of a gluon,E the initial energy of the parton andN(E) a numerical factor which de-
creases with higher energies and approaches the asymptoticvalueN(E)! 4 forE !1 [Gyu00b].
Hence the relative energy loss is predicted to be slowly decreasing proportional tolog(E)=E for
higher initial energies. For finite energies howeverN(E) suppresses this behaviour. This shows
the importance of finite kinematical boundaries and suggests that numerical approaches can be very
instructive. Note that Wiedemann has independently developed an opacity expansion [Wie00b]. A
path integral approach was first worked out by Zakharov [Zak98].

The QCD analogue of the TM effect, see also Section 3.1.2, wasconsidered in [Mül99, Käm00]
and [Djo03b]. In the last-mentioned work it was pointed out that a modified dispersion relation of
the gluon may be the reason for a reduction of energy loss of high momentum charm quarks.

Another feature of this problem is that energy loss and energy gain mechanisms can compete
with each other. The concept of detailed balance was discussed by Wang and Wang [Wan01b].
Especially hadron spectra for transverse momentapT < 2 GeV=
 are influenced by the collisional
energy gain [Mül03].
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In the eikonal approximation, possible for high projectileenergies, it was assumed, that the
independently propagating partons only acquire a phase while they interact with a target. They
do not change their transverse position and thus maintain ona straight-line trajectory. This strong
assumption is not necessary for a numerical analysis at lower energies.

2.1.2 Experimental Situation

High transverse momentum spectra of pion production inAu + Au collisions at
psNN = 130 GeV

at RHIC reveal a steeper slope in central collision data thanfor peripheral collisions, see Figs. 2.2,
for moderate highpT neutral pions, i.e.pT � 1:5� 4:0 GeV=
. This was discussed in [Lev02] with
preliminary PHENIX data.2 Using the GLV formalism it was found in [Lev02] that the quenching
effect on the pion yields in central collisions can be explained by an opacityL=�g � 3 � 4 for a
static deconfined medium. As mentioned above, hereL is the size of the medium and�g is the mean
free path of the gluon, which enters since gluon rescattering diagrams become important.

In general the pion yields in central collisions are suppressed with respect top + p data scaled
with the number of binary collisions, which points to strongmedium effects. This is interpreted

(a) (b)

Figure 2.2: Transverse momentum spectra (a) of�0 produced inAu + Au collisions. For
central collision data the predictions including jet quenching for different values of opacity are
exhibited. The central collision data show a steeper fall-off than in peripheral collisions. This is
the observed jet quenching. The normalized ratio of centralto peripheral pion yields (b) reveals
the jet quenching in central collisions. These figures, taken from [Lev02], indicate an opacityL=�g � 3� 4.

as jet quenching, that means a higher energy loss prior to hadronization due to the higher density
formed in central collisions. These observations are also confirmed by more recent neutral pion

2The final data are published in [Adc02a].
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production data from RHIC for
psNN = 200 GeV [Adl03] as can be seen in Fig. 2.3. In this figure

different centrality selections are compared and reveal that jet quenching is stronger if the collisions
are more central. Note in addition that jet quenching has also been observed for charged hadrons,
see e.g. [Adc03] for results ofpT dependent charged hadron suppression at RHIC for energiespsNN = 130 GeV.
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Figure 2.3: �0 spectra as a function of transverse momentum for different centralities inAu+Au
collisions at

psNN = 200 GeV. This figure taken from [Adl03] exhibits that jet quenching
increases with centrality.

The observation of disappearing away-side jets is a qualitative new phenomenon compared tod + A collisions. The missing jet is interpreted as caught by a created deconfined phase of quarks
and gluons that has a higher stopping power than nuclear matter. This was already shown in Fig. 2.1.

Data of transverse momentum spectra from semileptonic decays of open charm,D ! e�X,
reveal information onpT spectra ofD-mesons (charmed mesons) and thus for charm quarks, see
Fig. 2.4. Surprisingly no significant energy loss is realized for charm quarks. This was termed ”null
effect” by Gyulassy [Djo03a]. An analysis of these data withrespect to the strength of the possible
energy loss effect by the charm quark seems to point at best totiny energy losses [Gal03].

The important influence of the quark mass on the energy loss pattern, that is to say the qualitative
difference between results for heavy or for light quarks dueto the so-called dead cone suppression,
has been discussed by Dokshitzer and Kharzeev [Dok01] and isintroduced in the next section.

This interpretation of data and the theoretical predictionof the dead cone suppression motivate
us to reconsider the gluon radiation spectra in the potential model in detail. This is done numerically
and allows especially to abandon the high-energy limit, massless partons and the soft radiation as-
sumption. Furthermore all non-abelian diagrams and all interferences, except interferences with the
radiation amplitude, are included.

Encouraged by the suggestions from experimental data and theory that only few final state in-
teractions are relevant, which points to the case of thin media, we will focus on single and double
scattering processes using a C++ program, which had to be written.

Advantages of this method are further that the full colour algebra can be dealt with, in contrast to
the assumptions which use combinations of colour structures from different diagrams in the eikonal
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Figure 2.4: Electron spectra compared to the expectations from open charm decays. Shown are
data for central and minimum bias collisions. The figure is taken from [Adc02b]. Following the
analysis of these data [Gal03] suggests at best tiny energy losses of charm quarks.

limit. Besides this the calculations can be carried out for scalar but also for spinor quarks to elucidate
the importance of spin flip effects.

2.2 Dead Cone Factor

The probability for gluon emission off heavy quarks in projectile direction can be strongly reduced
at angles� < �0 by a suppression factor which corrects the matrix elements derived in the approach
of Gunion and Bertsch [Gun82] for massless, high energetic quarks, see also next sections and
Appendix D. Here�0 = m=E wherem indicates the mass andE the energy of the incident heavy
projectile quark. This factor was determined by Dokshitzerand Kharzeev [Dok01] for small angles
as F = k2?k2? + !2�20 = sin2 �sin2 � + �20 (2.1)

and is termed ”dead cone factor”.3 Its general form is depicted in Fig. 2.5. Dokshitzer and Kharzeev
[Dok01] have estimated that the gluon radiation pattern differs qualitatively for heavy and light
quarks. However, their discussion is restricted to small angles and the relevant angular regions are
not specified quantitatively. Moreover, this estimate is valid for soft gluons, that means it focuses on
abelian diagrams only, and cannot handle intermediate gluon energies. These shortcomings can be
analysed only by a numerical computation, which is the main motivation for the present work.

Figure 2.5(a) shows the dead cone factorF itself. In order to motivate the terminology, which
will be referred to in our further analysis, we depict the angular dependence of the squared radiation
amplitudejR1j2. Qualitatively this quantity describes the probability ofgluon emission and this
probability has to be multiplied by the dead cone factor if mass effects are taken into account. In
Fig. 2.5(b) the consequences of the factorF are compared to the results by Gunion and Bertsch

3In Appendix G more explanations on the derivation of the ”dead cone factor” are given.
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Figure 2.5: Illustration of the (a) general form of the dead cone factorF as a function of the
emission angle� for �0 = 0:01. Multiplied by the typical1= sin2 � radiation pattern for massless
projectiles (b) reveals the suppression of emission off heavy particles compared to Gunion and
Bertsch [Gun82], which equals the termsin�2 �, and suggests the sketched terminology.
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[Gun82] restricted to the� dependence. Therefore the typical1= sin2 � dependence of the radiation
amplitude, see Appendix D, is multiplied byF 2, since the squared matrix elements are relevant.
Hereby the so-called dead cone peak is situated at�0 and implies to denote�0 as dead cone angle.
Below �0, the characteristic angle in this problem, radiation becomes suppressed due to the non-
vanishing mass of the projectile.



3 Radiation of Fast Particles Passing
an Amorphous Medium

Following the previous motivation of energy loss off quarksby induced gluon radiation in de-
confined matter of quarks and gluons we focus on important aspects of radiative energy loss from an
electromagnetic point of view. Finally we show how the radiation from light and heavy quarks can
be compared qualitatively.

3.1 Classical Electromagnetic Radiation

For simplicity and as an introduction to the problem of radiative energy loss in an amorphous
medium we recover the analogue problem in classical electrodynamics, e.g. [Jac98]. Particles which
carry electromagnetic charge are subject to radiative energy loss if they are accelerated. The follow-
ing discussion is restricted to the electron, the generalization to arbitrary charges is straightforward,
that is to say the electron chargee had to be replaced by the appropriate charges. We consider fast
particles, that is to say particles which move with a velocity j~vj close to the speed of light
1, j~vj ! 
.

In this classical context we discuss two effects which modify the degree of radiative energy loss,
namely the Landau-Pomeranchuk- Migdal effect and the Ter-Mikaelian effect, e.g. [Ter72, Bai98c].
The terminology for the further consideration of the stronginteraction problem is motivated.

3.1.1 Landau-Pomeranchuk-Migdal Effect

In a situation with successive multiple scatterings of an electron the spectrum of emitted radiation
depends on the distance between neighbouring scattering centres. For small distances a suppres-
sion of radiation with respect to the sum of each scattering considered separately appears. This is
known as Landau-Pomeranchuk-Migdal effect (LPM effect). We present a classical approach to this
phenomenon [Pav97, Mül99]. The energy spectrum radiated by moving charges is found from the
Liénard-Wiechert potential of the electron in motion. We begin the discussion with equation (14.67)
in [Jac98], which describes the differential intensityI as a function of energy! and solid angle
 asd2Id!d
 = e2!24�2
 ����Z 1�1 ~n� (~n� ~�)ei!(t�~n�~r(t)=
)dt����2 ; (3.1)

where~n = ~kj~kj ; ~� = ~v(t)
 : (3.2)

1We write explicitly
 at this stage, but work in conventional units
 = ~ = 1.
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Here,~v(t) = d~r(t)dt is the velocity of the charge moving along the trajectory~r(t) and~k is the wave

vector, which obeys the dispersion relation! = j~kj. Relations for cross products of vectors allow to
transform this into a more appropriate structured2Id!d
 = e2k24�2 ����Z 1�1[~n� ~v(t)℄ei!t�i~k�~r(t))dt����2 : (3.3)

In what follows we are interested in the soft photon approximation, ! ! 0. Furthermore, we
consider a dilute medium. Then the scattering process can besimplified by an abrupt change in
the direction of the electron’s velocity at the scattering point. Outside the scattering centres the
particle is assumed to move on a straight line with constant velocity. Given these simplifications,
one can exploit Eq. (3.3) to achieve a transparent understanding of the radiation process. In doing
so we consider first the single and double scattering processes in some detail in order to generalize
afterwards the important aspects to the case of multiple scatterings. Note, that the integration over
infinite times in Eq. (3.3) is to be covered by a suitable convergence factore��jtj in the integrand and
the subsequent limit�! 0 has to be performed finally.

Single Scattering

The situation for a single scattering process is depicted inFig. 3.1.~v1~v2t = 0~r = 0
Figure 3.1: Single scattering.

After integration of Eq. (3.3) the phase factors vanish in the limits t ! �1. The intensity
spectrum of emitted radiation� d2Id!d
�S:S: = e24�2
2 �������� ~n� ~v1�1� ~n~v1
 � � ~n� ~v2�1� ~n~v2
 ���������2 (3.4)

is focused in the direction~nk~v1;2 because in this case the denominators in Eq. (3.4) become small,
so to say they yield large contributions to the radiation. Thus the spectrum is strongly peaked into
the forward direction of an ultra-relativistic electron (j~vj ! 
). It becomes also evident from this
expression that only with a change in the velocity of the electron emission appears, otherwise the
radiation vanishes.

Double Scattering

From the spectrum for double scattering in Fig. 3.2 one derives, that the dominant contributions
in the soft photon limit result from the integral parts before the first scattering and after the last
interaction, which correspond to the first and the third termin Eq. (3.5), respectively,
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Figure 3.2: Double scattering.� d2Id!d
�D:S: = e24�2
2 �������� ~n� ~v1�1� ~n~v1
 � + ~n� ~v2�1� ~n~v2
 � 0B�ei!�1� ~n~v2
 �4t � 11CA

� ~n� ~v3�1� ~n~v3
 �ei!�1� ~n~v3
 �4t��������2 : (3.5)

The intermediate contribution, namely the second term in Eq. (3.5), can be expanded for small! (soft photon limit). This yields a condition which allows for neglecting the second part in the sum
of Eq. (3.5) 1!�1� ~n~v2
 � � tf �4t: (3.6)

Here the formation timetf for the radiation is introduced. Additional the same condition can be
expressed in terms of the travelled distanced between the scatterings. Then the condition for de-
structive interference readslf � j~v2j!�1� ~n~v2
 � � d; (3.7)

where the formation lengthlf is defined. Hence, one expects a suppression of radiation if the spatial
separation of the two scattering centres is small enough.

Technically termed, the emission process described by Eq. (3.5) is decomposed into a pre-
emission term from the first scattering, a post-emission term from the first scattering, pre-emission
form the second scattering and post-emission from the second scattering. Condition (3.7) evidences
that a large formation length implies a destructive interference where the post-emission of the first
scattering and the pre-emission of the second scattering nearly cancel. Comparison with Eq. (3.4)
highlights that under these conditions the double scattering looks effectively like a single scattering.
Usually this is called LPM effect.

Physically it is clear that in the soft photon limit the long wavelengths of emitted radiation do not
resolve the very details of the scattering centres, and thispart of the spectrum must be correspond-
ingly equivalent to a single scattering spectrum.

In the opposite caself � d however note that the spectrum in Eq. (3.5) can be rearrangedand
then looks like the sum of two independent scatterings each in the form Eq. (3.4), one from~v1 to~v2 and the second one from~v2 to ~v3. This is due to the large fluctuations in the exponential factors,
which allow for the neglect of interference terms connecting both scattering processes.
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Multiple Scattering

A similar physical picture as for double scattering can be found in the generalized case of soft
radiation from multiple scatterings atN centres displayed in Fig. 3.3. One expects a certain number
of scattering centres to contribute destructively to the overall spectrum. Fig. 3.3 visualizes that

~vi~vflf
Figure 3.3: Multiple scattering. In the LPM regime scattering centres situated within one for-
mation lengthlf act as one single effective scattering centre denoted by thefilled circles in the
lower graphic.

on average the electron on its path through an amorphous medium experiences particular numbers
of scatterings which together act as effective scatterings. The length it traverses in the target of
thicknessL while one effective scattering is taking place is the formation lengthlf . In generalization
of Eq. (3.7) the formation lengthlf = j~vkj!�1� ~n~vk
 � (3.8)

is determined by the parallel component~vk of the electron’s velocity, that means the projection into
the initial direction of the particle. Clearly, this requires that the actual distance of neighbouring
scattering centres is small compared tolf , d � lf . As we have discussed in the double scattering
case, the radiation spectrum from such an effective scattering centre looks like one generated by a
single scattering event, thus the net radiation pattern canbe obtained as superposition ofNe� = Llf
effective single scattering spectra, assuminglf < L.

Hence, forNe� < N we obtain a suppression effect in the radiation spectrum� d2Id!d
�N = Ne� � � d2Id!d
�S:S: ; (3.9)

in contrast to the Bethe-Heitler limit2, where the radiation fromN -times multiple scattering is addi-
tive in the number of scatterings,Ne� ! N . The subscriptS:S: in Eq. (3.9) indicates that an average
single scattering process is meant.

2Note, that Bethe and Heitler have first considered bremsstrahlung for a relativistic electron in Born approximation,
e.g. [Lan80].
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We will further comment on the main condition of the LPM effect. In Eq. (3.4) we have seen
the radiation to be concentrated into the electron direction inside a cone with opening angle�rad =
�1 = mE , which implies that electron and photon will be separated only after a certain time of flight,
or formation lengthlf . The mass of the electron ism andE its energy. The electron and the photon
will propagate independently if the electron is scattered out of its radiation cone,�2s
at � �2rad. Here�2s
at stands for the mean squared scattering angle of the electron. An estimate of this scattering
angle in a random walk picture relates�2s
at to lf to yield lf � Ep! [Pav97]. Therefore the spectrum

Eq. (3.9), and thus also the energy spectrumd�d! , becomes proportional to
p!E in the LPM regime

with �2s
at � �2rad, otherwise, for�2s
at < �2rad, in the Bethe-Heitler limit the spectrum is constant
with respect to the initial energyE and the frequency! of the emitted radiation.

In summary, in the true sense the LPM effect is the destructive interference of radiation from
a certain number of scatterings arranged within a formationlengthlf , whereby the electron having
passedlf is scattered out of its radiation cone due to multiple scattering. Besides this meaning
one often meets other destructive interference effects to be termed LPM effect. A description of
both effects, the LPM effect and the Ter-Mikaelian effect, to be considered below, on quantum-
mechanical grounds has been developed by Migdal.

3.1.2 Ter-Mikaelian Effect

Besides the radiation suppression effect of multiple scatterings the polarization of the medium in-
fluences on bremsstrahlung off ultra-relativistic electrons. It was found by Ter-Mikaelian that this
effect can further reduce the radiation spectrum especially in the soft frequency limit. We present an
explanation based on classical coherence arguments following the method of Galitsky and Gurevich
[Gal64].

Here the formation lengthlf given by Eq. (3.8) in Section 3.1.1 can be identified with a coherence
length l, which is the path length the emitting particle travels overwhich the radiation remains
coherent. The geometrical condition to maintain coherencedefines the coherence lengthl(!; �) = �2 � v � 
os �s1=p�� v � 
os �s � 
os � (3.10)

as the electron’s path length where the phase difference equals �2 , or �2 in terms of the wavelength�. This coherence length depends on the emission angle of radiation �, its frequency! or wave
length�, �s denotes the multiple scattering angle of the electron and
os �s the average value, but
most importantly here1p� stands for the increased phase velocity of the emitted bremsstrahlung.
The dielectric constant� takes into account the polarization effects of the medium. Note that this
expression corresponds to Eq. (3.8) for the formation length lf apart from a constant factor� if we
focus on the LPM effect in Eq. (3.10) by setting� = 1 for the vacuum,� = 2�! andj~vkj = v � 
os �s.

In order to target the polarization effect we state that the radiation intensity per unit frequency
intervalI(!) can be expressed in terms of the Bethe-Heitler expressionIBH(!),I(!) = q � IBH(!); (3.11)

modified by a reduction factorq = l(!; 0)l0(!; 0) = l�l�0 ; (3.12)
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which is the ratio of the forward emission coherence lengthsl� � l(!; 0) in medium andl�0 � l0(!; 0)
in the absence of medium effects, that means for� = 1 and
os �s = 1. Using Eq. (3.10) and the
familiar relations� = 1� !20!2 (! � !0); (3.13)� 2s = E2sE2 l�0X ; (3.14)

together with expansions of1p� and
os �s under the assumptions� � 1 and
os � � 1 one then
obtainsq(E; !) = �1 + E2m2 !20!2 + E2E2sm4 qX!��1 : (3.15)

Here the parameter!0 is the plasma frequency and formally corresponds to a mass term for the
photon,E is again the energy of the electron andm its mass. Furthermore,X is a characteristic
radiation length andEs a typical energy scale, both arising from the Bethe-Heitlerspectrum.

The reduction effect is purely due to medium polarization if1 + E2m2 !20!2 > E2E2sm4 qX!: (3.16)

Then the reduction factor becomesq = !2!2 + (E2=m2)!20 < 1: (3.17)

In reversing the inequality (3.16) one can find a regime for LPM suppression. For more details on
this situation, the calculation itself and a subtle discussion of the competing contributions from LPM
effect, TM effect and the absorption of quanta the reader might be referred to [Gal64].

In conclusion we repeat that the polarization of the medium causes the bremsstrahlung spectrum
off an relativistic electron passing an amorphous medium tobe reduced for lower frequencies. This
is the proper Ter-Mikaelian effect.

The importance of the TM effect for the energy loss of quarks in deconfined matter was already
questioned in [Mül99] and [Käm00]. It was confirmed that a direct analogue of this effect in QED
also exists in QCD.

3.2 Quantum Description: Cross Section and Radiation
Amplitude

Guided by the above classical considerations we turn to a quantum description of the radiation
process within perturbation theory. The analogue to classical electrodynamics is QED. This section
introduces quantities which are suitable to discuss the radiation pattern in inelastic collisions in the
soft radiation limit in detail.
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3.2.1 General Cross Section

The differential cross section for a process with two initial andn final particles with initial (final)
energiesEk (E 0k) and initial (final) momentapk (p0k) generally takes the following form as can be
found in many textbooks, e.g. [Bjo90],d� = 1j~v1 � ~v2j � N12E1�� N22E2� jM j2 N 01d3p012E 01(2�)3 � � � N 0nd3p0n2E 0n(2�)3 �(2�)4Æ(4) p1 + p2 � nXi=1 p0i!S: (3.18)

The factorsNi are 1 for spinless particles, photons and gluons. Otherwise, in the case of Dirac
particles,Ni = 2mi if the spinors are normalized to 1. The dynamics is now contained in the matrix
elementM , the delta function takes care of energy-momentum conservation. The statistical factorS = Yi 1li! accounts forli identical particles of sorti in the final state.

3.2.2 Radiation Amplitude

In order to motivate the quantity ”radiation amplitude” we consider first the situation where the
emission of one photon is induced by the scattering of two electrons. From a comparison of the
elastic and inelastic differential cross sections one can define a ratio which represents the probability
of a photon being emitted. The respective cross sections which belong to the diagrams depicted for
the quark-gluon case in Fig. D.1 and Figs. D.4(a)-D.4(d), tobe modified by replacing gluon and
quark lines with photon and electron lines, ared�inel = S � (2�)4Æ(4) (p1 + p2 � p01 � p02 � k)j~v1 � ~v2j � N12E1�� N22E2� �jMinelj2 N 01d3p012E 01(2�)3 N 02d3p012E 02(2�)3 d3k2!(2�)3 ; (3.19)d�el = S � (2�)4Æ(4) (p1 + p2 � p01 � p02)j~v1 � ~v2j � N12E1�� N22E2� jMelj2 N 01d3p012E 01(2�)3 N 02d3p012E 02(2�)3 : (3.20)

Before the ratio is taken, the squared matrix elements are summed over all final polarizations and
an average over initial polarization configurations is carried out. The overline at the matrix element
indicates this summing and averaging procedure. We define the radiation amplitude by means ofdP = d�ineld�el = jMinelj2jMelj2 � d3k2!(2�)3 : (3.21)

The idea behind this quantity is a factorisation into a part describing the emitted radiation and an
underlying part for the elastic scattering. This factorisation holds only true if the momentum of the
photon is negligible compared to the momenta of the other particles, an assumption, which is called
soft radiation limit. Eq. (3.21) describes the probabilityof one photon emission under the condition
that an elastic scattering has occurred, that is to sayP is a conditional probability. Usually, one
defines the photon number distributionR
R
 = !d3N
d3k = 12(2�)3 jMinelj2jMelj2 (3.22)
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(see for instance Eqs. (15), (16) and (45) in [Gyu00a]).

Besides the kinematical or constant factors the relevant physics in Eq. (3.21) is, very close to the
definition ofR
, described by the fractionjRj2 = jMinelj2jMelj2 ; (3.23)

which is the sufficient quantity to compare different radiation patterns in such processes in the next
chapters. We will call this the radiation amplitudeR, or strictly speaking the summed and averaged
squared radiation amplitudejRj2, but for convenience the term “radiation amplitude“ will always be
used in the following if the meaning is obvious.

The above considerations apply directly to one gluon emission. The matrix elements have to be
summed additionally over final colour states and averaged over initial colour states. The relevant
QCD diagrams are shown in Fig. D.1 and Figs. D.4, where a new kind of diagram due to the three-
gluon vertex, or sometimes also called triple-vertex, occurs, Fig. D.4(e). Corresponding colour
factors have to be implemented. A detailed discussion with respect to the colour states is presented
in Appendix A.

The radiation amplitudes for single scattering processes and similarly defined for double scatter-
ing processes with one photon, or gluon respectively, beingemitted, are described explicitly in the
following chapters.

For completeness, we mention that another different quantity, also called radiation amplitude, is
introduced (cf. Eq. (16) in [Wan95]),i ~R = T 
ABT 
CDMradMel ; (3.24)

with Mrad �Minel. Substituting this into Eq. (3.23), withMel = T 
ABT 
CD �Mel;no 
olour one obtainsjRj2 = j ~RMel;no 
olourj2jMelj2 ; (3.25)

and sinceMel;no 
olour is colour independent one can divide the overline in the denominatorjRj2 = j ~RMel;no 
olourj2jT 
ABT 
CDj2 � jMel;no 
olourj2 : (3.26)

The colour structure givesC1;el, for more details refer to Eq. (A.13), and the overline in thenumerator
can also be split if~R is independent of those statesMel;no 
olour still depends on. This could only be
spins, thus for scalar QCD the summing and averaging procedure can be divided andjMel;no 
olourj2
cancelsjRj2 = j ~Rj2C1;el : (3.27)

Hence, the radiation amplitudesR and ~R differ by a constant colour factor.
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3.3 The Potential Model

In order to describe the radiation effects if a high energetic particle is passing an overall colour-
neutral deconfined phase, a potential model was employed firstly by Gyulassy and Wang [Gyu94,
Wan95]. They have justified that in a particular gauge, theA+-gauge, see Appendix C, the radi-
ation contributions from target lines can be neglected. In Appendix C this is also demonstrated
numerically.

Therefore, the target particles can be modelled by localized static screened potentials in the form
(cf. Eq. (1) in [Wan95])V aAB(~q ) = gT aAB e�i~q~xi~q 2 + �2 ; (3.28)

which arises as Fourier transformationf(~q ) = R d3x ~f(~x ) of the screened Coulomb potential~V aAB(~x) = gT aAB4�j~x� ~xije��j~x�~xij: (3.29)

Thereby~xi denote the space points where these Yukawa type potentials are localized. Successive
scatterings are assumed to be well separated,� � ��1, where� is the average mean free path
length of an incident projectile parton,1=� is the Debye screening length and� is called the Debye
screening mass. The value ofg is not varying here. The termT aAB stands for the original colour
structure of the target and is explained in Appendix A.

3.4 Divergences

Different types of infrared divergences caused by vanishing mass parameters may arise. Firstly, due
to the massless gauge boson, which is the photon in QED and thegluon in QCD, respectively, a so-
called soft divergence is expected. Secondly, the collinear divergence is expected to follow from a
massless matter field. The introduction of a gluon mass� breaks gauge invariance, but in this manner
the soft divergences from gluon propagators can be suppressed. Keeping the mass parameters for
the quarks, collinear divergences are ruled out, too. The method for the gauge boson propagator is
known as mass regularization, another possible scheme is toeliminate problematic regions in the
phase space by a cut-off method.





4 Single Scattering with One-Gluon
Emission

The aim of this chapter is to clarify the one-gluon emission in a single scattering event. Analogue
to [Wan95] we employ the potential model to simulate the scattering of on-shell quarks. Despite
of the simplicity of the formal expressions we will meet an astonishing complexity of the radiation
pattern. Furthermore, we will compare the potential model with a quark-quark scattering calculation.

4.1 Kinematical Situation and Declarations

We first introduce the necessary diagrams and matrix elements within the potential model approach.
Additionally, we construct the relevant kinematical conditions and emphasize the important approx-
imations. Here, we explain the QCD situation, whose expressions can easily be reduced to the QED
case.

pi; Apf ; B~qel; ~x; C;D
Figure 4.1: Feynman diagram for single elastic scattering in the potential model described by
the amplitudeMQCD1;el .

From the Feynman rules, see Appendix B, one directly obtainsthe matrix elements for the rele-
vant Feynman diagrams. The matrix element for the single elastic scattering process Fig. 4.1, which
we need as normalization in the radiation amplitude Eq. (3.23), readsMQCD1;el = T 
ABT 
CD � (�ig)(pf + pi)� � (�ig)g0� e�i~qel~x~qel2 + �2 : (4.1)

The fact, that the potential can only impart spatial momentum transfer to the projectile, but no energy
transfer, essentially simplifies the kinematics and the elastic matrix element becomesMQCD1;el = T 
ABT 
CD � (�g2) � 2E � e�i~qel~x~qel2 + �2 : (4.2)
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There are three possible diagrams of lowest order, where theemission of a gluon takes place.
Note, that initial state radiation of an incoming particle with high virtuality, which is for instance
studied in [Gyu00a], does not take place, because we consider here on-shell particles. We denote the
diagrams Fig. 4.2 and Fig. 4.3, which appear also in QED without colour factors, of course, as abelian
diagrams and distinguish between the case when the emissionoccurs before the potential scattering
(pre-emission) and the opposite case (post-emission). Thetechnique of indexing the individual
diagrams withMn;m;l was introduced in [Gyu00a] and is explained in more detail inSection 5.2.

pi; Apf ; B~q; ~x; C;Dk; gpi � k
Figure 4.2: Feynman diagram forMQCD1;0;0 , i.e. the single scattering with one gluon emission in
the potential model. This diagram will be referred to as pre-emission diagram.

The matrix element for the pre-emission situation (see Fig.4.2) is derived similarly as beforeMQCD1;0;0 = (T fT g)ABT fCD � (�ig)(pf + pi � k)� � i(pi � k)2 �m2 + i�� (�ig)(2pi � k)��� � (�ig)g0� e�i~q~x~q 2 + �2 ; (4.3)

and can be reduced toMQCD1;0;0 = (T fT g)ABT fCD � g3 � 2(E � !) � e�i~q~x~q 2 + �2 � pi�pik : (4.4)

In the same manner, the corresponding equation for the post-emission process (Fig. 4.3) isMQCD1;1;0 = (T gT f)ABT fCD � (�ig)(2pf + k)��� � i(pf + k)2 �m2 + i�� (�ig)(pf + k + pi)� � (�ig)g0� e�i~q~x~q 2 + �2 ; (4.5)

and subsequently yieldsMQCD1;1;0 = (T gT f)ABT fCD � (�g3) � 2E � e�i~q~x~q 2 + �2 � pf �pfk : (4.6)

For a complete terminology, the non-abelian diagram Fig. 4.4 will be often called the three-gluon
contribution. The structure is slightly more involved due to the appearance of the three-gluon vertex,
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pi; Apf ; B~q; ~x; C;Dk; gpf + k
Figure 4.3: Feynman diagram forMQCD1;1;0 , i.e. the single scattering with one gluon emission in
the potential model. This diagram will be referred to as post-emission diagram.

pi; Apf ; B~q; ~x; C;Dk; gpi � pf
Figure 4.4: Feynman diagram forMQCD1;0;1 , i.e. the single scattering with one gluon emission in
the potential model. This diagram will be referred to as three-gluon diagram.MQCD1;0;1 = (�ig)(pf + pi)�T eAB � �ig��(pi � pf )2 � �� � (�ig)g0� e�i~q~x~q 2 + �2T fCD� (ig)(ifegf)[(pi � pf + k)�g�� + (�k � q)�g�� + (q � pi + pf )�g�� ℄; (4.7)

which can be written in the formMQCD1;0;1 = [T f ; T g℄ABT fCD � g3 � e�i~q~x~q 2 + �2 � 1(pi � pf)2� [2! � (pi + pf)� � �0 � (pi + pf)(k + q) + (2E � !) � 2q�℄: (4.8)

So far, we have only applied the on-shell condition for the emitted gluon,k2 = 0, the Lorentz
condition,�k = 0, and the general conservation of the total four-momentum,pi + q = pf + k; (4.9)

especially the simplified energy conservation withq0 = 0. Now, we want to evaluate the matrix
element expressions further with the aim to obtain an analytical dependence, which can be used
later to understand the exact numerical results. Therefore, we restrict the kinematical situation and
assume an on-shell projectile quark incident in z-direction,pi = (E; 0; 0; piz): (4.10)
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For brevity, we have declaredEi � E. The energy is determined by the positive root of the on-shell
conditionp2i = m2, wherem is the quark mass and remains constant. InA+-gauge it is suitable to
work in light-cone coordinates,pi = �p+; p�; ~p?� � [pi0 + piz ; p0 � pz; ~p?℄= hE +pE2 �m2; E �pE2 �m2;~0?i : (4.11)

We consider situations wherem is small compared toE. An expansion in the mass of the projectile
yieldspi � �2E � m22E ; m22E ;~0?� ; (4.12)

where we only kept the terms up to the order1=E. Note, that in this formulation the on-shell
condition is only satisfied in the zeroth order(1=E)0.

Also, the momentum of the gluon and the polarisation vectorsare fixed by choosing theA+-
gauge, refer to Appendix C,k = "2Ex; ~k?22Ex;~k?# ; (4.13)� = "0; ~�?~k?Ex ;~�?# : (4.14)

The plus-component ofk is parameterised byx relative to the plus-component2E of the incident
particle. The value ofx = !2E (1 + 
os �) = !E 
os2(�=2) � !E (4.15)

is restricted to0 � x � 1, because the maximum energy available for the gluon is2E. In our
discussionx will always be sufficiently smaller than one, since we assumethe soft gluon limit,
whereE � !: (4.16)

Furthermore, we assumeE � j~q?j andE � m. This is why we will carry out expansions in1=E
and neglect higher orders of1=E when we simplify kinematical expressions.

We begin with the pre-emission Eq. (4.4) and find1pi� = 12 � �2E � m22E� � ~�?~k?Ex � ~�?~k?x ; (4.17a)pik = 12 � �2E � m22E� � ~k?22Ex + 12 � m22E � 2Ex � 12x(~k?2 + x2m2); (4.17b)

1According to the definition of light-cone coordinates as in Eq. (4.11) also the metricg�� is modified, such thata�b� = 12 (a+b� + a�b+ + ~a?~b?).
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which yieldspi�pik = ~�?~k?~k?2 + x2m2 : (4.17c)

The conservation of energy,Ei = Ef + !; (4.18)

can be expressed in terms ofE byEf = E � ! = E � 12(k+ + k�) = E � 12  2Ex + ~k?22Ex! � E(1� x) +O� 1E� : (4.19)

Since, in the limit of small gluon emission angles,x �!0��! !E , see Eq. (4.15), we might write the
energy pre-factor(E � !) in Eq. (4.4) asE(1� x) and obtainMQCD1;0;0 = MQCD1;elT 
A0B0T 
C0D0 � (�2g)(1� x) � (T fT g)ABT fCD � ~�?~k?~k?2 + x2m2 ; (4.20)

where the elastic part Eq. (4.2) is factorised out under the important assumption~qrad � ~q � ~qel: (4.21)

Sincex� 1 in the soft gluon limit, Eq. (4.16), we will usually omit the factor(1� x) in the matrix
element expressions and work with the form as in Eq. (4.33a).

In the post-emission and three-gluon vertex terms Eqs. (4.6) and (4.8) also the final quark momen-
tum enters. Therefore, we have to solve the kinematical equations at first. The momentum transferq
in light-cone variables readsq = (0; ~q?; qz) = [qz;�qz; ~q?℄: (4.22)

With qpi = 12 � qz � m22E � 12 � qz � �2E � m22E� = qz �m22E � E� ; (4.23)qk = 12 � qz � ~k?22Ex � 12 � qz � 2Ex� ~q?~k? = qz  ~k?24Ex � Ex!� ~q?~k?; (4.24)

squaring of the momentum conservation Eq. (4.9) finally yieldsqz in terms of the given quantities~q?, k andpi. Furthermore,p2f = (pi + q � k)2;p2f = p2i + q2 + k2 + 2q(pi � k)� 2pik;m2 = m2 � q2z � ~q?2 + 2qz �m22E � E�� 2qz  ~k?24Ex � Ex!+ 2~q?~k? � 1x(~k?2 + x2m2);



34 4 Single Scattering with One-Gluon Emission0 = q2z + 2qz  E(1� x) + ~k?24Ex � m22E!+ (~k? � ~q?)2 + ~k?2x (1� x) + xm2;qz = � E(1� x) + ~k?24Ex � m22E!� E(1� x)�vuut1� ~k?22xE2(1� x) � m2E2(1� x)2 � (~k? � ~q?)2E2(1� x)2 + 116E4(1� x)2  ~k?2x �m2!2;qz � � E(1� x) + ~k?24Ex � m22E!� E(1� x)� 1� ~k?24xE2(1� x) � m22E2(1� x)2 � (~k? � ~q?)22E2(1� x)2! :
We focus on the positive root solutionq(+)z = � ~k?22Ex � (~k? � ~q?)22E(1� x) � xm22E(1� x) ; (4.25)

because we are interested in scatterings with small momentum transfers, that is to say forward scat-
tering of the incident particle. The second solution,q(�)z � �2E(1� x), corresponds to momentum
transfers in the range ofE, which is the excluded backward scattering scenario.2

Hence, from Eq. (4.9), we find the final quark momentumpf = pi + q � k= "2E(1� x) +O� 1E� ; m22E(1� x) + (~k? � ~q?)22E(1� x) ; ~q? � ~k?# ; (4.26)

where, as forpi in Eq. (4.11), the on-shell condition holds true in the lowest order of(1=E).
We are now in the position to analyse further the remaining matrix elementsMQCD1;1;0 andMQCD1;0;1 .

In Eq. (4.6) we write out the four products and obtainpf �pfk = 12 � 2E(1� x) � ~�?~k?Ex � (~q? � ~k?)~�?12 � 2E(1� x) � ~k?22Ex + 12 � m22E(1� x) + (~k? � ~q?)22E(1� x)! � 2Ex� (~q? � ~k?)~k? ; (4.27)

where we kept our strategy to neglect terms of higher order in1=E,pf �pfk = (1� x) � ~�?~k?x � (~q? � ~k?)~�?(1� x) � ~k?22x + m22(1� x) + (~k? � ~q?)22(1� x) ! � x� (~q? � ~k?)~k?
2We have numerically verified that the results for backward scattering are usually suppressed by orders of magnitude

compared to the corresponding forward scattering scenario.



4.1 Kinematical Situation and Declarations 35= 1x~�?�(1� x) � ~k? � x(~q? � ~k?)�12x(1� x) h(1� x)2~k?2 + x2m2 + x2(~k? � ~q?)2 � 2x(1� x)(~q? � ~k?)~k?i= 1x~�?(~k? � x~q?)12x(1� x) ��(1� x)~k? � x(~q? � ~k?)�2 + x2m2�= 2(1� x)~�?(~k? � x~q?)(~k? � x~q?)2 + x2m2 : (4.28)

Thus, the post-emission matrix element Eq. (4.6) becomesMQCD1;1;0 = MQCD1;elT 
A0B0T 
C0D0 � (�2g)(1� x) � (T gT f)ABT fCD � �~�?(~k? � x~q?)(~k? � x~q?)2 + x2m2 ; (4.29)

yielding finally Eq. (4.33b) below in the soft gluon approximation, respectively.
For the non-abelian three-gluon vertex matrix element Eq. (4.8) we evaluate the denominator(pi � pf)2 = 2m2 � 2pipf= 2m2 � "2E � m22E(1� x) + (~k? � ~q?)22E(1� x)!+ m22E � 2E(1� x)# +O� 1E2�� � 11� x h(~k? � ~q?)2 + x2m2i ; (4.30a)

and the contributionsIa � 2! � (pi + pf)�= 2! "~�?~k?x + 12 � 2E(1� x) � ~�?~k?Ex � (~q? � ~k?)~�? +O� 1E2�#� 2!x ~�?(2~k? � x~q?)= 2E � ~�?(2~k? � x~q?); (4.30b)

using Eq. (4.17a) and! � xE for small gluon emission angles,Ib � �0 � (pi + pf )(k + q)= ~�?~k?2Ex � (2pi + q � k)(q + k)= ~�?~k?2Ex � [2piq + 2pik + q2 � k2℄� ~�?~k?2Ex � ��2Eqz + 1x(~k?2 + x2m2)� ~q?2� � 1E ; (4.30c)

where we made use of Eqs. (4.17b), (4.23),q2 � �~q?2, and�0 = (�++��)=2 = ~�?~k?2Ex was determined

by Eq. (4.14),I
 � (2E � !) � 2q�



36 4 Single Scattering with One-Gluon Emission= E(2� x) � "qz � ~�?~k?Ex � 2~�?~q?#� �2E(2� x)~�?~q?: (4.30d)

The total result is then given by the sum of Eqs. (4.30b) and (4.30d),Ia + Ib + I
 = 2E � ~�?(2~k? � x~q? � (2� x)~q?) = 2E � 2~�?(~k? � ~q?); (4.31)

since the second term Eq. (4.30c) is suppressed by a factor1=E. Substituting this into Eq. (4.8)
finally yields the three-gluon resultMQCD1;0;1 = MQCD1;elT 
A0B0T 
C0D0 � (�2g)(1� x) � [T f ; T g℄ABT fCD � �~�?(~k? � ~q?)(~k? � ~q?)2 + x2m2 ; (4.32)

which subsequently gives Eq. (4.33c) below for soft gluons.
In summary, we have obtained the approximate matrix elements in the soft gluon limit corre-

sponding to Figs. 4.2, 4.3 and 4.4 as follows,MQCD1;0;0 = MQCD1;elT 
A0B0T 
C0D0 � (�2g) � (T fT g)ABT fCD � ~�?~k?~k?2 + x2m2 ; (4.33a)MQCD1;1;0 = MQCD1;elT 
A0B0T 
C0D0 � (�2g) � (T gT f)ABT fCD � �~�?(~k? � x~q?)(~k? � x~q?)2 + x2m2 ; (4.33b)MQCD1;0;1 = MQCD1;elT 
A0B0T 
C0D0 � (�2g) � [T f ; T g℄ABT fCD � �~�?(~k? � ~q?)(~k? � ~q?)2 + x2m2 : (4.33c)

They build the basis for our further discussion. In the limitof massless quarks we recover the well-
known expressions which where firstly derived by Gunion and Bertsch (see Eqs. (12a-c) in [Gun82]
or Eqs. (D.9), (D.12) and (D.21) in Appendix D). Compared to Gyulassy, Levai and Vitev the
equations (4.33a)-(4.33c) generalize the terms (53)-(55)in [Gyu00a] besides constant factorisation
factors in the regionj~k?j � xj~q?j. Further, in [Gyu00a] the additional influence of the produc-
tion amplitudeMJ Eq. (6) has to be neglected using the limitt0 ! �1 for reasons of identifica-
tion. Also, the remaining common exponentials there can be neglected, since only phase differences
count.

4.2 Radiation Amplitude in QED

The expressions for the one-photon emission process in a single potential scattering event are ob-
tained if the relevant colour group is reduced toU(1), thus the colour factors are set to unity. Since
a photon triple-vertex is absent in QED, the total matrix element in first order equals the sum of the
pre- and post-emission diagrams, Figs. 4.2 and 4.3,MQED1;rad =MQED1;0;0 +MQED1;1;0 : (4.34)

This will be discussed under the conditions which we have already prepared. It is important to note
that in the limitx ! 0, which will be applied in the case of QCD, the approximate total matrix
elementMQED1;rad =MQED1;el � (�2g) ~�?~k?~k?2 + x2m2 � ~�?(~k? � x~q?)(~k? � x~q?)2 + x2m2! (4.35)
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vanishes due to the destructive interference of the pre- andpost-emission diagrams. Let us therefore
consider the case of smallx in some detail.

Note, that in the limitsm! 0 of light particles andj~k?j � xj~q?j it is even possible to carry out
the sum Eq. (4.35), whereby in doing so the often quoted standard expressionjMQED1;rad j2 ! jMQED1;el j2 � 4g2 � x2~q?2~k?2(~k? � x~q?)2 (4.36)

is obtained, in accordance with Eq. (6) in [Gun82], and thus corresponds to the Bethe-Heitler photon
cross section in QED in the limit of high energies (Eq. (19) [Kov03]).

10010�110�210�310�410�510�610�7

10�810�910�101014

1013101210111010109108107106105104103

10210110010�110�210�310�410�510�610�710�810�910�10

# �0 # �q# �


Photon emission angle� [rad℄
jRQED 1j2 =g2
[GeV�2 ℄

Figure 4.5: Radiation amplitudejRQED1 j2 of a light particle as a function of� for m < j~q?j,
i.e. �0 < �q. The chosen parameters aremd = 0:007 GeV, ~pi = (0; 0; 10) GeV,~pf? = (0:3; 0:2) GeV, � = 0:5 GeV, ! = 0:001 GeV, � = � = 2. The angle marks
lie at �
 = 1:4 � 10�5, �0 = 7 � 10�4 and�q = 3:6 � 10�2. The position of the peak is
determined by the non-vanishing particle mass, which further screens the infrared divergence in
them! 0 limit.

We consider the behaviour of this matrix element for different regions of the photon emission
angle�. Suppose this angle lies in a region wherek? � xq?, so one can expand the second term for
smallx~q? in Eq. (4.35),MQED1;rad =MQED1;0;0 + MQED1;1;0 ���x~q?=0 + ��(x~q?)MQED1;1;0 ����x~q?=0 � x~q?; (4.37)

and obtains the first expansion contribution as remainderMQED1;rad =MQED1;el � (�2g) � x~k?2 + x2m2  ~�?~q? + 2(~�?~k?)(~k?~q?)~k?2 + x2m2 ! : (4.38)

Hence, the squared and summed radiation amplitudejRQED1 j2 = 4g2 � x2(~k?2 + x2m2)2 "~q?2 + 2(~k?~q?)2(~k?2 + x2m2) + ~k?2(~k?~q?)2(~k?2 + x2m2)2# ; (4.39)
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implies a dependence proportional to1=(!2�4) for angles and parameters which satisfyj~k?j � xj~q?j; (4.40a)j~k?j � xm2: (4.40b)

For small emission angles,sin � � �, these conditions can be summarized by� � max(�0; �q); (4.41)

where we have defined the angles�q � j~q?jE ; (4.42a)�0 � mE : (4.42b)

Note, that�0 = 1=
, where
 = (1� v2)�1=2 for a particle with the velocityv, relates the so-called
dead cone angle�0, see Section 2.2, to the well-known relativistic factor
.
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Figure 4.6: Contributions of individual diagrams to the total result depicted in Fig. 4.5. In
the region� > �q, the pre- and post-emission contributions interfere destructively to yield the1=(!2�4) slope of the total radiation amplitude depicted in Fig. 4.5.For �
 < � < �q the pre-
emission term dominates causing the1=(!2�2) behaviour in the interval�0 < � < �q, while in
the interval�
 < � < �0 the amplitude (4.43) delivers the dependence� �2=!2. At � < �
 the
constant post-emission term dominates.

In Figs. 4.5 and 4.7 the numerically calculated exact radiation amplitudejRQED1 j2 is exhibited
for two kinematical situations. Fig. 4.5 refers to the case�0 < �q, while Fig. 4.7 shows the situation
for the reversed case,�q < �0. These situations are qualitatively different and therefore we classify
them as light and heavy particle cases, although by a suitable choice of the momentum transfer this
classification of course does not only depend on the quark mass. Both figures reveal the1=(!2�4)
shape at�� max(�0; �q).
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In the situation�0 < �q, for angles�0 < � < �q the dominant fraction inRQED1 is given by the
pre-emission process, i. e.MQED1;0;0 dominates. Hence, going to smaller angles, the previous1=(!2�4)
dependence turns into a1=(!2�2) dependence at� � �q, as can be seen in Fig. 4.5. Indeed, in this
regime, the radiation amplitude isjRQED1 j2 = 4g2 � ~k?2(~k?2 + x2m2)2 : (4.43)

The radiation amplitude becomes peaked at the angle�0. For angles below�0 the denominator
in Eq. (4.43) becomes constant and the radiation amplitude depicted in Fig. 4.5 turns in a�2=!2
behaviour. Obviously, the term (4.43) would tend to zero, but for angles even less,� � �
, where�

is introduced as�
 � m2j~q?jE ; (4.44)

the constant post-emission part now becomes relevant and yields an1=!2 dependence. This is illus-
trated by the crossing at�
 in Fig. 4.6, where the individual contributions are displayed. Note, that
the angles we have defined so far in Eqs. (4.42a), (4.42b) and (4.44) are not independent, since�
 = �20�q ) (�
 < �0 for �0 < �q;�
 > �0 for �0 > �q: (4.45)
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Figure 4.7: As Fig. 4.5, but for a heavier particle so thatm > j~q?j, i.e. �q < �0. The
parameters are as in Fig. 4.5, except thatm
 = 1:5 GeV. The angle marks lie at�0 = 0:15
and�q = 3:6 � 10�2.

It remains to comment on the reverse case with�q < �0, which is exhibited in Fig. 4.7. Here, the
expansion in Eq. (4.38) holds true for all angles above�0 and the1=(!2�4) behaviour is approached
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Figure 4.8: Contributions of individual diagrams to the total result inFig. 4.7. The destructive
interference of pre- and post-emission amplitudes occurs for � > �q, as in Fig. 4.6, but due to�q < �0 the radiation pattern is changed, as seen in comparing Figs.4.5 and 4.7.

in the whole range� > �0.3 For angles below�0, but still larger than�q, the radiation pattern is
implied by Eq. (4.39) which has a maximum for parallel or anti-parallel orientation of the transverse
photon momentum~k? and the perpendicular momentum transfer~q? from the potential. It can be
shown that for smaller angles a constant behaviour occurs due the always dominating post-emission
term form > j~q?j, as shown in Fig. 4.8. This again yields a resultjRQED1 j2 = 4g2 � ~q?2x2m4 � 1!2 for � < �q: (4.46)

In summary, the important feature of this discussion is thatthe QED radiation amplitude in light
and heavy projectile situations is qualitatively different depending on the ratio ofm and j~q?j. For
smallerm a maximum occurs, otherwise the pre- and post-emission diagrams interfere destructively
and no peak is exhibited. From an analytical point, the angle�q describes the validity range of
the expansion Eq. (4.37), so one can interpret�q as borderline between the destructive interference
regime above�q and the domain� < �q, where single diagrams dominate.

Comparing Figs. 4.5 and Figs. 4.7 reveals that the emission pattern of a heavy particle differs
from that of a light particle: The radiation of a heavy particle is suppressed at angles� < �q. This is
the famous ”dead cone” effect.

4.3 Radiation Amplitude in QCD

One difference between QED and QCD is the colour structure. We want to distinguish the effect
of colour factors from the influence of additional non-abelian diagrams. Therefore we begin the

3Strictly we should write� � �0 instead of� > �0 which explains that the numerical result in Fig. 4.7 does notshow
the exact predicted behaviour. For convenience we will not always emphasise throughout the discussions in this chapter
that estimates are valid for angles much smaller or greater than typical values.
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discussion with the abelian diagrams in QCD.

4.3.1 Abelian Diagrams

The abelian total matrix element, like in QED, is found as sumof the pre- and post-emission matrix
elementsMabel:QCD1;rad =MQCD1;0;0 +MQCD1;1;0 ; (4.47)

but the additional feature of colour factors essentially changes the analogue discussion from QED.
Figs. 4.9 and 4.11 exhibit the numerically evaluated results for two kinematical situations which we
are going to discuss. The approximate total matrix element now readsMabel:QCD1;rad = MQCD1;elT 
A0B0T 
C0D0 � (�2g) (T fT g)ABT fCD � ~�?~k?~k?2 + x2m2�(T gT f)ABT fCD � ~�?(~k? � x~q?)(~k? � x~q?)2 + x2m2! ; (4.48)

under the kinematical and gauge constraints which we have already supplied. As in the QED case
one may carry out the sum of matrix elements and the polarization sum of the squared total matrix
element form! 0 andj~k?j � xj~q?j to yieldjMabel:QCD1;rad j2 ! jMQCD1;el j2 � 4g2 � j[T f ; T g℄ABT fCDj2jT 
A0B0T 
C0D0j2 � 1~k?2 : (4.49)

Similarly to the QED argument we focus on different regions of the gluon emission angle� at fixed
gluon energy!. Angles greater thanj~q?j=E, i.e. �q < �, allow to reduce Eq. (4.48) toMabel:QCD1;rad = MQCD1;elT 
A0B0T 
C0D0 � (�2g) � ~�?~k?~k?2 + x2m2 �(T fT g)ABT fCD � (T gT f)ABT fCD� ; (4.50)

where the colour structure factors out and can even be summarized into a colour commutatorMabel:QCD1;rad = MQCD1;elT 
A0B0T 
C0D0 � (�2g) � ~�?~k?~k?2 + x2m2 � [T f ; T g℄ABT fCD: (4.51)

This leads to the occurrence of the common dead cone factor Eq. (2.1), which we have introduced
in Section 2.2 as stated by Dokshitzer and Kharzeev, multiplied by a colour constantjRabel:QCD1 j2 = 4g2 � ~k?2(~k?2 + x2m2)2 � CA; (4.52)

where the colour part, see also Eq. (A.16), arises fromj[T f ; T g℄ABT fCDj2 = C1;el � CA: (4.53)

In the limit of massless projectile particles,m ! 0, the radiation amplitude becomes proportional
to 1=~k?2, that is to say an infrared divergence emerges. An advantageof the calculation in the
massive case is that collinear divergences are ruled out, see section 3.4. It is important to note that
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Figure 4.9: Radiation amplitudejR1j2 of a light particle as a function of� for m < j~q?j. The
parameters and angle marks are as in Fig. 4.5. The abelian QCDcalculation agrees with the
results for the full set of diagrams. The occurrence of colours interestingly modifies the pattern
in Fig. 4.5. For� > �q, instead of the bending at�q, the slope remains constant but the curve is
shifted upwards by9=4.
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Figure 4.10: Contributions of individual diagrams to the total results in Fig. 4.9. The three-gluon
contribution is suppressed by orders of magnitude and so thefull QCD result does not deviate
from the abelian QCD radiation amplitude.
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the argument for the appearance of the dead cone peak, explained in Fig. 2.5, as in Eq. (4.52) is
restricted to a kinematical situation wherej~q?j < m. Otherwise, for�0 < �q, angles� > �q are
automatically out of the range around�0.

Firstly, we will proceed to focus on this case,m < j~q?j or �0 < �q, respectively, as exhibited in
Fig. 4.9. Here, the dead cone formula explains the1=(!2�2) decrease for� > �q, but its derivation
does not cover the region�0 < � < �q. For such angles the pre-emission diagram is dominant and
predicts an averaged and summed squared radiation amplitudejRabel:QCD1 j2 = 4g2 � ~k?2(~k?2 + x2m2)2 � CF ; (4.54)

and a dead cone formula is recovered. However, another colour factor is relevant because only one
projectile colour structure, namely the post-emission diagram, is taken into account, see Eq. (A.15),j(T fT g)ABT fCDj2 = j(T gT f)ABT fCDj2 = C1;el � CF : (4.55)

Note, that the expressions Eq. (4.52) for� > �q and Eq. (4.54) for� < �q, respectively, differ only in
the colour part, which explains the relative shift by a factor CF=CA = 4=9 from greater to smaller�
near�q in Fig. 4.9. The plot Fig. 4.10 demonstrates how the post-emission diagram again dominates
small angles below�
 and thus the radiation amplitudejRabel:QCD1 j2 = 4g2 � 1x2~q?2 � CF (4.56)

in Fig. 4.9 becomes constant, where we made use of�
 < �0 for �0 < �q as in Eq. (4.45).
We allude again that the squared individual amplitudes, compare Figs. 4.10 and 4.6, are very

similar in the QED and abelian QCD case, but due to different interference effects from the colour
factors, the total radiation in the region of� > �q differs significantly; at� < �q the radiation patterns
are similar.

Let us now consider the second case, whenj~q?j < m, i.e. �q < �0, which is illustrated in
Fig. 4.11. From Eq. (4.52) one finds a1=(!2�2) dependence for� > �0 and a�2=!2 slope for� < �0. This typical dead cone behaviour is replaced by a constant1=!2 behaviour in Fig. 4.11,jRabel:QCD1 j2 = 4g2 � ~q?2x2m4 � CF ; (4.57)

which follows from Eq. (4.48) for angles� < �q. This is, like in QED, due to the dominance of the
post-emission process as shown in Fig. 4.12.

Fig. 4.11 highlights the striking importance of the colour factors: The radiation pattern dif-
fers significantly from that exhibited in Fig. 4.7 for the same kinematics. In contrast, the individ-
ual squared amplitudes are rather similar, except small differences due to the colour factors, see
Figs. 4.12 and 4.8.

4.3.2 Non-Abelian Diagrams

We continue to discuss to which degree the three-gluon vertex diagram Fig. 4.4 contributes and how
it may change the behaviour of the abelian QCD single scattering radiation amplitude. In fact, the
results for the kinematical situations considered so far for abelian diagrams are not effected by the
additional three-gluon vertex diagram. The statement thatthis contribution is negligible is already
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Figure 4.11: Radiation amplitudejR1j2 of a heavy particle as a function of� for the casem > j~q?j. The parameters are as in Fig. 4.7, the additional typical angles are�
 = 0:63
and �3glu = 36. Again, there are no differences betweenjRabel:QCD1 j2 and jRQCD1 j2. The
pattern dramatically differs from the QED calculation, since a dead cone behaviour is developed.
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Figure 4.12: Contributions of individual diagrams to the total result inFig. 4.11. The differences
compared to Fig. 4.8 arise from colour factors.
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numerically verified in Figs. 4.10 and 4.12, and indeed the complete QCD radiation amplitude is
given by the abelian approach, which is fairly well confirmedby Figs. 4.9 and 4.11. We explore now
the relevant regions, where the non-abelian part modifies the gluon radiation characteristic. Within
the full QCD result, derived with the approximations given in Section 4.1,MQCD1;rad = MQCD1;elT 
A0B0T 
C0D0 � (�2g) (T fT g)ABT fCD � ~�?~k?~k?2 + x2m2�(T gT f)ABT fCD � ~�?(~k? � x~q?)(~k? � x~q?)2 + x2m2 � [T f ; T g℄ABT fCD � ~�?(~k? � ~q?)(~k? � ~q?)2 + x2m2! ; (4.58)

the extra term with respect to the abelian case, the three-gluon contribution, suggests to define an
additional typical angle�3glu � j~q?j! = j~q?jE E! = �q=x: (4.59)

This implies�3glu > �q; (4.60)

that is to say this new angle is always greater than the characteristic angle�q, which was introduced
to discuss the importance of the post-emission diagram.

Again the sum of matrix elements in connection with the polarization sum recovers the well-
known expressions (cf. Eqs. (15), (16) in [Gun82], also cf. Eqs. (17) in [Kov03] and (3.32) in
[Wie00b]),jMQCD1;rad j2 ! jMQCD1;el j2 � 4g2 � j[T f ; T g℄ABT fCDj2jT 
A0B0T 
C0D0j2 � ~q?2~k?2(~k? � ~q?)2 ; (4.61)

supposedm! 0 andj~k?j � xj~q?j.
As long asj~q?j > !; (4.62)

that is to say�3glu > 1, the gluon emission angle� is always smaller than�3glu. We will explain
analytically, when, under the weaker condition� < �3glu; (4.63)

the three-gluon vertex diagram might be omitted to obtain the complete QCD result. The inequality
Eq. (4.63) implies that~k? is small with respect to~q?, which is why the three gluon term becomes
constant,jRthreeGluon1;no 
olour j2 = 4g2 � ~q?2(~q?2 + x2m2)2 ; (4.64)

for fixed potential momentum transfer and gluon energy. Note, that due to the conditionj~q?j > !,
the effect ofk in the four-momentum conservation Eq. (4.9) is negligible.We will disregard the
colour parts in the following discussion.
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Figure 4.13: Radiation amplitudejR1j2 as a function of�, which reflects the changes for� >�3glu. The parameters are chosen for�3glu < 1, so that�3glu < � is possible,md = 0:007 GeV,~pi = (0; 0; 10) GeV, ~pf? = (0:03; 0:02) GeV, � = 0:05 GeV, ! = 1 GeV, � = � = 2.
The angle marks lie at�
 = 1:4 � 10�4, �0 = 7 � 10�4, �q = 3:6 � 10�3, �� = 5 � 10�3
and�3glu = 3:6 � 10�2. For � < �3glu the radiation pattern is due to the abelian diagrams
and has the same form as in Fig. 4.9 but the�2 or ��2 slopes are not visible since the window
around�0 is too small and for� < �
 the constant behaviour sets in. However a small shift in this
range is caused by the three-gluon term. A drastic difference appears for� > �3glu, refer also to
Figs. 4.14 and 4.17 - 4.22.

For the case�0 < �q, a comparison of Eq. (4.64) with the relevant abelian QCD results Eqs. (4.52)
in the regime� > �q, as well as (4.54) for�0 < � < �q yields~q?2(~q?2 + x2m2)2 < ~k?2(~k?2 + x2m2)2 ; (4.65)

for � > �0, due to1~q?2 < 1~k?2 ;� < �3glu:
Here,�3glu > �0, required for approximations in the three-gluon term,~q?2 > x2m2, is realized by
our assumptions.

Also, in the region of lower angles,�
 < � < �0, Eq. (4.54) shows due to1~q?2 < ~k?2x4m4 ; (4.66)

which is equivalent tox�
 < �;
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that the three-gluon vertex is less important for the total result.
For angles� < �
 the constant terms from post-emission Eq. (4.56) and three-gluon diagram

Eq. (4.64) obey1~q?2 < 1x2~q?2 ; (4.67)

sincex < 1 and�0 < �q. In the situation of Fig. 4.9 the typical three-gluon angle�3glu = 3:6 � 102
is much greater than 1, or in other words Eq. (4.62) is true, therefore from the above derivation we
understand why the abelian QCD approach is sufficient at least in this light particle situation. Also,
in Figs. 4.13 and 4.14 one finds the abelian dominated radiation amplitude for a region of angles� < �3glu. The deviations in Fig. 4.13 for angles� > �3glu are commented on in the next section.
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Figure 4.14: Contributions of individual diagrams to the total results in Fig. 4.13. The three-
gluon term suppression for� < �3glu is not as strong as in Fig. 4.10 and causes some minor shift
between the QCD and abelian QCD results. For� > �3glu clearly the specific non-abelian part
dominates and yields the increase of the radiation amplitude compared to the abelian outcome in
Fig. 4.13.

In the heavy particle situation,j~q?j < m, one has to distinguish the cases�0 < �3glu and vice
versa. However, notice that a consideration of the radiation pattern at� � �0 in the second case is
not realizable in the very soft gluon limit Eq. (4.62), since1 < �3glu < �0 contradicts the preconditionm < E. In the first situation, the previous approximation in Eq. (4.64) remains valid. Therefore, the
explanations from the light particle paragraph can be repeated for� > �q. If we look at� < �q, here
Eq. (4.57) leads to1~q?2 < ~q?2x2m4 ; (4.68)

for �
 < �3glu and the non-abelian part becomes negligible, too, under this additional restriction.
This is exactly the situation in Figs. 4.11 and 4.12, where our estimates explain, why the abelian and
complete QCD calculations are in agreement to very good accuracy.
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Otherwise, for�
 > �3glu, we again predict a constant behaviour of the radiation amplitude but
at the total valuejRQCD1 j2 = 4g2 � 1~q?2 � CA; (4.69)

instead of Eq. (4.57).
On the other side, for�3glu < �0, which belongs to the heavy particle case since�q < �3glu < �0,

Eq. (4.60), the three-gluon term can be simplified,jRthreeGluon1;no 
olour j2 = 4g2 � ~q?2x4m4 ; (4.70)

and compared to the corresponding radiation amplitudes from abelian QCD. Note, that�3glu < �0
implies the angular ordering�q < �3glu < �0 < �
, and that, furthermore, the chosen parameters
should allow for�3glu < 1. The case� > �0 is excluded because we investigate� < �3glu. In the
angular interval�q < � < �3glu Eqs. (4.70) and (4.52) give~q?2x4m4 > ~k?2x4m4 ; (4.71)

since�3glu > �. This indicates that the radiation amplitude becomes constantjRQCD1 j2 = 4g2 � ~q?2x4m4 � CA; (4.72)

due to the three-gluon contribution. For� < �q, by comparison with Eq. (4.57), we obtain~q?2x4m4 > ~q?2x2m4 ; (4.73)

sincex < 1, which causes the previous constant behaviour Eq. (4.72). This pattern of the radiation
amplitude is illustrated in Fig. 4.15 in the angular range� < �3glu, where our discussion is valid.
The opposite interval� > �3glu is explored in the next section.

Hence, we have demonstrated that the abelian QCD approach suffices to describe the radiation
amplitude in the light particle situationm < j~q?j, where�
 < �0 < �q < �3glu, and for the selected
heavy particle case�q < �0 < �
 < �3glu, as long as the condition Eq. (4.63) is satisfied, which
especially holds true in the very soft gluon situation Eq. (4.62). It was found, that in some heavy
particle situationsm > j~q?j, namely for�q < �3glu < �0 < �
 and in the range of� < �q also
for �q < �0 < �3glu < �
, the non-abelian diagram is the origin of a constant radiation amplitude
independent of�.

If we want to extent our discussion to the region� > �3glu, it will be necessary to choose param-
eters which allow for�3glu < 1. However, by the definition Eq. (4.9), the influence ofk on q cannot
be neglected anymore for fixed initial and final particle momenta. In other words, the momentum
transfer in the kinematical situation for the radiation process begins to differ significantly from the
corresponding value in the elastic scattering, which serves as reference system for the definition of
the radiation amplitude. The factorisation, which was applied in the derivation of the matrix ele-
ments Eqs. (4.33a), (4.33b) and (4.33c), becomes insufficient. Therefore, we refer the consideration
of this problematic� range, which will turn out as mainly non-abelian dominated region, to the next
section.
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Figure 4.15: Radiation amplitudejRabel:QCD1 j2 of a heavy particle as a function of� for the casem > j~q?j. The parameters are as in Fig. 4.13 but with a massm
 = 1:5 GeV instead. The
characteristic angles are�q = 3:6 � 10�3, �� = 5 � 10�3, �3glu = 3:6 � 10�2, �0 = 0:15
and�
 = 6:3. The dead cone peak in the abelian result is shifted due to thereduction effect
given byfkin defined in Eq. (4.75).
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Figure 4.16: Contributions of individual diagrams to the total results in Fig. 4.15. Between�0
andx�
 = 0:63 the abelian diagrams are expected to be larger than the three-gluon contribu-
tion. The neglect of colour factors, which differ for abelian and non-abelian contributions byCA=CF = 94 shifts this region.
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4.4 Elastic Factorisation and Non-Abelian Contributions

We have already pointed out, how close the investigation of the radiation amplitude for angles� > �3glu is connected to the problem of the matrix element factorisation. As we commented on
previously, if the very soft gluon case Eq. (4.62) is abandoned, which is essential to leave the pre-
dominantly abelian QCD situation, the gluon four-momentumk cannot be neglected with respect to
the momentum transferq � qrad = pf + k � pi = q0el + k; (4.74a)

where the momentum transferq0el is given byq0el = pf jrad � pi; (4.74b)

and differs kinematically from the pure elastic momentum transferqel = pf jel � pi: (4.74c)

Here, the momentum of the final quark state is determined by the on-shell condition with fixed
transverse final momentum~pf? and additionally, in the radiative process, by the given gluon energy!. It is therefore not allowed to factor out the denominator(~qrad2 + �2), which arises from the
potential ansatz. Moreover one has to add a factorfkin � ~qel2 + �2~qrad2 + �2 (4.75)

to the expressions Eqs. (4.33a-4.33c) in order to correct this kinematical factorisation problem. Nev-
ertheless, as long as� > ! no effect on the radiation amplitude appears, but otherwisethis termfkin,
Eq. (4.75), alone is a source for an additional1=(!4�4) dependence of the radiation amplitude, since~qrad2 = (~qel + ~k)2? + q2z � ~k?2 + ~k?44E2x2 = !2 sin2 ��1 + sin2 �4 
os2(�=2)� � !2�2 (4.76)

for small� but with�3glu < �.
Furthermore, we have to keep in mind the� dependence of~qrad for fixed pi andpf in the ap-

proximate matrix element expressions itself. In the definition of characteristic angles, Eqs. (4.42a),
(4.44) and (4.59),j~q?j is to be understood asj~qel?j.

After these preliminary remarks we will turn the attention to the radiation amplitude for the case� > �3glu. With this assumption, the three-gluon termjRthreeGluon1 j2 = 4g2 � ~qel?2(~qel?2 + x2m2)2 � CA; (4.77)

becomes constant and explains in combination with the kinematical correction factorfkin the1=(!4�4)
dependence of the three-gluon contribution in Fig. 4.14. Ofcourse, in the range� > �3glu, also the
predictions for abelian QCD situations and contributions are modified by this factorfkin and have to
be multiplied by1=(!4�4).

It is of interest, where the non-abelian term Eq. (4.77) changes the abelian outcome besides the
factorfkin. Therefore, we consider the two distinct situations�0 < �3glu and�3glu < �0 in order to
simplify the expression Eq. (4.77).
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Firstly, for �0 < �3glu < �, the term arising from the three-gluon contribution allowsfor a
comparison with the abelian behaviour of the radiation amplitude~qel?2(~qel?2 + x2m2)2 � 1~qel?2 > 1~k?2 ; (4.78)

due to� > �3glu. Thus,� > �3glu > �0 is a non-abelian region, where the non-corrected matrix
elements predict a constant radiation amplitude with respect to the gluon emission angle. One has to
keep in mind, that the factorfkin finally yields the behaviour proportional to1=(!4�4) as exhibited in
Fig. 4.13 for� > �3glu. The expected behaviour of the complete QCD result, as well as the predicted
slope of1=�6 for the abelian result, which is the product of the original1=�2 behaviour and the
correction dependence fromfkin, are only realized approximately. The deviations of our predictions
from the correct outcome are depicted in Figs. 4.17 and 4.18 for the abelian and non-abelian case,
respectively.
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Figure 4.17: Comparison of the radiation amplitude from Fig. 4.13 in the abelian QCD approach
to the corresponding prediction from Eq. (4.48) multipliedby the factor(1 � x), which was
neglected there. For� > �3glu, the correctionfkin decreases the radiation pattern with respect to
the prediction, see also Figs. 4.19 and 4.20. Thus the original 1=�2 slope becomes suppressed byfkin � 1=�4 and shows an approximate1=�6 behaviour.

In order to trace back these modifications, we present in Figs. 4.19, 4.20 and 4.22 a comparison
of the correct result to the predictions for the individual diagrams, that is to say we plot Eqs. (4.33a)
- (4.33c). Clearly, these predicted curves confirm our expectations derived above, but deviate for
angles� > max(�q; ��). As third line in this figures, the so-called ”corrected prediction”, the old
prediction is multiplied by the factors(1� x), this corresponds to the forms Eqs. (4.20), (4.29) and
(4.32), and multiplied byfkin. The correction of this latter factorfkin dramatically suppresses the
radiation pattern with respect to the old prediction. Even for small angles one observes a systematic
shift of the standard prediction in all figures due to the missing factor(1 � x)2, which amounts to0:92 in this situation. The corrected prediction agrees with thenumerical result fairly well for the
abelian diagrams, for the three-gluon vertex, Fig. 4.22, however a difference for large angles remains.
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Figure 4.18: Comparison of the radiation amplitude from Fig. 4.13 including the complete set
of QCD diagrams to the corresponding prediction from Eq. (4.58) multiplied by(1 � x). For� � 0:5 the correctionfkin � 1=�4 is not the reason for the depicted minimum. This deviation
can be ascribed to the three-gluon contribution, see Figs. 4.22 and 4.23.

Whereas the radiation amplitude increases towards� � 1, the prediction is decreasing. This effect is
even better illustrated in Figs. 4.21 and 4.23. Figs. 4.21 (a) and (b) show that our corrections so far
suffice to describe the result for arbitrary emission angles. Contrary, for the three-gluon diagram we
have to return to the derivation in Section 4.1. Indeed, we made the important assumption! � xE
when we developed Eqs. (4.30b) - (4.30d). A precise treatment using the definition ofx in Eq. (4.15)
together with the helpful notationx0 � !E = x
os2(�=2) (4.79)

at this stage yieldsIa = 2!x ~�?(2~k? � x~q?) = 2E � ~�? 2~k?
os2(�=2) � x0~q?! (4.80a)

and I
 = �2(2E � !)~�?~q? = �2E(2� x0)~�?~q? (4.80b)

to giveIa + Ib + I
 = 2E � ~�? 2~k?
os2(�=2) � x0~q? � (2� x0)~q?!= 2E � 2~�? ~k?
os2(�=2) � ~q?! : (4.80c)
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It was already pointed out, that the termIb, Eq. (4.30c), is suppressed. Thus, the expression that we
have plotted in Figs. 4.22 and 4.23 as ”three-gluon corrected prediction” readsMQCD1;0;1 = fkin � MQCD1;elT 
A0B0T 
C0D0 � (�2g)(1� x) � [T f ; T g℄ABT fCD � �~�?(~k?= 
os2(�=2)� ~q?)(~k? � ~q?)2 + x2m2 (4.81)

and can explain the peak structure in the contribution to theradiation amplitude.
Secondly, in the case�3glu < �0 we have to divide the comparison of the estimated three-gluon

part ~qel?2(~qel?2 + x2m2)2 � ~qel?2x4m4 : (4.82)

On the one side, where�q < �3glu < � < �0, the abelian result is dominant, since~k?2x4m4 > ~qel?2x4m4 (4.83)

is equivalent to� > �3glu. Otherwise, the inequality changes for the angular constellation �q <�3glu < �0 < �1~k?2 ? ~qel?2x4m4 (4.84)

depending onx�
 ? �. That is to say, ifx�
 > � no non-abelian modification takes place. Contrary,
for x�
 < �, this argument predicts a behaviour of the radiation pattern similar to1=!4 multiplied
by fkin, thus an all-over1=(!8�4) proportionality. In general this can be seen in Figs. 4.15 and
4.16. However the modification due tofkin shadows this predictions, furthermore the dominance
is only small and so interference effects give rise to the complete modification of the total result in
Fig. 4.15. Figs. 4.24 - 4.28 show that the modifications whichwe have discussed in the light quark
case, Figs. 4.17 - 4.22, also apply for the heavy quark situation.

Of course the derivation of the matrix element expressions Eqs. (4.20), (4.29) and (4.32) becomes
insufficient for large values of!. Therefore at this stage we will not continue with an analytical
interpretation of these numerical results.
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Figure 4.19: Contribution of the pre-emission diagram to the radiation amplitude in Fig. 4.13
as a function of� compared to the prediction Eq. (4.33a) and the improved prediction which
equals the expression Eq. (4.20) multiplied byfkin. Taking the factors(1�x) andfkin obviously
suffices to describe this contribution. The general patternwas discussed in the abelian section.
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Figure 4.20: Contribution of the post-emission diagram to the radiationamplitude in Fig. 4.13 as
a function of� compared to the prediction Eq. (4.33b) and the improved prediction which equals
the expression Eq. (4.29) multiplied byfkin. The numerical result can be explained using(1�x)
andfkin corrections in addition to the ordinary predictions from the paragraph on abelian QCD.
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(a) Pre-projectile.
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(b) Post-projectile.

Figure 4.21: Contributions of the pre-emission (a) and post-emission diagram (b) to the radiation
amplitude in Fig. 4.13 as a function of�. The figures are the same as Figs. 4.19 and 4.20 but show
the behaviour for the full range0 � � � 2� and demonstrate the importance of the correction
factors outside the forward emission cone. A peak at� = � is due to the denominators of the
matrix element. Note, that for�! � also singularities in the polarization states in theA+-gauge
arise, see Appendix C. Singularities are not drawn to infinity because the numerical calculation
and the drawing program are restricted to finite values.
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Figure 4.22: Contribution of the three-gluon diagram to the radiation amplitude in Fig. 4.13 as
a function of� compared to the prediction Eq. (4.33c) and the improved prediction which equals
the expression Eq. (4.32) multiplied byfkin. As in Figs. 4.19 and 4.20 the correction works well
but here a minimum at� � 0:5 appears whereby such a pattern is not in accordance with any
correction factors so far. Moreover, Eq. (4.81) instead of (4.32) is required to reproduce at least
the rough pattern, see Fig. 4.23.
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Figure 4.23: Contribution of the three-gluon diagram to the radiation amplitude in Fig. 4.13 as
a function of�. This figure is the same as in Fig. 4.22 but shown for angles0 � � � 2�. The
peaks for�! � are due the denominators of the relevant expressions.
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Figure 4.24: Comparison of the radiation amplitude from Fig. 4.15 in the abelian QCD approach
to the corresponding prediction from Eq. (4.48).
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Figure 4.25: Comparison of the radiation amplitude from Fig. 4.15 including the complete set
of QCD diagrams to the corresponding prediction from Eq. (4.58).
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Figure 4.26: Contribution of the pre-emission diagram to the radiation amplitude in Fig. 4.15 as
a function of� compared to the prediction Eq. (4.33a) and the improved prediction which equals
the expression Eq. (4.20) multiplied byfkin.
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Figure 4.27: Contribution of the post-emission diagram to the radiationamplitude in Fig. 4.15 as
a function of� compared to the prediction Eq. (4.33b) and the improved prediction which equals
the expression Eq. (4.29) multiplied byfkin.
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Figure 4.28: Contribution of the three-gluon diagram to the radiation amplitude in Fig. 4.15 as
a function of� compared to the prediction Eq. (4.33c) and the improved prediction which equals
the expression Eq. (4.32) multiplied byfkin.

4.5 Potential Model versus Quark-Quark Scattering

In the limit of soft radiation! ! 0 the physical details of the scattering processes are not relevant.
We confirm this while we contrast the scattering of an incident particle in the potential model with
an analogue scattering of the same projectile on a target quark at rest.

The results of a scalar QCD calculation are exhibited in Figs. 4.29 and 4.30. Four distinct sit-
uations are selected, where we consider the different combinations of heavy and light quarks in
collisions. In Fig. 4.29 we choose a light projectile particle and contrast the cases of light and heavy
targets. In general both pictures show no differences and have some common features which are
worth noting. The behaviour of the potential calculation issimilar to Fig. 4.9 where due to modified
parameters of the momentum transfer the angle�q is shifted. The appearance of the dead cone fac-
tor in the potential model has been discussed in the last sections. We have studied that the shift of
the radiation amplitude is caused by the fact that only the pre-emission contribution dominates the
behaviour at the dead cone peak�0 and thus gives a colour factorCF instead ofCA.

For comparison we also plot the prediction for the radiationamplitude from the dead factorjR1j2GenDokKhar = 4g2CA ~k?2(~k?2 + x2m2)2 ; (4.85)

which comes from the combination of the pre and the post-emission diagrams, this yields a colour
factorCA, in a more generalized version than Eq. (2.1). This generalization is not restricted to small
angles, a detailed explanation can be found in Appendix G. The deviation between the dead cone
factor and the potential and quark-quark calculations in Fig. 4.29 equals the ratioCA=CF = 94 .

As technical detail we mention that contrary to our other calculations for radiation amplitudes
in this case we have used a slightly different way of normalisation. Since we work with fixed
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gluon momentum and input initial conditions, the remainingmomenta are determined by the given
transverse momentum transfer. Usually we calculate the elastic part under the assumption! = 0,
this time, for Figs. 4.29-4.30, we apply the inelastic set ofmomenta to evaluate the elastic part. Note
that this modification, the correction of the elastic part byinelastic kinematical results, becomes
important when we abandon the soft radiation limit but does not effect the result for situations with! = 0:001 GeV andpi;z = 10 GeV as being displayed in this part.

For smaller angles, as� < �
 in Fig. 4.9, the dominance of the constant post-emission contribu-
tion was the reason for the constant radiation amplitude. The dead cone factor does of course not
apply in this regime.

The new aspect of Fig. 4.29 is that the radiation amplitude calculated in a quark-quark collision
coincides well with the potential model result as long as theangles� are small. Thus for light
projectiles, especially those which are not considerably heavier than the targets, the potential model
indeed recovers the radiation amplitude obtained in a quark-quark scattering calculation. However
for greater� the radiation amplitudes from quark-quark scattering and potential model deviate.

Analogue findings for the test of the validity of the potential model can be seen in Fig. 4.30(b),
where the scattering of a heavy quark on a heavy target is exhibited. As a first estimate in Fig. 4.30(a)
we show that for light targets the potential model might be challenged. The assumption, that no
energy would be transferred to the target, of course will be violated in such an arrangement of
colliding masses.

This is intended to possibly point to the need of an improved model to describe the scattering
processes in a deconfined medium in the presence of heavy projectile quarks. Strongly connected to
this problem the composition of the colour-neutral matter had to be taken into account.
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(a) Light projectile on light target.
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(b) Light projectile on heavy target.

Figure 4.29: The radiation amplitudejR1j2 as a function of the emission angle� is compared for
the potential model, the quark-quark scattering on a light target and the general dead cone factor
Eq. (4.85). The chosen parameters aremd = 0:007 GeV (light quark),m
 = 1:5 GeV
(heavy quark),~pi = (0; 0; 10) GeV, ~pi;Target = (0; 0; 0), ~q? = (0; 0:01) GeV, � = 0,! = 0:001 GeV, � = 3� = 2.
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(a) Heavy projectile on light target.
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(b) Heavy projectile on heavy target.

Figure 4.30: The radiation amplitudejR1j2 as a function of the emission angle� is compared
for the potential model, the quark-quark scattering on a heavy target and the general dead cone
factor Eq. (4.85). The parameters are as in Fig. 4.29.
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4.6 Summary

To summarize our findings we note that the dead cone effect consists of a suppression of radiation
in forward direction by orders of magnitude. One can therefore expect that the radiative energy loss
of heavy particles is substantially decreased in comparison with light particles. We have demon-
strated the importance of cancellations and interference effects between contributions from different
diagrams, as well as the qualitative differences between QCD and QED, that is to say charged and
non-charged gauge bosons.

In Section 4.4 the question of larger! was dealt with. For completeness it is worth noting that the
numerical result for the “normalization“, the summed and averaged squared elastic matrix elementjM j2el is always evaluated in the kinematical situation fixed by thesame set of parameters as are used
to obtain the inelastic kinematics. The reader should be aware that this is a problem for larger values
of ! since it means basically to compare kinematically very distinct situations. In this case one may
even question the concept of the radiation amplitude. This was already indicated in the introduction
where we interpreted the radiation amplitude as conditional probability for gluon emission.

In general the inclusion of the screening mass� suppresses the spectrum for gluon energies! > �. The validity of the potential model was confirmed for forward emission of radiation in the
limit of small projectile masses, but estimates for heavy projectiles seem to suggest that the potential
model might be reconceived.





5 Double Scattering with One-Gluon
Emission

In this part we discuss the problem of double scattering in a numerical approach. A complete
calculation of all relevant diagrams unfortunately failedso far. Therefore we explain the numerical
problems which arise and present some key ideas. It was already shown that for multiple scatter-
ing a QCD analogue of the LPM effect exists [Gyu94, Wan95]. There only abelian diagrams were
considered analytically. It turns out that especially the non-abelian diagrams might become numer-
ically complicated for the parameter range that we have already considered in the previous chapter
on single scattering.

5.1 Elastic Scattering

pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;F
Figure 5.1: Elastic double scattering in the potential model.

The scalar matrix element for double elastic scattering in the potential model (the expression
corresponds to equation (A4) in [Wan95]) reads as followsM (2)el = (T aT b)ABT aCDT bEF � Z d3l(2�)3 (�ig)(l + pf)� � (�ig)g0� e�i~q2~x2~q22 + �2 � il2 �m2 + i�� (�ig)(l + pi)� � (�ig)g0� e�i~q1~x1~q12 + �2 : (5.1)

Here,l is the intermediate momentum of the incident particle in between the two scattering centres.
Especially,l0 = E = pi0 = pf0, since energy transfer is not possible in this model. Since we
consider the non-tagged case where the recoil momenta of thetargets are not measured, the unknown
momentuml has to be integrated over.1

Momentum conservation at the vertices relates the internalmomentuml and the momentum
transfers of the scattering centres to yieldq1 = l � pi; (5.2a)

1Contrary in the tagged case the calculations are straightforward since all momenta are known.
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The~l-independent terms can be factored out and we obtain the expressionM (2)el = (T aT b)ABT aCDT bEF � ig4(2E)2 � e~pi~x1�~pf~x2 Z d3l(2�)3 ei~l(~x2�~x1)(l2 �m2 + i�)(~q12 + �2)(~q22 + �2)| {z }Iel
(5.3)

where we will discuss only the integralIel.
5.1.1 Integration in Cylindrical Coordinates

In [Wan95] one of these three integrations is performed analytically, that is to say thelz integration is
carried out with the technique of residues. We present the results in a more general way and discuss
the approximations which are used in [Wan95]. In order to carry out this integration we rewrite the
denominator into a product of linear factors oflz,Iel = Z d2l?(2�)2 Z dlz2� �ei~l(~x2�~x1)(lz � lz1+)(lz � lz1�)(lz � lz2+)(lz � lz2�)(lz � lz3+)(lz � lz3�) ;

(5.4)= � Z d2l?(2�)2 Z dlz2� ei~l(~x2�~x1)Q3k=1(lz � lzk+)(lz � lzk�) : (5.5)

Thus, the relevant residues can be found directly. The quantities lzj� indicate the zeros of the de-
nominator with respect tolz, where the index� characterizes the sign of the imaginary partlz1� = �q~pi2 � l2? � i�0; (5.6a)lz2� = piz � iq(~l? � ~pi?)2 + �2; (5.6b)lz3� = pfz � iq(~l? � ~pf?)2 + �2: (5.6c)

We define the spatial distance vector of the potentials~d = ~x2 � ~x1 and consider the case when the
componentdz is positive. Then, the integration can be carried out in the complex plane where the
path is closed in the upper half. Hence, thelz-integral follows from the sum of the residues of the
integrand with positive imaginary part asIel = � Z d2l?(2�)2ei~l? ~d? � i 3Xj=1 " eidzlz � (lz � lzj+)Q3k=1(lz � lzk+)(lz � lzk�)#lz=lzj+ : (5.7)

Additional in this approach, we require at least a small overall scattering taking place since the
case~pi = ~pf leads to degenerated residues and the calculation had to be modified. Now, it was
argued by Wang, Gyulassy and Plümer [Wan95] that the contributions from Eqs. (5.6b) and (5.6c)
are suppressed by the factore��dz given the assumptiondz � 1=�, that means if the distance of
the scattering centres is much greater than the screening length of the potential. This integral can
be carried out and the investigation of different residues seems to confirm the latter assumption of
[Wan95]. The integration was dealt with using various summation methods, e.g. [Yak89]. However
the calculation of this integral requires to cut out the singularity atl2? = ~pi2, thus in order to estimate
the error of this integration we suggest an approach in spherical-like coordinates as explained below.
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5.1.2 Integration in Spherical-like Coordinates

The aim of this co-ordinate choice is to avoid the previous co-ordinate singularity, therefore one
wants to integrate over the modulus of~l where only angular integrations would remain. The inte-
gration overj~l j would run from zero to infinity but should be extended to the interval [�1;+1℄
to make the residual calculus applicable. This is done by a slight modification of standard spherical
coordinates as follows. The region of space which usually isdescribed by�2 < � < � is now in-
cluded by negative values of the radius, this quantity shallbe denotedl.2 This yields the co-ordinate
definitionlx = l 
os� sin �; (5.8)ly = l sin� sin �; (5.9)lz = l 
os �; (5.10)

with �1 < l < +1, 0 � � � 2� and0 � � � �2 .
This coordinates will be used to evaluate the integralIel defined in Eq. (5.3) in the same manner

as in Section 5.1.1. The integration overl leads to the solutionIel = � 1(2�)2 Z 2�0 d� Z �20 d� sin � 3Xj=1 " ei~d~el�l � (l � lj+) � l2Q3k=1(l � lk+)(l � lk�)#l=lj+ ; (5.11)

wherel1� = �p� i�0; (5.12a)l2� = p(~ei~el)� ip�2 + p2[1� (~ei~el)2℄; (5.12b)l3� = p(~ef~el)� iq�2 + p2[1� (~ef~el)2℄: (5.12c)

Here the explicit relations in the elastic kinematics were already applied. Furthermore we have
introduced the abbreviationsp = j~pij = j~pf j and the unit vectors~el = ~l=l, ~ei = ~pi=j~pij and~ef =~pf=j~pf j.

In this expressions no singularity occurs, assuming again~pi 6= ~pf . The infinite integration we had
to deal with in Section 5.1.1 is transformed into an angular integration with finite boundaries. We
could show that these two approaches yield identical results whereby the precision of this compari-
son was restricted by the choice of cutting out the singularity for the cylindrical integration. Having
developed this approach we apply the same procedure to the inelastic diagrams.

5.2 Inelastic Scattering

The diagrams for inelastic double scattering with one gluonbeing emitted are displayed in Figs. 5.2
and 5.3.

The notationMn;m;l follows the classification of the time-ordered diagrams introduced by Gyu-
lassy, Levai and Vitev [Gyu00a]. The labeln counts the number of scatterings,0 � m � n denotes
that the gluon is emitted after them-th scattering, especiallym = 0 means the emission takes place
before the first scattering, andl labels the different possible final state interaction patterns after the

2This should not be confused withl as four-momentum, since we deal only with three-dimensional integrations.
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pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;Fk; g
(a) M2;0;0

pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;Fk; g
(b) M2;1;0

pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;Fk; g
(c) M2;2;0

Figure 5.2: Abelian diagrams of double scattering with one gluon emission in the potential
model.

pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;Fk; g
(a) M2;0;1

pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;Fk; g
(b) M2;0;3

pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;Fk; g
(c) M2;0;2

pi;Apf ;B~q1; ~x1;C;D~q2; ~x2;E;Fk; g
(d) M2;1;1

Figure 5.3: Non-abelian diagrams of double scattering with one gluon emission in the potential
model.
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gluon is emitted. This numberl can even be organized to represent the interaction pattern in a binary
array ~� = (�1 = 0; : : : ; �m = 0; �m+1; : : : ; �n); (5.13)

where all scattering variables�i up to the emission process are zero,�i = 0 for 1 � i � m. Form < i the binary numbers�i are1 if the gluon rescatters at centrei otherwise0 for a scattering of

the quark. Therefore the labell = �Xnj=1 �j2j� =2m+1 numbers the diagrams for fixedn andl in

a unique manner.
It might be instructive to consider for exampleM2;1;1, Fig. 5.3(d). The number of scatterings

is n = 2, the emission takes place after the first scattering centre is passed,m = 1, the allocated
binary array~� = (0; 1) givesl = 1. In contrastM2;1;0, Fig. 5.2(b), without gluon rescattering gives~� = (0; 0) andl = 0.

We can now also count the total number of possible diagrams with one gluon emission for a given
number of scattering centresn. For fixedm there existlmax+1 arrangements, withlmax realized for�0;:::;m = 0 and�m+1;:::;n = 1 one findslmax = 12m+1 nXj=m+1 2j = 2n�m � 1 (5.14)

and nXm=0(lmax + 1) = nXm=0 2n�m = 2n+1 � 1 (5.15)

as the combinatorial number of all diagrams where one gluon is being emitted andn scatterings
occur. Note, this information can be derived directly from the binary array, since the number of
possible arrangements of the two ”states”0 and1 in a field of fixed lengthn corresponds to the
number of possible diagrams. The number2n of these combinations has to be doubled to account
for emissions prior to the first scattering, one may assume animaginary zeroth centre with�0, and
the total number must be reduced by1 since the purely elastic diagram, all�0;:::;n = 0, has to be
excluded. Again we find that the number of relevant radiationdiagrams grows with the number of
scatteringsn as2n+1�1. In the casen = 1 these are the 3 diagrams Figs. 4.2, 4.3 and 4.4, forn = 2
there are 7 diagrams, Figs. 5.2 and 5.3, forn = 3 one already has to compute 15 diagrams.

In order to evaluate the diagrams in Figs. 5.2 and 5.3 again integrals over the unknown internal
momentum have to be performed, where we have applied the sameapproach which was introduced
in the section on the elastic case above. The calculation of all the relevant residues is a straightfor-
ward even though extensive task. Comparisons of both integration methods, which are the cylindrical
and the spherical-like coordinates, and different summation schemes reveal considerable problems
for the diagramsM2;0;2 (Fig. 5.3(c)),M2;0;3 (Fig. 5.3(b)) andM2;1;0 (Fig. 5.2(b)). This makes com-
plete numerical calculations for the moment being impossible, even a pure abelian discussion is not
possible due to the complications with integrations inM2;1;0. Two main reasons can account for the
deviations between the different integration approaches.At first the cutting of the integration inter-
val to avoid singularities becomes impossible in some cases. This is to say there are singularities
which fall in the range where the integrand has its dominant contributions. Secondly, the numerical
subtraction of large numbers might be a further restrictionto the increase of precision. Therefore the
numerical analysis of these diagrams and the integration ingeneral should be under deeper investi-
gation. The application of additional program packages forthe integration of singular functions, e.g.
[Wed00], could be useful.
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A full understanding of these integrations is especially necessary to check assumptions that
where made in [Wan95] to derive the LPM analogue in QCD. We emphasize that in their work
the actual full integration is avoided in the way that one factorises out the radiation part of the in-
tegrand after thelz integration assuming it would not depend on~l?. A continuation of the double
scattering calculations could provide a valuable check of this approximation.



6 Summary and Outlook

In the present thesis we have investigated how the mass parameter of an on-shell quark passing
a deconfined medium influences its radiative energy loss probability.

The importance of the basic single scattering diagrams withone gluon emission is emphasized
by various aspects. Among of them data from RHIC, which suggest thin plasmas, imply that only
a few scatterings are taking place. The existence of an analogue to the LPM effect in QCD, which
would reduce the effective number of scatterings further, is another indication of the significance of
these diagrams. Moreover the fast convergence of the opacity expansion, where the first order in the
GLV formalism describes the radiative energy loss considerably well in this approach, suggests the
relevance of the single scattering processes. Therefore a very detailed discussion of these diagrams
was done in the potential model by numerical means.

We have shown and discussed the exciting features of the radiation amplitude in QED and QCD
and disentangled interference effects and especially the influence of the non-abelian diagram in
QCD.

The dead cone suppression factor was shown to emerge in specific angular regions, however the
radiation amplitude deviates from this prediction for either small angles, due to the post-emission
process, or in case of higher gluon energies!. For the latter possibility the three-gluon diagram,
including the three-gluon vertex, becomes responsible. Insummary we have confirmed the suppres-
sion effect due to the heavy quark mass, but the dead cone factor is not the correct modification to
light quark scenarios in all kinematical situations.

We have explicitly shown that not the mass parameter of the projectile itself but the ratio to the
transverse momentum transfer is relevant to categorise light and heavy mass situations. As stated
above for large gluon energies, that is to say greater than the transverse momentum transfer, the
non-abelian effects become important.

In literature various approaches assume soft radiation! ! 0, small momentum transfers~q ! 0
and light particlesm ! 0. With this investigation we give a detailed insight into theinterplay of
these assumptions in the potential model approach. Besidesthis we have confirmed that theA+-
gauge is appropriate to neglect radiation contributions from target lines. Also comparisons of scalar
and spinor calculations did not reveal significant differences.

We have indicated that the potential model might be challenged if heavy projectile quarks are
present. In addition, it was emphasized that for considerably large values of the gluon energy one is
confronted with factorisation problems with respect to theelastic scattering part in matrix elements.
In such situations the missing unique interpretation of theradiation amplitude questions whether it
is sufficient to consider ratios of inelastic and elastic cross sections.

One should be aware that the integration of the radiation pattern in order to obtain the total energy
loss might smooth out the distinct scenarios we have elucidated. The problem of integration using
numerical results for the radiation amplitude can be a challenging subject of further research.

The evaluation of all double scattering diagrams to satisfactory precision, which failed so far,
should be analysed further in order to discuss the QCD analogue of the LPM effect numerically. It is
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worth noting that these situations already require considerably more calculation power and for fur-
ther generality, e.g. higher scattering processes or integrations to obtain the net energy loss, maybe
even with spinors instead of scalar particles, analytical simplifications seem to be unavoidable.

Various other aspects could be implemented, at first the TM effect via a finite gluon mass or
the interference with the production amplitude of the quarkto make contact to the GLV formalism.
Having done an integration to yield an energy loss one could consider further contributions of higher
orders, as e.g. diagrams with two gluons being emitted . The enlarged variety of parameters might
dramatically enlarge the number of kinematical regions which had to be considered analytically. The
level of tree diagrams considered here does of course not take into account the dynamical effect of
QCD. Therefore the inclusion of radiative corrections, that means the calculation of loop diagrams
could be a further topic of investigation. A further step might be the test of predictions for hadronic
observables with respect to our findings, that is to say a convolution of the numerically found radia-
tion amplitude with appropriate fragmentation functions.Finally these results could be implemented
into a model of detailed balance to account for absorption and stimulated emission effects of gluons.

In closing the main result is that various equations from literature are checked numerically, and
also analytically, where especially the dead cone factor was found to be correct but not sufficient in
all kinematical configurations. How this shortcoming wouldeffect the net energy loss still remains
an open question to be clarified by further detailed investigations.



Appendix A Remarks on Colour
Algebra

In general the algebra of the groupSU(N) is defined by the commutation relation[T a; T b℄ = ifab
T 
 a; b; 
 = 1 : : :N2 � 1; (A.1)

whereT a are the generators of the group,fab
 denote the structure constants anda; b; 
; : : : stand for
the colour indices. ForSU(3), the colour group which is used in the program code, the conventional
colour matrices are, e.g. [Hua92],�1 = 0�0 1 01 0 00 0 01A ; �2 = 0�0 �i 0i 0 00 0 01A ; �3 = 0�1 0 00 �1 00 0 01A ;�4 = 0�0 0 10 0 01 0 01A ; �5 = 0�0 0 �i0 0 0i 0 0 1A ; �6 = 0�0 0 00 0 10 1 01A ;�7 = 0�0 0 00 0 �i0 i 0 1A ; �8 = 1p30�1 0 00 1 00 0 �21A ; (A.2)

whereby these matrices are related to the matrix representation of the generators viaT a = �a2 : (A.3)

Very important features are, that the colour matrices are hermitianT ay = T a; (A.4a)

and tracelessTrT a = 0: (A.4b)

The colour parts of the matrix elements can however be evaluated analytically. Therefore some
useful relations should be given. The generators are normalized byTr[T aT b℄ = 12Æab: (A.5)
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From the very useful equationT aijT akl = 12 �ÆilÆjk � 1N ÆijÆkl� ; (A.6)

one especially obtains(T aT a)il = 12 �ÆilN � 1N Æil� = CF Æil; (A.7)

where the Casimir of the representation of the group isCF = N2 � 12N : (A.8)

We further need the relationN2�1X
;d=1 fa
dfb
d = ÆabCA; (A.9)

which defines the Casimir of the adjoint representationCA = N . In particular, forSU(3) we obtainCF = 43 andCA = 3.
In every matrix element a colour structure, that is to say an arrangement consisting of colour

matrices and structure constants is enclosed between colour states�X . Thus, the abbreviation(Ca1���amb1���bn )AB � �yBCa1���amb1���bn �A (A.10)

is used, as also in [Wan95], with arbitrary numbersm andn of colour indices. There areN in-
dependent colour states which we denote by capital letters as subscriptA;B;C = 1 : : :N . In the
terminology of matrices, these colour states are represented byN -dimensional unit vectors, thus forSU(3) they read�1 = 0�1001A ; �2 = 0�0101A and �3 = 0�0011A : (A.11)

The overline at a colour expression means an average over allinitial colours and a sum over
all final colour states, under the modulus squared the product with the adjoint matrix structure is
understood,jCg1:::gm;g01:::g0nA1:::As;A01:::A0tj2 = 1(N2 � 1)m �N s XA1;:::;As=1:::N;A01;:::;A0t=1:::N;g1;:::;gm=1:::(N2�1);g01;:::;g0n=1:::(N2�1) �Cg1:::gm;g01:::g0nA1:::As;A01:::A0t � (Cg1:::gm;g01:::g0nA1:::As;A01:::A0t)y� ; (A.12)

wherem initial gluons,s initial quarks,n final gluons andt final quarks are assumed.
As clarification it should be demonstrated, how the important colour parts Eqs. (4.53) and (4.55)

are obtained. The colour structure of the elastic single scattering Figs. 4.1 or D.1, which serves as
precondition, is evaluated first. Note, due to the sum rule, all equal indices have to be summed over.
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Thus, we do not write the sum sign forf and we will later also neglect the sum signs for the colour
states. The quantityC1;el in Eq. (3.27) readsC1;el = jT fABT fCDj2= 1N2 NXA;B;C;D=1(�yBT f�A�yDT f�C) � (�yBT g�A�yDT g�C)y= 1N2 (�yBT f�A�yDT f�C) � (�yBT g�A�yDT g�C)y= 1N2 (�yBT f�A�yDT f�C�yCT g�D�yAT g�B)= 1N2Tr(T fT g)Tr(T fT g)= 12N2 ÆfgTr(T fT g)= CF2N : (A.13)

Within this derivation, we have used Eq. (A.7) but with the sum convention, Eq. (A.4a), cyclical
exchange in the trace of a matrix product and the matrix relationsNXA=1�A�yA = E and

NXA=1�yAM �A = Tr(M ); (A.14)

with E as identity matrix andM as arbitrary matrix, each of them has the format(N �N). Now, the
colour element Eq. (4.55) can be evaluated where it is convenient to find the elastic colour partC1;el,j(T fT g)ABT fCDj2 = 1N2�yBT fT g�A�yDT f�C�yCT e�D�yAT gT e�B= 1N2Tr(T fT gT gT e)Tr(T fT e)= CF � 1N2Tr(T fT e)Tr(T fT e)= CF � C1;el: (A.15)

This is similarly carried out for Eq. (4.53), the colour commutator structure, that is also denoted by[T f ; T g℄ABT fCD = �CgCD;AB, (cf. Eq. (7) in [Wan95]),j[T f ; T g℄ABT fCDj2 = jffgeT eABT fCDj2= 1N2 ffgefbga�yBT e�A�yDT f�C�yCT b�D�yAT a�B= 1N2 ffgefbgaTr(T eT a)Tr(T fT b)= 1N2 ffgefbga12ÆeaTr(T fT b)= 12N2 ffgefbgeTr(T fT b)= CA � 12N2 ÆfbTr(T fT b)= CA � C1;el: (A.16)





Appendix B Feynman Rules

The following conventions for the Feynman rules are appliedthroughout this work. We also
display the naming scheme used in our C++ code for the colourless parts, colour factors are shown
in curly brackets, refer also to Appendix E. The different rules for scalar and spinor QCD are
distinguished. The corresponding expressions for QED are recovered if all colour generators are set
to unity and the colour structure constants become zero, which means that photon self coupling does
not occur due to theU(1) symmetry.

In the case of fermionic particles incoming spinor lines obtain a factoru(p; s) � �A, outgoing
spinor lines a factor�u(p; s) ��yA, for antiparticles there should bev instead ofu. The bispinoru(p; s)
is given in Appendix E. A factor�� is assigned to outer gluon or photon lines. For scalar particles
the relevant factors reduce to the colour parts�A or�yA, respectively. The colour factors�A, T 
, T 
AB
andfab
 are explained in Appendix A.

The delta functions which ensure momentum conservation at the vertices are neglected.pij ScalarPropagator(ContraVector *p, double *m0)ip2 �m20 + i� � fÆijg
SpinorPropagator(ContraVector *p, double *m0)ip�
� �m0 + i� � fÆijgp; ip0; j�; 
 ScalarVertex(ContraVector *p0, ContraVector *p,
int & �)�ig(p+ p0)� � fT 
jig
SpinorVertex(int &�)�ig
� � fT 
jig�; ak�; b GluonPropagator(ContraVector *k, int & �, int & �)�ik2 + i� �g�� � (1� �) � k�k�k2 + i�� � fÆabg�! 1: Feynman gauge,�! 0: Landau gauge
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p1; �; ap2; �; bp3; �; 
 ThreeGluonVertex(ContraVector *p1, int & �,
ContraVector *p2, int & �, ContraVector *p3, int & �)ig[(p1 � p2)� � g�� + (p2 � p3)� � g��+(p3 � p1)� � g��℄ � fifab
gq�; a StaticDebyeScreenedPotential(ContraVector *q, int & �)�ig � g0� e�i~q�~x~q 2 + �2 � fT aCDg� : : :Debye screening mass



Appendix C Gauge Invariance

C.1 General Restrictions

The canonical quantisation of the field strengthA�,A� = N��e�ikx; (C.1)

starts from an expansion in Minkowski space. Hence, there are 4 polarization vectors required, which
serve as a basis. We consider massless photons with momentumk, k2 = 0, N is a normalization
constant. The same holds true for gluons when we neglect colours. For brevity, we speak about
photons.

The free photon fieldA� obeys the wave equation2A� = 0 (C.2)

in Lorentz gauge��A� = 0. This implies the four-dimensional transverse condition�k = 0. How-
ever there are only 2 transverse polarizations realised forreal photons. In the quantisation formalism,
the method of Gupta and Bleuler, which is based on the Lorentzcondition��A� = 0, shows that the
contributions of scalar and longitudinal photons to expectation values cancel each other. Note, that
in the case of QCD the formal introduction of ghost fields is required to cancel internal contributions
form non-transverse gluons.

In the following section we discuss the question, how polarization vectors are to be chosen
especially for the numerical calculation. The connection to theA+-gauge, which is often applied,
e.g. in articles on energy loss by gluon radiation [Gun82, Wan95], is demonstrated.

The solutionA� of Eq. (C.2) is not fixed by the Lorentz condition. Any solutionA0� = A� � ��� (C.3)

with 2� = 0 satisfies the relevant equations. If we choose� � e�ikx, this allows for a modification
of the polarization vectors according to�0� = �� + �k�; (C.4)

where� is an arbitrary constant.
The four-dimensional polarization vectors for free photons are usually constructed from an intu-

itive generalisation of the three-dimensional orthonormal polarization vectors which are perpendic-
ular to~k. This three dimensional transverse gauge withA0 = 0 corresponds to the Coulomb gauge.
However, this relation is constrained to the form of polarization vectors, and the Coulomb gauge,
defined by~r ~A = 0, allowsA0 = 0 only if no charges are present. Thus, we restrict the terminology
to the notationA0-gauge as a particular choice from the class of Lorentz gauges. It reads�(1) = (0;~� (1)); (C.5)



80 Appendix C Gauge Invariance�(2) = (0;~� (2)); (C.6)~� (1) � ~� (2) = ~� (1) � ~k = ~� (2) � ~k = 0; (C.7)~� (1) � ~� (1) = ~� (2) � ~� (2) = 1: (C.8)

In general the polarization vectors have to obey the following conditions�(1)k = �(2)k = �(1)�(2) = 0; (C.9)�(1)�(1) = �(2)�(2) = �1: (C.10)

It is straightforward to show that these condition are invariant with respect to the transformation
Eq. (C.4).

C.2 Tests of Gauge Invariance

C.2.1 Gauge Invariance for Polarization VectorsA0 = 0 gauge

The z-direction is generally fixed by the direction of the incoming projectile quark. The momentum
of the emitted gluon is expressed in spherical coordinates,the form of the three-dimensional trans-
verse polarizations can be obtained if one starts from a gluon momentum in z-direction, where
polarizations are in x- and y-direction, respectively. Thegeneral situation for an arbitrary mo-
mentum direction is then obtained by application of rotation matrices. For completeness we note
the expressions which are especially employed in the program code in the function ”getPolariza-
tion Azero(. . . )”,k = ! � (1; 
os� sin �; sin� sin �; 
os �); (C.11)�(1) = (0; 
os� 
os �; sin� 
os �;� sin �); (C.12)�(2) = (0;� sin�; 
os�; 0): (C.13)

The emission angle� is related to the gluon rapidityy, sometimes denoted�, via the ratio of the plus
and minus momentum componentsk+ = k0 + k3 andk� = k0 � k3,y = 12 ln k+k� = ln 1 + 
os �sin � ; (C.14)

The central rapidity regiony � 0 corresponds to transverse gluon emission.A+ = 0 gauge

In light-cone coordinates the remaining freedom of the potential A� is fixed with the conditionA+ = 0. In terms of the usual coordinates this refers to the form�(1=2) = (�0;~� (1=2)? ;��0); (C.15)~� (1)? � ~� (2)? = 0: (C.16)
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Depending on the parameterisation ofk� the explicit form of�0 = ~�?~k?k0 + kz (C.17)

is obtained from the Lorentz condition�k = 0. For the transverse polarization vectors we use~� (1)? =(1; 0) and~� (2)? = (0; 1) in the numerical calculations. It is necessary to take care of singularities of
coordinates. Such a problem arises in�0 for � ! �. So this gauge is restricted to forward emission
angles.

It was generally stated above that the set of polarizations obtained here may be transformed
under (C.4) whereby physical observables remain invariant. Clearly, this transformation can be used
with � = ��0=! to eliminate the component�0 . Then, the situation is as in theA0-gauge case,
but the three-dimensional polarizations may differ from the set used in theA0-gauge by an rotation
about the momentum direction. If we investigate circular polarizations or carry out a summation
over polarizations this point has no importance, only for particular linear polarization states it has
to be taken into account to test gauge invariance with respect to the transformation (C.4). Note that� ! 0 for � ! 0, hence theA+- andA0-gauge should agree for angles close enough to zero.A� = 0 gauge

In a similar manner the conditionA� = 0 can be achieved�(1=2) = (�00;~� (1=2)? ; �00); (C.18)~� (1)? � ~� (2)? = 0; (C.19)

where�00 = ~�?~k?k0 � kz : (C.20)

This choice of coordinates is numerically well defined for backward emission but diverges for� ! 0.
As argued in the case of theA+-gauge the transformation equation (C.4) with� = ��00=! suggests
agreement of theA�-andA0-gauge in the limit� ! �.

TheA�-gauge is of interest, since in the CMS the diagrams with projectile emission in theA+-
gauge should refer to the target emission contributions in theA�-gauge as follows. Say we consider
a collision of equally heavy projectile and target particles in the CMS with the emission of the gluon
from the projectile line where we obtain a specific angular pattern of the radiation amplitude. Let us
assume now that thez-direction is reversed, which in the CMS means equivalentlythe interchange of
projectile and target. What follows is that the previous projectile emission pattern now becomes the
new target angular emission behaviour. But if also all otherz-components are exchanged, that is to
say in the momentum of the gluon we setkz ! �kz (this is realized by the substitution� ! � � �)
and in the polarization we write�z ! ��z, one would expect that the new target distribution is
identical to the previous radiation behaviour from emission off the projectile line.

In particular,�z ! ��z leads toA+ ! A� and vice versa. Therefore we find a symmetry of the
radiation amplitudes in the CMS with respect to the ”exchange transformation”proje
tile$ targetA+ $ A�� $ � � � 9>=>; (C.21)

This is of course restricted to a symmetric kinematical situation, that is to say, equal quark masses
and small transverse momentum transfer.
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Numerical Tests of Gauge Invariance in Polarization States

The three gauges are compared numerically for the process ofone gluon emission induced by the
single scattering of two quarks in Figs. C.1, C.2 and C.3. Thesymmetry properties between theA+-
andA�-gauge are very well confirmed by comparison of Figs. C.1 and C.2. Moreover one finds
that the graphs for theA0-gauge obey an axial symmetry about the axis� = �2 , which can clearly
be understood since Eqs. (C.12), (C.13) are invariant under� $ � � �. Note that the three-gluon
contribution diagram, Fig. C.3(a), fits well in this symmetry argument forA0. The behaviour of theA0-gauge result for� ! �2 is due to the specific coordinates where for� ! �2 only z-components
remain from products with polarization vectors in the matrix element expressions in contrast to the
other gauges. Thus the sharp decrease for� ! �2 is explained, it is not a divergence.

In spite of this comparingA+ andA� for the three-gluon contribution, Fig. C.3(a) reveals devi-
ations in the angular range� � �2 . These result from the fact that we have not reversed the situation
properly, since the fixed momentum transfer is defined at the target line in theA+-gauge but not
redefined to the projectile in the calculation of the case of theA�-gauge.

It should be pointed out that the single contributions in this three gauges are quite different but
the total matrix element is in this kinematical region gaugeinvariant, Fig. C.3(b).

The transformation equations between these three gauges show for which gluon emission angles
there is agreement between the three cases. Thus, theA0-gauge is equivalent to theA+-gauge for
forward emission of the gluon (� ! 0) and equivalent to theA�-gauge for backward emission
(� ! �). In Fig. C.1 we find this agreement betweenA+- andA�-gauge as well as in Fig. C.2 for
the combinationA� andA0-gauge. However the angle� is not close enough to� for theA�- andA0-gauge to meet in Fig. C.1, as� ! 0 is not reached in Fig. C.2 for an identification of theA+ andA0-gauge. These relations based on Eq. (C.4) are all satisfied in Fig. C.3(a) for the three-gluon case.

In summary, besides the discussion of symmetry properties between different gauges and con-
tributions, we emphasize the numerically confirmed gauge invariance of the total result. It could
be shown that target contributions are negligible in theA+-gauge. This is an important feature to
justify the potential model, which applies theA+-gauge and thus needs only to evaluate emission
contributions coming from the projectile.

C.2.2 Gauge Invariance for the Gluon Propagator

Numerical Tests

Besides the freedom of fixing the polarization states the propagator of the gluon, which so far has
been used in Feynman gauge, can be modified according toD(k)�� = �1k2 + i� �g�� � (1� �) � k�k�k2 + i�� : (C.22)

The introduced gauge parameter� recovers in particular the Feynman gauge (�! 1) or the Landau
gauge (�! 0). In Fig. C.4 we exhibit results for different choices of fixing the gauge freedom by�.
The numerical results show gauge invariance with respect to� in all single contributions, not shown
here, and in the total matrix element, Fig. C.4. However, this may be also due to the smallness of
the transverse momentum transfer which restricts the amount of the gauge varying term in the gluon
propagator. The same calculation using spinor rules does not show any significant differences.

Analytically and numerically we restrict all calculationsto the Feynman gauge. Although it
is possible to show that a gauge term proportional tok�k� vanishes at least for the simple elastic
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(b) Post projectile contributions.

Figure C.1: Projectile contributions to the summed and averaged squared matrix element for
gluon emission in the scattering of two down quarks from scalar QCD as a function of the emis-
sion angle� compared for different gauges. The parameters are specifiedin Fig. C.3, where one
finds gauge invariance for the total outcome.
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(a) Pre target contributions.
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(b) Post target contributions.

Figure C.2: Target contributions to the summed and averaged squared matrix element for gluon
emission in the scattering of two down quarks from scalar QCDas a function of the emission
angle� compared for different gauges. The parameters are stated inFig. C.3. It shows that in theA+-gauge the target contributions are negligible with respect to the contributions from emission
off the projectile, Fig. C.1.



C.2 Tests of Gauge Invariance 85

10010�110�210�310�410�510�610�710�810�910�10

0 0:5 1 1:5 2 2:5 3

1022102110201019

101810171016101510141013

10121011101010910810710610510410310210110010�110�210�310�410�510�610�710�810�910�10 A+-gaugeA�-gaugeA0 -gauge

Gluon emission angle� [rad℄jMQCD j2 Thr
ee�Gluon=g

6 [GeV
�2 ℄

(a) Three gluon contributions.
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(b) Total matrix element taking all diagrams.

Figure C.3: The summed and averaged squared matrix element for gluon emission in the scat-
tering of two down quarks from scalar QCD is exhibited as a function of the emission an-
gle � compared for different gauges. In (a) the contributions from the three-gluon vertex are
found to be relevant in all gauges. The total matrix element (b), obtained as coherent sum of
all diagrams, however is gauge invariant, that is to say the results in different gauges fall to-
gether. The results are for forward scattering in the CMS in the Feynman gauge with parametersm1 = m2 = mdown = 0:007 GeV=
2, ~p1 = (0; 0; 5) GeV=
, ~p1 = (0; 0;�5) GeV=
,! = 0:001 GeV, � = 0 : : : �, � = �=2, qx = 0, qy = 0:01 GeV=
,ps = 10 GeV=
.
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scattering diagram Fig. D.1, we will not pursue this problemfurther. The latter independence of the
gauge fixing term written in terms of the relevant spinor product1�u(pf )
�u(pi)k�k��u(p0f)
�u(p0i) = �u(pf)k=u(pi)�u(p0f )k=u(p0i) = 0 (C.23)

results because the spinors obey the Dirac equation�u(p=�m) = (p=�m)u = 0: (C.24)

10010�110�210�310�410�510�610�710�810�910�10

0 0:5 1 1:5 2 2:5 3

1022
1021
1020
1019

10181017101610151014101310121011101010910810710610510410310210110010�110�210�310�410�510�610�710�810�910�10
� = 1 (Feynman)� = 0 (Landau)� = 100

jMQCD radj2 =g6
[GeV�2 ℄

Gluon emission angle� [rad℄
Figure C.4: The summed and averaged squared matrix element for gluon emission in the scat-
tering of two down quarks from scalar QCD is exhibited as a function of the emission angle� compared for different gauges of the gluon propagator (denoted by the gauge parameter�).
The total matrix element is gauge invariant, that is to say the results in different gauges fall
together. The results are for forward scattering in the CMS in theA+-gauge with parametersm1 = m2 = mdown = 0:007 GeV=
2, ~p1 = (0; 0; 5) GeV=
, ~p1 = (0; 0;�5) GeV=
,! = 0:001 GeV, � = 0 : : : �, � = �=2, qx = 0, qy = 0:01 GeV=
,ps = 10 GeV=
.

C.3 Polarization Matrix

The degree of polarization can be expressed in terms of a polarization matrix��� = 12 � 1 + �3 �1 � i�2�1 + i�2 1� �3 � ; (C.25)

which includes 3 real parameters, namely the Stokes parameters�1; �2 and�3 with allowed values�1 � �i � 1. The probability for a particular polarizatione is then obtained from the projectionp(e) = �y��: (C.26)

1The slash symbol= stands for the contraction of a Lorentz quantityA� with the Gamma matrices
� , A= � A�
�.
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The parameters�i carry information on the contribution from the following gluon polarization states�1 = 8><>:1 linear polarization vector�(+) = 1p2 ��(1) + �(2)�;�1 linear polarization vector�(�) = 1p2 ��(1) � �(2)�; (C.27)�2 = 8><>:1 circular polarization vector�(+) = � ip2 ��(1) + i�(2)�;�1 circular polarization vector�(�) = ip2 ��(1) � i�(2)�; (C.28)�3 = (1 linear polarization vector�(1);�1 linear polarization vector�(2): (C.29)

The numerical calculations yield the values forp(1) = �(1)y��(1); p(2) = �(2)y��(2); (C.30)p(+) = �(+)y��(+); p(�) = �(�)y��(�): (C.31)

Since� is an adjoint matrix and the relation�21 + �22 + �23 = 1 (C.32)

holds for a completely polarized gluon, we may express the Stokes values byj�1j = 2pp(1)p(2); (C.33)�2 = 2p(+) � 1 = 1� 2p(�); (C.34)�3 = 2p(1) � 1 = 1� 2p(2): (C.35)

Furthermore, in the case when�2 = 0, that is to say, the gluon is fully linear polarized, the
direction of the transverse polarization vector becomes accessible by the following argument. If
there is no circular contribution, the general linear polarization vector is spanned by� = a�(1) + b�(2): (C.36)

This corresponds obviously to a rotation about thek-axis. Note, that this rotation does not
influence on the results for circular polarization vectors.A comparison with the four-dimensional
generalization of the polarization matrix��� = 12 ��(1)� �(1)� + �(2)� �(2)� �+ �12 ��(1)� �(2)� + �(2)� �(1)� �� i�22 ��(1)� �(2)� � �(2)� �(1)� � + �32 ��(1)� �(1)� � �(2)� �(2)� � (C.37)

yieldsa = �pp(1); b = �pp(2): (C.38)

In this manner, we can detect the realized polarization direction from the results fore(1), e(2),e(+) ande(�). The results for the polarization directions obtained in the calculations refer to the
three-dimensional transverse basis defined in Section (C.2.1).
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In Fig. C.6(a) we demonstrate this for the case of completelylinear polarization�(1). The ratios
of different polarizations contributions to the total matrix element as a function of the emission
angle� are shown for linear polarizations in Fig. C.6(a) and for circular polarization vectors in
Fig. C.6(b). The sum of each ratio pair of course equals 1. In Fig. C.5 we check that the choice of
polarizations does not effect for the summed and averaged squared matrix element. Furthermore the
same calculations were carried out with spinor rules but no difference was found.
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Figure C.5: The summed and averaged squared matrix element for gluon emission in the scat-
tering of two down quarks from scalar QCD is exhibited as a function of the emission an-
gle � compared for linear and circular polarization vectors, seealso Figs. C.6. The result is
invariant with respect to this choices, that is to say the lines fall together. The results are
for forward scattering in the CMS in theA0-gauge and the Feynman gauge with parametersm1 = m2 = mdown = 0:007 GeV=
2, ~p1 = (0; 0; 5) GeV=
, ~p1 = (0; 0;�5) GeV=
,! = 0:001 GeV, � = 0 : : : �, � = �=2, qx = 0, qy = 0:01 GeV=
,ps = 10 GeV=
.
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Figure C.6: Relative polarization contributions to the summed and averaged squared matrix
element for gluon emission in the scattering of two down quarks from scalar QCD as a function
of the emission angle� compared for (a) linear and (b) circular polarizations. Theparameters are
specified in Fig. C.5.





Appendix D Gunion-Bertsch Limit

The first discussion of induced gluon radiation was done by Gunion and Bertsch (GB) [Gun82]
in the limit of high quark energies and soft gluon energies. Furthermore, they have used theA+-
gauge, massless quarks and neglected the spins, thus they worked in scalar QCD with particle massesm = 0. The calculation was carried out in CMS. For completeness wegive the relevant expressions.

This first approach could be used as check for the program codeas follows. The matrix elements
for induced gluon radiation are calculated numerically in CMS for the case of transverse gluons. The
results are compared to the approximation of Gunion and Bertsch.

Note that a different naming for the momentum transferl = p0f � p0i instead ofq used elsewhere
in this thesis is written. This corresponds to the definitiongiven in [Gun82].

D.1 Elastic Scattering

The investigation of the elastic scattering matrix element, Fig. D.1, is a necessary prerequisite for
the induced gluon radiation processes because the elastic part is factored out to obtain the radiation
amplitude. Therefore the GB approximations for elastic scattering are checked in Fig. D.2. In the
down quark scattering no considerable differences to numerical results appear in the regime of small
momentum transfers, Fig. D.2. The curves lie on the GB line, of course they deviate if the transferred
perpendicular momentum becomes larger with respect to the initial momenta of the quarks in CMS,l? � p. pi; Apf ; Bp0i; Cp0f ; Dk; gfe

Figure D.1: Elastic scattering of two quarks with one gluon exchanged.

The relevant expressions for elastic scattering areCelasti
 = (T f)AB(T f)CD; (D.1)M s
alarelasti
 = Celasti
 � ig2 � (pf + pi)�(p0f + p0i)�(pf � pi)2 ; (D.2)MGBelasti
 = Celasti
 � (�ig2)2sl2? : (D.3)



92 Appendix D Gunion-Bertsch Limit

102104
10010�1
10�210�3
10�4 10110�1 100l? [GeV℄jMj2 el=(4C

1;elg4 s2 )
[GeV�4 ℄ GBp = 10 GeVp = 5 GeVp = 1 GeV

Figure D.2: Elastic scattering of two down quarks. The normalized summed and averaged
squared matrix element is shown as a function of the transverse momentum transferl?.

Note, that in the high-energy limit and for small momentum transfers it is straightforward to
obtain the invariant differential cross sectiond�dt = C1;el2��2s2 s2 + u2t2 (D.4)

for the elastic scattering from a spinor calculation, where� = g24� is the coupling constant, the colour
factorC1;el is defined in Eq. (A.13) ands, t andu are the usual Mandelstam variables, cf. Eq. (3) in
[Wan95].

However, suppression of the GB matrix element can be seen in other mass configurations. If we
extend the GB approach including finite masses it is not sufficient to calculate the changed invariant
CMS energys in Eq. (D.3). This problem is due to the identitys = 2p in CMS which does not hold
for m 6= 0. A new derivation form 6= 0 yieldsjM j2el = K2 � jM j2el;GB (D.5)

whereK = 1� x2 + y2p1 + x2 +p1 + y2 (D.6)

and the masses are given in units of the initial momentump of the colliding particles in CMS,x = m1p andy = m2p . SinceK < 1 this results in a reduction of the matrix element compared
to the GB result. In Fig. D.3 this factor is visualized. In thelimit x; y ! 0 one recovers the GB
expressions,K ! 1. Therefore in order to make reasonable comparisons with GB we will restrict
the following calculations to light particles.
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Figure D.3: The mass dependence of the ratioK2 = jM j2el=jM j2el;GB is shown. In the limit of
massless particles GB is recovered, otherwise suppressionoccurs.

D.2 Inelastic Scattering

D.2.1 Single Contributions to Gluon Radiation

We consider the emission of gluons perpendicular to the initial momenta of the colliding quarks.
Since the GB approximations use massless quarks we considertwo equally light quarks with massm = 0:007 GeV (down quarks) and each carrying the momentump = 10 GeV in CMS. These mo-
menta define thez-direction. The transverse momentum transfer is taken to bel? = ly = 0:01 GeV
for example. The transverse componentk? of the gluon is also measured iny-direction.

The plots compare the squared summed and averaged matrix elements (colours and polarizations)
for the single radiation contributions in Fig. D.4. The formula for GB are used as shown, in the target
line radiation case, we have shown the terms which come from the GB calculation although these
terms are not taken into account for the GB approximation of the total matrix element.

In the three-dimensional plot, Fig. D.11, the situation fordifferent angles is considered, as well.
All numerical calculations are in good agreement with the GBapproximation for small!. Of course,
this is not true if the soft radiation limit is abandoned.
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pi; Apf ; Bp0i; Cp0f ; Dk; gfe
(a) Pre-Projectile.

pi; Apf ; Bp0i; Cp0f ; Dk; gfe
(b) Post-Projectile.

pi; Apf ; Bp0i; Cp0f ; Dk; gfe
(c) Pre-Target.

pi; Apf ; Bp0i; Cp0f ; Dk; gfe
(d) Post-Target.

pi; Apf ; Bp0i; Cp0f ; Dk; gef
(e) Three-Gluon.

Figure D.4: Contributions to the inelastic scattering of two quarks with one gluon being emitted.
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Pre-Projectile Contribution

The relevant expressions for the pre-projectile diagram, Fig. D.4(a), which are numerically compared
in Fig. D.5 areCprePro = (T fT g)AB(T f)CD; (D.7)M s
alarprePro = CprePro � ig3 (pf + pi � k)�(p0f + p0i)� � (2pi � k)���[(pi � k)2 �m2℄ � (p0f � p0i)2 ; (D.8)MGBpreProMGBelasti
 = CpreProCelasti
 � (�2g)~�?~k?(1� x)k2? : (D.9)
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Figure D.5: For thepre-projectile contributionthe summed and averaged squared matrix element
as a function of the perpendicular momentum component of a transverse emitted gluon calculated
numerically is compared to the GB approximation.

Post-Projectile Contribution

The relevant expressions for the post-projectile diagram,Fig. D.4(b), which are numerically com-
pared in Fig. D.6 areCpostPro = (T gT f)AB(T f )CD; (D.10)M s
alarpostPro = CpostPro � ig3 (pf + pi + k)�(p0f + p0i)� � (2pf + k)���[(pf + k)2 �m2℄ � (p0f � p0i)2 ; (D.11)MGBpostProMGBelasti
 = CpostProCelasti
 � (�2g)�~�?(~k? � x~l?)(1� x)(~k? � x~l?)2 : (D.12)
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Figure D.6: For thepost-projectile contributionthe summed and averaged squared matrix el-
ement as a function of the perpendicular momentum componentof a transverse emitted gluon
calculated numerically is compared to the GB approximation.

Pre-Target Contribution

The relevant expressions for the pre-target diagram, Fig. D.4(c), which are numerically compared in
Fig. D.7 areCpreTar = (T f)AB(T fT g)CD; (D.13)M s
alarpreTar = CpreTar � ig3 (p0f + p0i � k)�(pf + pi)� � (2p0i � k)���[(p0i � k)2 �m02℄ � (pf � pi)2 ; (D.14)MGBpreTar = 0: (D.15)

The divergent part arises from the singularity due to(pf � pi)2. This can also be found in the
post-target and three-gluon contribution. A further discussion is given below.

Post-Target Contribution

The relevant expressions for the post-target diagram, Fig.D.4(d), which are numerically compared
in Fig. D.8 areCpostTar = (T f)AB(T gT f )CD; (D.16)M s
alarpostTar = CpostTar � ig3 (p0f + p0i + k)�(pf + pi)� � (2p0f + k)���[(p0f + k)2 �m02℄ � (pf � pi)2 ; (D.17)MGBpostTar = CpostTar � 2ig3~�?~l?(2� x)(x� 1)x(~k? �~l?)2 : (D.18)
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Figure D.7: For thepre-target contributionthe summed and averaged squared matrix element as
a function of the perpendicular momentum component of a transverse emitted gluon calculated
numerically is compared to the GB approximation. Note in this case the predicted GB result
equals zero.
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Figure D.8: For thepost-target contributionthe summed and averaged squared matrix element
as a function of the perpendicular momentum component of a transverse emitted gluon calculated
numerically is compared to the GB approximation.
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Three-Gluon Contribution

The relevant expressions for the three-gluon diagram, Fig.D.4(e), which are numerically compared
in Fig. D.9 areCthreeGlu = ifegf(T e)AB(T f)CD; (D.19)M s
alarthreeGlu = CthreeGlu � ig3(pi � pf)2 � (p0i � p0f)2 �[(pf + pi)��� � (pi � pf + k)�(p0f + p0i)�+ (pf + pi)�(p0f � k � p0i)� � (p0f + p0i)���+ (p0i � p0f � pi + pf)��� � (pf + pi)�(p0f + p0i)�℄; (D.20)MGBthreeGluMGBelasti
 = CthreeGluCelasti
 � (�2g)~�?(~k? �~l?)(1� x)(~k? �~l?)2 : (D.21)
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Figure D.9: For thethree-gluon contributionthe summed and averaged squared matrix element
as a function of the perpendicular momentum component of a transverse emitted gluon calculated
numerically is compared to the GB approximation.

D.2.2 Total Matrix Element

Within the GB approach, the contributions where the emission occurs at the target line are neglected.
In addition, thex ! 0 limit is assumed. In this kinematical situation with transverse gluons (kz =0; ! = k?) and quark masses much smaller than the initial momentum perparticle (P+ = 2E = s)1

the value ofx is determined byx = !ps = k?20 GeV . This accounts for the deviation of GB

1The positive momentum fraction, termedP+, of the projectile is worked with in [Gun82].
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for large transverse momenta of the gluon. For arbitrary angles the value ofx is defined byx =!ps � (1 + 
os �).
The expression which is displayed in Fig. D.10 readsMGBtotalMGBelasti
 = ifefg(F e)AB(F f)CDCelasti
 � 2g ~�?~k?k2? � ~�?(~k? �~l?)(~k? �~l?)2 ! : (D.22)
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Figure D.10: For thetotal resultthe summed and averaged squared matrix element as a function
of the perpendicular momentum component of a transverse emitted gluon calculated numerically
is compared to the GB approximation.

Comment on the singularities The singularities in the diagrams for pre-target, post-target and
three-gluon contribution are found at the same value ofk?. This is due to the expression(pf � pi)2
in the denominator of the relevant matrix elements. The casepi = pf corresponds to the equationp0i � p0f � l = k, which reduces in the transverse gluon emission to the condition l? = ! = k?. In
general the singularity is expected forl? = ! � sin �.
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Figure D.11: The ratio between the numerically obtained total results for inelastic scattering to
the GB outcome is shown as a function of gluon energy! and emission angle�. The projected
straight line shows where singularities are placed.



Appendix E The C++ Program

The numerical investigation of the radiation diagrams is dealt with using several C++ programs,
which are built up from a set of objects and functions.

Technically, the basic objects are three- and four-dimensional complex quadratic matrices to-
gether with complex row and column vectors of the same dimensions. These objects use the built-in
class of complex numbers and are provided with the usual operations of matrix calculus.

The three-dimensional objects represent the colour parts of the Feynman rules, the four-dimensional
objects realize the spinor algebra.

For the sake of reproducibility of the numerical results we give a compilation of important defi-
nitions and conventions. Lorentz indices are denoted in Greek letters and run over0 : : : 3, if spatial
indices are meant these are written in Latin letters and run over1 : : : 3.

We define the metric tensor asg�� = 0BB�1 0 0 00 �1 0 00 0 �1 00 0 0 �11CCA : (E.1)

For the sake of numerical calculation of spinor results we have implemented the Gamma matrices
0 = �1 00 �1� ; 
k = � 0 ��k�k 0 � ; (E.2)

with properties(
0)y = 
0, (
k)y = �
k, (
0)2 = 1 and(
k)2 = �1 based on the conventional
definition of Pauli matrices�1 = �0 11 0� ; �2 = �0 �ii 0 � ; �3 = �1 00 �1� : (E.3)

Here the matrices1 � �1 00 1� and (E.4a)0 � �0 00 0� (E.4b)

are used, the matrices
� are thus four-dimensional.
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Finally we require to implement Dirac bispinors normalizedto 2m as1u(1)+ (~p) =pE(~p) +m0BBB� �10�~�~pE(~p) +m �10�
1CCCA ; (E.5a)

u(1)+ (~p) =pE(~p) +m0BBB� �01�~�~pE(~p) +m �01�
1CCCA : (E.5b)

The matrix elements we finally want to evaluate as complex numbers are organized as objects.
They provide various functions as for example2� void square(),� double sumAndAverageSCALAR(),� double sumAndAverageSPINOR(),� double sumAndAverageSquaredSCALARQED(),� double getPolarizationSCALAR(int epsilonnumber),� double getSpinResult(int spinIN1, int spinOUT1),� complex<double> getMatrixElementSPINOR(int spinIN1, int spinOUT1, int polarization,

int colourIN1, int colourIN2, int colourOUT1, int colourOUT2, int colourGLUON),

for the inelastic matrix elements specified for the potential model.

These matrix elements keep track of all colour configurations as well as spin arrangements via an
array of complex numbers. The arrays, meaning the matrix elements, can easily be summed by the
overwritten ”+” operator. Generally this allows a powerful handling of a set of diagrams, where the
squaring, averaging and summing procedures, a task with a considerable number of nested loops, is
actually hidden inside the construction of the matrix element objects. They are to be given the com-
pletely determined momenta in order to evaluate the built-in products of Feynman rules. Therefore
prepared functions are called, as can be seen in Appendix B. The limits� ! 0 in Appendix B are
not carried out but substituted in the program by� = 0. The colour structure is calculated separately
and paired up with the colourless parts afterwards.

1We do not needv for the calculation.
2We do not discuss this in detail, but mention that the return types are given, the basic meaning of these functions is

self-explanatory.
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Besides this there are two other groups of functions available. Firstly these are kinematical func-
tions were the remaining moments, given a set of initial conditions, are obtained from, e.g.3� int kinematicsPotentialSingleScatteringOneGluonPlus (ContraVector& momIN1, ContraVec-

tor& momOUT1, ContraVector& momGLU, ContraVector& momTRANS).

On the other side the selection of polarization states in different gauges is performed by� int getPolarization(string gaugename, ContraVector& epsilon0, ContraVector& epsilon1, Con-
traVector& gluon, double checkBound),

as the transformation of polarization states is, too,� int changeLinearToCircularPolarization(ContraVector&epsilon0, ContraVector& epsilon1, Con-
traVector& gluon, double checkBound).

Parameters which are not supplied to a function are adjustedvia an external definition in the main
program. Particularly these are the gauge parameter� for the gluon propagator, a labelA+; A�; A0
as naming of the polarization gauge and for double scattering a whole set of integration parameters.
For numerical tests of kinematical, gauge and on-shell conditions additional relative and absolute
check boundaries are introduced on a global level.

3The ”Plus” in the naming scheme always stands for forward scattering. Most of these function return integers which
contain information on the correctness of various checks saying that for a return value ”0” no problems were found.





Appendix F Conventions and
Notations

At this place we declare and comment on some conventions which are applied throughout this
work. General remarks on notations are stated and additional remarks to the numerical calculation
are given.

The Feynman diagrams considered here are restricted to treelevel processes, thus the coupling� = g2=4� is constant. The radiation amplitude defined in Section 3.2.2 is shown in units ofg2 in
our figures, in the calculation this is realized byg = 1. The actual though constant value ofg does
not play a significant role since we only compare different situations for the angular dependence of
the radiation amplitude.

Mainly the calculations are carried out using scalar QCD rules since this spin effect can be
neglected in the high-energy limit. For the reason to keep the diagrammatic correspondence to
spinor QCD the sea gull vertex is not included, of course.

The attentive reader may also question the neglect of exchange diagrams in spinor calculations.
However one should keep in mind that we would have a mixture ofdifferent preferred light quarks
the heavy charm quark is passing and thus we do not focus on effects for identical particles, although
we sometimes use equal mass parameters for projectile and target.

We contrast the case of light and heavy quarks. Therefore we usually apply the mass parametersmd = 0:007 GeV=
2 for the down quark andm
 = 1:5 GeV=
2 for the charm quark as typical
representatives of these two distinct cases.

We work in natural units
 = ~ = 1. The sum convention is used, thus expressions have to be
summed up over equal indices.
Lorentz indices are denoted by Greek letters�; �; �; : : :.
Colour indices are termed in small Latin lettersa; b; 
; : : :.
Capital Latin lettersA;B;C; : : : label colour states of the quarks.
With this we follow the conventions in [Wan95].





Appendix G Dead Cone Factor for
Arbitrary Angles

In Section 2.2 we have introduced the concept of a suppression factor that can strongly reduce
the probability for gluon emission in projectile direction. This factor was given by Dokshitzer and
Kharzeev [Dok01] for small angles, see Eq. (2.1), and shouldcorrect the matrix elements derived in
the approach of Gunion and Bertsch [Gun82], see Appendix D. For completeness we remember that
the factor (2.1) isF = k2?k2? + !2�20 = sin2 �sin2 � + �20 ; (G.1)

where�0 = m=E,m indicates the mass andE the energy of the incident heavy projectile quark.
This appendix is intended to offer insight how the dead cone factor arises technically. It aims to

present a simple derivation of this factor for arbitrary emission angles.

Correction Factor for Arbitrary Angles for the Pre-Project ile Emission Diagram

In general, the dead cone effect arises from the screening ofa divergence due to a non-zero mass pa-
rameter in the corresponding propagator. Within the considered contributions to one gluon emission,
Fig. D.4, there is the internal propagator of the exchanged gluon which remains massless and causes
a divergence in quark-quark scattering. The internal quarkpropagator, however, yields a divergent
matrix element only in the Gunion and Bertsch approach of massless quarks [Gun82]. For the case
of the pre-emission process, Fig. D.4(a), we present a derivation of the dead cone factor.

We rewrite the pre-projectile matrix element Eq. (D.8)M s
alarprePro = CprePro � ig3 (pf + pi � k)(p0f + p0i) � (2pi � k)�[(pi � k)2 �m2℄ � (p0f � p0i)2 (G.2)

in order to obtain the correction factorM s
alarprePro = CprePro � ig3�� pi�pik� (pf + pi)(p0f + p0i)(p0f � p0i)2 � k(p0f + p0i)(p0f � p0i)2! : (G.3)

The on-shell conditionsp2i = m2, k2 = 0 and the Lorentz condition�k = 0 are applied, thus the
elastic matrix element Eq. (D.2)M s
alarelasti
 = Celasti
 � ig2 (pf + pi)(p0f + p0i)(p0f � p0i)2 (G.4)
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can be substituted if the four momentum of the gluon is negligible in the kinematical calculation,
that is to say the final momenta of the quarks are assumed to be identical in the inelastic as well as
in the elastic scattering situationM s
alarpreProM s
alarelasti
 = CpreProCelasti
 � g�� pi�pik� 1� k(p0f + p0i)(pf + pi)(p0f + p0i)! : (G.5)

We use light-cone coordinates and express the polarisationvectors inA+-gaugek = �2px; k2?2px;~k?� ; (G.6)� = "0; ~�?~k?xp ;~�?# : (G.7)

An expansion in the mass of the projectile is carried outpi = �pp2 +m2; 0; 0; p� � �p+ m22p ; 0; 0; p� ; (G.8)pi = [p0 + pz; p0 � pz; ~p?℄ � �2p; m22p ;~0?� : (G.9)

The suppression factor follows from the part
pi�pik . In the Gunion and Bertsch approach form = 0

this yields the term
2~�?~k?k2? and the second bracket in the factorised matrix element in Eq. (G.5)

corresponds to the term(1 � x). This is not calculated here but for a non-zero mass there are
additional corrections in this part. Note, that a similar factorisation is possible using spinor rules
which yield the same result for the suppression factor [Wan95].pi�pik = 2~�?~k?k2? + x2m2 (G.10)

Hence the Gunion and Bertsch matrix element has to be corrected by a factorF = k2?k2? + x2m2 = sin2 �sin2 � + �20 �1 + 
os �2 �2 = sin2 �sin2 � + �20 � 
os4(�=2) : (G.11)

Furthermore, only the momentum of the initial projectile ischosen, that means the results for this
diagram are not restricted to a specific Lorentz frame, whichaccounts for the fact that numerical
results in CMS and in LAB frame are in agreement with the dead cone correction factor.
Finally, this factor shows the missing symmetry between forward and backward emission of the
gluon. For small angles in forward direction it reduces to the factor of Dokshitzer and Kharzeev, on
the contrary, for angles� ! � the Gunion and Bertsch result(F ! 1) is reproduced.

The effect of this dead cone factor on the radiation amplitude depends of course on all other
possible diagrams. The same form of this suppression factorcan be found in the post-emission and
in the three-gluon contribution only for specific kinematical situations. The interplay of different
contributions is a main subject of Chapter 4.



Appendix H Scalar versus Spinor
Calculation

In this thesis the discussion of radiation amplitudes was mainly concerned with results obtained
from scalar Feynman rules. However the program package is organized to deal with spinor rules as
well. Although we do not present this in detail, comparisonsof both calculation methods were in
agreement if light particles with high energies, small momentum transfers and soft radiation were
assumed. Thus the program allows further investigations into effects of spins.

0 0:5 1 1:5 2 2:5 3

1:2
10:80:60:40:20

�0:2
Spins:(0; 0)! (0; 0)
Spins:(1; 0)! (1; 0)
Spins:(0; 1)! (0; 1)
Spins:(1; 1)! (1; 1)(0; 0)! (1; 0)(0; 0)! (0; 1)(1; 1)! (1; 0)(1; 1)! (0; 1)(0; 1)! (0; 0)(0; 1)! (1; 1)(1; 0)! (0; 0)(1; 0)! (1; 1)(0; 0)! (1; 1)(0; 1)! (1; 0)(1; 0)! (0; 1)(1; 1)! (0; 0) jMQCD radj2 Spin�C

on�g:=(4jM
QCD radj2 Total)

Gluon emission angle� [rad℄
Figure H.1: Relative contributions from different spin configurationsto the summed and aver-
aged squared matrix element for gluon emission in the scattering of two down quarks from spinor
QCD as a function of the emission angle�. The non-vanishing contributions fall together. The pa-
rameters arem1 = m2 = md = 0:007 GeV, ~p1 = (0; 0; 5) GeV, ~p2 = (0; 0;�5) GeV,! = 0:001 GeV, � = 0 : : : �, � = �=2, ~q? = (0; 0:01) GeV,

ps = 10 GeV.

Exemplary we present results for spin flip effects in the process of single scattering with one-
gluon emission. In Figs. H.1 and H.2 therefore the relative contributions from different spin config-
urations to the total squared and averaged matrix element are displayed as a function of the gluon
emission angle�. For the case of two equally light quarks in CMS, Fig. H.1, onefinds four non-
vanishing contributions with the same weight. They correspond to spin configurations where no spin
is changed. In general there are sixteen different possibilities for spin configurations of initial and
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final states of two quarks, which are denoted by(initial projectile spin, initial target spin)! (final projectile spin, final target spin):
The distinct spin states of each particle are termed with arbitrary numbers 0 and 1. Note that the
factor 4 in the denominator of the displayed ratios is due to the average over initial spins and is
required to ensure that the sum of all ratios equals1.

In Fig. H.2 we exhibit the non-vanishing contributions in the case that a heavy projectile scatters
on a light target at rest. Besides configurations where the spins are not changed, Fig. H.2(a), also
situations with one spin being modified become relevant. This is depicted in Fig. H.2(b). Moreover
this calculation shows, that only configurations where the spin of the light target is changed are
non-zero.

In closing, we have seen that as in our second case spin effects may be important for the emission
processes of gluons. Note for example there appears an angular dependence in Fig. H.2, which
remains a question to further investigation. This second case is closely related to the calculation in
Section 4.5 for Fig. 4.30(a), thus possible improvements ofthe potential model should be contrasted
with spin effects.
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(a) Configurations where no spin is changed.
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(b) Configurations where the spin of the target is changed.

Figure H.2: Relative contributions from different spin configurationsto the summed and aver-
aged squared matrix element for gluon emission in the scattering of a heavy on a light quark from
spinor QCD as a function of the emission angle�. The non-vanishing contributions in each plot
fall together. The parameters arem1 = m
 = 1:5 GeV, m2 = md = 0:007 GeV,~p1 = (0; 0; 5) GeV, ~p2 = (0; 0; 0) GeV, ! = 0:001 GeV, � = 0 : : : �, � = �=2,~q? = (0; 0:01) GeV,

ps = 1:524 GeV.
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