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Kurzfassung

Das Quasiteilchenmodell, mit Quarks und Gluonen als elementare Freiheitsgrade,
wurde zur Beschreibung der thermodynamischen Eigenschaften eines heißen Plas-
mas stark wechselwirkender Materie entwickelt. Dies ist von herausragender Be-
deutung sowohl für die Astrophysik und die Kosmologie als auch für die Beschrei-
bung von relativistischen Schwerionenkollisionen. In der vorliegenden Arbeit wird
dieses phänomenologische Modell erweitert, zum einen auf den Bereich imaginärer
chemischer Potenziale, und zum anderen zur Betrachtung der Effekte von ver-
schiedenen und unabhängigen chemischen Potenzialen verschiedener Quark-Spezies.
Auf diese Weise kann der Einfluss endlicher Nettobaryonendichten auf die Zustands-
gleichung selbstkonsistent studiert werden. Darüber hinaus wird eine Kette von
Approximationen formeller mathematischer Umformungen vorgestellt, welche den
Zusammenhang zwischen diesem Quasiteilchenbild und der fundamentalen Eich-
feldtheorie der starken Wechselwirkung, QCD, herausstellt. Somit wird dem Mo-
dell eine theoretische Grundlage gegeben.

Die mit dem Quasiteilchenmodell erzielten Resultate für fundamentale thermody-
namische Größen einschließlich verschiedene Suszeptibilitäten, darunter diagonale
und nicht-diagonale Suszeptibilitäten, werden mit verfügbaren Gitter-QCD Daten
verglichen. Insbesondere letztere stellen einen umfangreichen und sensiblen Test
des Modells dar. Darüber hinaus werden sowohl thermodynamische Größen als
auch das Phasendiagramm für imaginäres chemisches Potenzial betrachtet. Das
Quasiteilchenmodell kann all diese Größen hervorragend beschreiben. Somit ist
die Anwendbarkeit des Modells für die Extrapolation der Zustandsgleichung, wie
sie von Gitter-QCD Rechnungen für verschwindende Baryonendichte bekannt ist,
zu endlichen Baryonendichten erfolgreich getestet. Ebenso wird die Möglichkeit
gezeigt, mittels des Modells zum chiralen Limes masseloser Quarks sowie zu asymp-
totisch großen Temperaturen zu extrapolieren. Diese Extrapolationen zeigen die
Vorhersagekraft des Modells auf.

Aufgrund des Erfolgs des Modells in der Beschreibung von Gitter-QCD Resultaten,
welcher das Bild stärkt, dass die heiße QCD-Phase durch Quark- und Gluonen-
Freiheitsgrade mit medium-modifizierten Eigenschaften konsistent beschrieben wer-
den kann, wird eine verlässliche Zustandsgleichung stark wechselwirkender Ma-
terie konstruiert. Effekte endlicher Baryonendichten werden ebenso untersucht,
insbesondere entlang von isentropen Kurven im Phasendiagram. Skalierungseigen-
schaften dieser Zustandsgleichung mit fundamentalen Parametern der QCD wie
der Anzahl aktiver Quark-Freiheitsgrade, deren Massen sowie dem numerischen
Wert der Phasenübergangstemperatur zwischen Quark-Gluon-Plasma-Phase und
hadronischer Phase werden studiert. Die Robustheit der Zustandsgleichung in den
Regionen großer und kleiner Energiedichten wird diskutiert, und Unsicherheiten
in der Phasenübergangsregion wird durch die Konstruktion einer ganzen Fami-
lie von Zustandsgleichungen Rechnung getragen. Die einzelnen Familienmitglieder
unterscheiden sich dabei lediglich in der Form der Interpolation zwischen der Re-
gion hoher Energiedichte und einem Hadronen-Resonanz-Gas-Modell, welches eine
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realistische Beschreibung für kleine Energiedichten darstellt.

Die konstruierte Familie von Zustandsgleichungen wird in hydrodynamischen
Simulationen relativistischer Schwerionenkollisionen verwendet. Implikationen der
Unterschiede in der Phasenübergangsregion in den einzelnen Zustandsgleichungen
werden anhand von transversalen Impulsspektren und dem differenziellen ellipti-
schen Fluss verschiedener Hadronen untersucht. In diesen Untersuchungen, welche
für Bedingungen relevant am LHC und am RHIC bei maximaler Energie sind,
liegt der Fokus auf direkt emittierten Hadronen, insbesondere auf seltsamen Bary-
onen. In Hinblick auf das FAIR-Experiment wird zusätzlich der mögliche Einfluss
des QCD kritischen Punkts auf die Zustandsgleichung studiert, zunächst in einem
exemplarischen Modell und dann für das Quasiteilchenmodell.



Abstract

The quasiparticle model, based on quark and gluon degrees of freedom, has been
developed for the description of the thermodynamics of a hot plasma of strongly
interacting matter which is of enormous relevance in astrophysics, cosmology and
for relativistic heavy-ion collisions as well. In the present work, this phenomenolog-
ical model is extended into the realm of imaginary chemical potential and towards
including, in general, different and independent quark flavour chemical potentials.
In this way, nonzero net baryon-density effects in the equation of state are self-
consistently attainable. Furthermore, a chain of approximations based on for-
mal mathematical manipulations is presented which outlines the connection of the
quasiparticle model with the underlying gauge field theory of strong interactions,
QCD, putting the model on firmer ground.

A comparison of quasiparticle model results with available lattice QCD data for,
e. g., basic bulk thermodynamic quantities and various susceptibilities such as
diagonal and off-diagonal susceptibilities, which provide a rich and sensitive testing
ground, is found to be successful. Furthermore, different thermodynamic quantities
and the phase diagram for imaginary chemical potential are faithfully described.
Thus, the applicability of the model to extrapolate the equation of state known
from lattice QCD at zero baryon density to nonzero baryon densities is shown.
In addition, the ability of the model to extrapolate results to the chiral limit and
to asymptotically large temperatures is illustrated by confrontation with available
first-principle lattice QCD results. These extrapolations demonstrate the predictive
power of the model.

Basing on these successful comparisons supporting the idea that the hot deconfined
phase can be described in a consistent picture by dressed quark and gluon degrees
of freedom, a reliable QCD equation of state is constructed and baryon-density
effects are examined, also along isentropic evolutionary paths. Scaling properties
of the equation of state with fundamental QCD parameters such as the number of
active quark flavour degrees of freedom, the entering quark mass parameters or the
numerical value of the deconfinement transition temperature are discussed, and the
robustness of the equation of state in the regions of small and large energy densities
is shown. Uncertainties arising in the transition region are taken into account by
constructing a family of equations of state whose members differ from each other
in the specific interpolation prescription between large energy density region and
a realistic hadron resonance gas equation of state at low energy densities.

The obtained family of equations of state is applied in hydrodynamic simulations,
and the implications of variations in the transition region are discussed by consid-
ering transverse momentum spectra and differential elliptic flow of directly emitted
hadrons, in particular of strange baryons, for both, RHIC top energy and LHC con-
ditions. Finally, with regard to FAIR physics, implications of the possible presence
of a QCD critical point on the equation of state are outlined both, in an exemplary
toy model and for an extended quasiparticle model.
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1 Introduction

The visible matter in our universe consists of electrons and nucleons (protons
and neutrons) where the latter, according to our understanding, emerged in an
early stage of the cosmic evolution from a cooling plasma of quarks and gluons.
The quark-gluon plasma was immersed in a plasma of leptons and photons. The
fundamental interactions (with the exception of gravity) between these elementary
constituents of matter can be described successfully within the framework of gauge
field theories. For instance, quantum electrodynamics (QED) very successfully and
very accurately describes electromagnetic phenomena.

Concerning strong interactions, the underlying gauge field theory is quantum
chromodynamics (QCD) with quarks, carrying fractional baryonic and electric
charges, and gluons (gauge bosons) as dynamical fields. In nature, six different
quark flavour species are realized, namely up, down, strange, charm, bottom (or
beauty) and top. The Lagrange density of QCD, LQCD, depending on the quark
fields ψq and the gluon fields Aα

a (cf. a basic introduction to QCD in Appendix A.1)
represents the fundamental quantity describing QCD. In addition, parameters like
the running coupling g, quark masses which constitute a quark mass matrix m0,
the number of different quark flavours Nf active in the system or the number of
colours Nc (Nc = 3 is realized in nature) enter into LQCD. An interesting property
of QCD is asymptotic freedom [1, 2] which manifests in the fact that the strong
coupling αs = g2/(4π) becomes small if the momentum scale Q, relevant for the
considered process, becomes large. In the following chapters of the present work,
the complexity of QCD, based on its non-Abelian gauge group character, will be ac-
counted for by considering the dependencies on the various parameters mentioned
above.

At finite temperature T and net baryon density nB, strongly interacting matter
in thermodynamic equilibrium is realized in a variety of different phases separated
by phase transitions. The notion phase transition is used here in a loose sense
as, strictly speeking, the different phases of strongly interacting matter are sep-
arated by either a true phase transition or rather an analytical crossover type of
transformation. Basic quantity of interest is the QCD partition function Z (cf. Ap-
pendix A.2). From Z, all thermodynamic quantities can be evaluated via standard
thermodynamic relations. The pressure p(T, µ) as a function of T and chemical
potential µ follows from

p(T, µ) =
T

V
lnZ(T, µ) , (1.1)

where V is the volume of the investigated system, and from Euler’s and Gibbs’
relations one obtains

s =
∂p

∂T
, n =

∂p

∂µ
, e = −p+ Ts+ µn (1.2)
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for entropy density s, net number density n associated with µ and energy density
e.

Asymptotic freedom in QCD [1, 2] leads to the prediction of a transition of a
QCD matter phase at low T and low nB, which is dominated by hadrons in which
quarks and gluons are confined, into a new deconfined phase of matter [3,4] dubbed
quark-gluon plasma (QGP) at high temperature and/or high baryon density. A
theoretical description of the mechanism of the confinement/deconfinement process
is still not established. Contrary to naive expectations, the QGP does not represent
a weakly interacting gas of quarks and gluons but a strongly correlated system.
Only at asymptotically high T or nB quarks and gluons may become free.

Discussing QCD thermodynamics at moderate temperatures and baryon densi-
ties in the following, the focus represents the physically relevant case of two light (up
and down) quarks and one heavier (strange) quark, denoted as Nf = 2+1. Individ-
ual quark flavour mass parameters read mu, md and ms for up, down and strange
quarks, respectively. For Nf = 2 + 1, QCD matter changes from 8 active light
hadronic degrees of freedom (3 pions, 4 kaons and eta) into 47.5 active quark and
gluon degrees of freedom1 during the deconfinement transition which is accompa-
nied by rapid changes in e, s and p. Implicitly, temperature and chemical potential
are assumed to be far below the mass scale introduced by the much heavier charm,
bottom and top quarks which, consequently, turn out to be thermodynamically in-
active in this regime. Nevertheless, heavy quarks represent interesting probes of
QCD matter (see e. g. [5]).

The transition between hadronic phase and QGP phase at low nB is found to be
of crossover type for Nf = 2+1 and Nf = 2 (only two light quarks) in first-principle
numerical calculations [6,7]. As the transition is an analytical crossover rather than
a true phase transition, the transition temperature, Tc, denotes a pseudo-critical
temperature. Its numerical value reads Tc ≃ 175 MeV for Nf = 2 [6, 8, 9] and
Tc ≃ 170 MeV for Nf = 2 + 1 [6, 8], respectively Tc = 192 MeV for Nf = 2 + 1
recently reported in [10] (cf. discussion in Appendix A.2). Basing on various model
approaches, it is presently assumed that the transition is of first-order at large nB

for Nf = 2+1. Consequently, the line of first-order phase transitions must end in a
second-order phase transition point, the QCD critical point (CP), at specific values
of TE and µE

B, where µB denotes the baryo-chemical potential associated with nB

(accounting for the energy change, when adding one more baryon into the system).
This prominent landmark in the QCD phase diagram is correlated to pronounced
structures in specific susceptibilities signalling phase transition behaviour.

Looking in more detail into the phase diagram of strongly interacting matter, a
variety of different QCD matter phases emerges depending on temperature and net
baryon density. At low T and sufficiently large nB , a condensation of colour Cooper
pairs [11, 12] near the Fermi surface takes place in analogy to the Cooper pair
formation of electrons in an electric superconductor. In fact, many different colour
superconducting phases may be realized in nature (cf. Appendix A.2). In addition,
at T = 0 and not too large chemical potential µ0, there is a liquid-gas transition
of nuclear matter within the hadronic phase which is of first-order and ends in a

1This is correct for three massless quark flavours. In the case of finite quark masses the number
of active degrees of freedom decreases somewhat.
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Figure 1.1: Schematic view of the phase diagram of strongly interact-
ing matter in the physical case of 2+1 massive (two light and one
heavier) quark flavours. Shown are different phases (quark-gluon
plasma, hadronic phase and colour superconducting phase) as well
as some details on the phase transition topology contemporaryly
argued by theorists. Details are explained in Appendix A.2. For a
theoretical overview cf. [13, 14]. In addition, regions in the QCD
phase diagram which are relevant for the cosmic evolution of the
early universe, for compact stellar objects (neutron stars, hybrid
stars) as well as those regions accessible in heavy-ion collisions (de-
noted by RHIC, LHC and GSI SIS 300) are highlighted. Image
adapted by permission from GSI (Gesellschaft für Schwerionen-
forschung) [15].

critical point at larger T . The ground state of nuclear matter (denoted by ”Nuclei”
in Figure 1.1) is located exactly at the liquid-gas phase transition line, i. e. at T = 0
and µ = µ0. Neither superconducting phases nor the nuclear liquid-gas transition
are an issue of this thesis, but should be mentioned for completeness. A sketchy
illustration of the contemporary view on the QCD phase diagram is exhibited in
Figure 1.1, which may serve as a map for rough orientation. More details, in
particular a discussion of the relation between the phase diagram topology and the
fundamental symmetries of QCD is relegated to Appendix A.2.

Physicists aim at exploring the fascinating structures in the QCD phase dia-
gram under laboritory conditions in heavy-ion collisions (HIC), where transiently
the quark-gluon plasma is created and its properties may be investigated exper-
imentally. Nonetheless, for a successful theoretical description of the physics of
heavy-ion collision experiments, a firm knowledge on the equation of state (EoS)
of strongly interacting matter is of utmost importance. Moreover, the QCD EoS
is of significance in various other fundamental aspects of physics such as the cos-
mic evolution of the early universe or compact stellar objects like neutron stars.
It may be formulated in terms of the pressure in the form p(T, µ) related to the
QCD partition function Z(T, µ) via Eq. (1.1) and describes the bulk properties of
a system in thermal equilibrium such that intensive variables like T and µ can be
attributed to the medium. Often, however, it is preferably given in the form p(e, n)
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as interrelation among the thermodynamic entities. As different QCD phases are
dominated by different degrees of freedom, the EoS is greatly affected by phase
transitions.

Early universe

According to the Big Bang scenario, QGP matter existed for the first few micro-
seconds in the hot early universe, where nB was approximately zero. More precisely,
from present observations and Big Bang nucleosynthesis calculations a ratio of net
baryon to photon densities of nB/nγ ∼ 10−10 can be deduced. The corresponding
baryo-chemical potential, according to entropy conservation, is µB/T ∼ 10−9 [16].
For the isentropic expansion of the early universe a ratio of entropy per baryon of
approximately s/nB ≃ 4.35 × 1010 can be assumed.

The expansion rate of the hot fireball is determined from Friedmann’s equa-
tions [17] reading in flat space

Ṙ = CR
√
e , ė = −3(e+ p)C

√
e , (1.3)

describing the evolution of the scale factor R, which parametrizes the expansion
of the universe, and of the energy density with time. Here, C =

√

8πG/3, where
G denotes Newton’s constant being a measure for the coupling strength between
geometry and matter.

As the integration of ė requires the knowledge of the EoS in the form p(e), at
n = 0, the expansion of the system is to a great extent determined by the pres-
sure. Specifically, after an initial stage, which presumably can be described by an
inflationary scenario, the total pressure of the early universe, from the electroweak
phase transition until confinement, was dominated by the QCD pressure [18]. This
also influences the evolution of cosmological relics, e. g. abundancies of dark matter
candidates, cf. [19–21].

Ultra-relativistic heavy-ion collisions

The physics of the Big Bang and of Little Bangs created in ultra-relativistic heavy-
ion collisions is quite analogous. After an initial stage, which might be describable
in terms of a colour glass condensate [22] (details on the initial stage are currently
lively debated), the fireball’s expansion is governed by the equations of relativistic
hydrodynamics [5, 23,24] from thermalization until kinetic freeze-out.

For an ideal fluid, the relativistic generalization of the Euler equation as hydro-
dynamic equation of motion follows from

∂µT
µν = 0 , ∂µj

µ
i = 0 , (1.4)

describing the local conservation of energy and momentum within the energy-
momentum tensor T µν = (e + p)uµuν − pgµν and of the four-current jµi of con-
served charge i defined in the local rest frame of the fluid. Here uµ denotes the
fluid’s four-velocity with uµuµ = 1 and ui = u0vi, and gµν is the Minkowski met-
ric. As strong interactions control the physics of heavy-ion collisions due to the
short time-scales involved, relevant conserved charges are baryon number, isospin
and strangeness. Assuming zero isospin and strangeness net densities in the initial
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state, only jµB = nBu
µ associated with the conserved net baryon density has to be

considered. The above definition of T µν assumes locally thermalized momentum
distributions and the above relations imply a conservation of the entropy current
sµ = suµ.

For a system with dissipative effects, the quantities entering Eq. (1.4) must be
modified to T µν = (e+p)uµuν −pgµν +τµν , jµB = nBu

µ +νµ
B, sµ = suµ +σµ, where

τµν , νµ
B and σµ include transport coefficients of the medium such as bulk and shear

viscosity or heat conductivity. The fluid four-velocity is, according to e. g. the
Landau-Lifshitz definition, constraint by uµτ

µν = 0 and uµν
µ
B = 0. By considering

dissipative effects up to linear order, the relativistic generalization of the Navier-
Stokes equation is obtained. Note, however, that causality is violated in this linear
approximation (cf. [25] and references therein). Viscous (causal) hydrodynamics is
studied in some detail in, for instance, [26–33].

In order to solve the set of hydrodynamic equations, p(e, nB) has to be known.
Then, with specified initial conditions, the dynamical evolution of the fireball is
controlled by the EoS, in particular, by the velocity of sound, cs =

√

∂p/∂e, rep-
resenting the accelerating power of the fluid. It is the aim of this work to provide
a reliable equation of state.

Hydrodynamics can only be applied successfully when the system, which, in
principle, has to consist of a large number of particles, has reached local thermal
equilibrium [34]. As created fireballs are small and, thus, pressure gradients big,
and the expansion rates of created matter are large, thermalization can only be
obtained by sufficiently fast momentum transfer rates demanding a life-time of
the fireball which is sufficiantly larger than the inverse reaction rate among the
particles. Whereas after the Big Bang the QGP existed for a rather long period
of about 10−5 seconds, the bombarding energies reached in Little Bangs are much
smaller implying much smaller life-times of the expanding medium. Commonly,
a thermalization time scale of about 0.6 fm/c is assumed. This demands a rapid
equilibration due to large fluctuations. The hydrodynamic description remains
valid as long as the particle’s mean free paths are much smaller than the geometric
size of the expanding system as well as its Hubble radius.

The bombarding energy is usually specified by the centre-of-mass energy per
colliding nucleon pair,

√
sNN . With higher bombarding energies more entropy

is produced. In contrast, the baryon number is restricted by the initial num-
ber of nucleons. Thus, with increasing

√
sNN the entropy per baryon ratio is in-

creased. Starting with the Alternating Gradient Synchrotron (AGS) in Brookhaven
with

√
sNN = 4.6 GeV and the Super Proton Synchrotron (SPS) in Geneva with√

sNN = 17.2 GeV, higher bombarding energies, for studying in detail the crossover
realm, were reached at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven,
at maximum

√
sNN = 200 GeV. With an envisaged operation start in 2008, even

larger
√
sNN = 5500 GeV will be reached at the Large Hadron Collider (LHC) in

Geneva. Turning again to smaller beam energies, scans into other fascinating re-
gions of the QCD phase diagram including the first-order phase transition regime,
the QCD critical point or even superconducting phases are envisaged. According
programs include experiments at the SPS (NA61), the planned future Facility for
Antiproton and Ion Research (FAIR) in Darmstadt with

√
sNN = 5 . . . 45 GeV

starting presumably in 2015, or the systematic low energy scan at RHIC down to
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energies
√
sNN = 5 GeV in the near future. In fact, at FAIR/SIS300 phenomena

at maximum baryon density reachable in heavy-ion collisions will be investigated.

In order to explore the features in the QCD phase diagram at finite T and
µB, signalling observables need to be studied. For instance, one signature of the
critical point should be the non-monotonous behaviour of fluctuations (cf. Ap-
pendix A.2) with

√
sNN scans [35] which increase and decrease around CP when

lowering
√
sNN . This is accompanied by divergencies in various susceptibilities

which are proportional to the magnitude of the corresponding fluctuations. Close
to CP, increased event-by-event fluctuations in many different experimental ob-
servables [35–40], such as electric charge, baryon number or mean transverse mo-
mentum, are expected. If only charged baryons can be detected, fluctuations in
the number of protons [41] might provide a signature of CP. (For an overview
cf. [42, 43] and references therein.) Besides, fluctuations, for instance in the chi-
ral condensate [44], are debated as signatures of the confinement/deconfinement
process [45].

Many indications for the transient creation of a deconfined phase of QCD matter
in heavy-ion collisions have been accumulated. As the bulk of emerging particles
and their yields can be described successfully by a thermal statistical model [46],
the picture of a thermally equilibrated system is supported. Deduced chemical
freeze-out points [47–51] (Tf.o., µB,f.o.) suggest a transition temperature of about
170 MeV at µB = 0 with a plateau visible in Tf.o.(

√
sNN ) for increasing

√
sNN .

This is in line with Hagedorn’s hypothesis of a limiting temperature [52] and should
be confirmed in experiments at the LHC. In fact, by increasing

√
sNN it becomes

easier to create more baryon–anti-baryon pairs, i. e. the number of particles in the
system is increased and thus the number of scattering centres necessary for thermal
equilibration. In the vicinity of CP, freeze-out points cluster in the region close to
it for various different

√
sNN at higher Tf.o. [53]. This is due to the divergence of

the specific heat at CP and the first-order phase transition for µB > µE
B resulting

in a longer persistence of the fireball system in the critical region around CP.

Much evidence for the successful applicability of ideal relativistic hydrodynam-
ics for describing the expansion stage of strongly interacting matter at RHIC ex-
periments has been assembled [54–58]. For this, a rapid thermalization due to
strong interactions among the constituents [22,59–61] is required. In fact, the no-
tion of a strongly coupled QGP was established [62]. One characteristic of the
applicability of hydrodynamics is the observation of collective flow of bulk matter
which is build up by strong pressure gradients. These pressure gradients provide
the thermodynamic force driving the expansion.

For non-central heavy-ion collisions, i. e. with nonzero impact parameter b, the
initial (almond shaped) geometry is aspherical in the plane perpendicular to the
beam axis. This original high asymmetry in coordinate space translates, through
the appearance of a radially non-symmetric flow governed by large pressure gradi-
ents in the plane of the collision, into an expansion velocity profile which is pro-
nounced in that direction, as exhibited in Figure 1.2. The corresponding anisotropy
in momentum space results in an azimuthal anisotropy in the particle emission for
momenta, pT , perpendicular to the beam axis. The distribution of these momenta
can be quantified by a Fourier decomposition of the emitted hadrons transverse
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Figure 1.2: For non-central collisions, the nuclear overlap region ex-
hibits an almond-like shape (left panel). This spatial anisotropy
is accompanied by larger pressure gradients in the collision plane
(x−z) compared to the plane perpendicular to it (y−z). As a result
the velocity profile (right panel) exhibits according anisotropies
which lead to a particle emission being azimuthally asymmet-
ric in the momenta pT perperdicular to the beam axis (z). Im-
age adapted by permission from Macmillan Publishers Ltd: Na-
ture [34], copyright (2007).

momentum spectra

dN

pTdpTdy dφ
=

dN

2π pTdpTdy
(1 + 2 v2(pT , y) cos 2φ+ . . . ) (1.5)

in the azimuthal emission angle φ around the beam axis relative to the reac-
tion plane with rapidity y. The second harmonic Fourier coefficient v2(pT , y) =
〈cos 2φ〉pT ,y is called elliptic flow.

The larger the initial energy density, the longer the hydrodynamic stage and,
thus, the larger the overall anisotropies. At RHIC, large v2 was observed showing a
characteristic transverse momentum, pT , and mass dependence, i. e. v2(pT ) differs
for different particle species. The observation of collective flow gives constraints on
the equation of state as these experimental data cannot be explained by a purely
hadronic EoS. This shows the importance of quark and gluon degrees of freedom for
energy densities above a critical energy density of about ec = (0.7± 0.2) GeV/fm3.

As transverse momentum spectra or elliptic flow of various particle species ob-
served at RHIC could successfully be described by means of ideal hydrodynamics,
a small shear viscosity to entropy density ratio was deduced from experimental
data [26, 63, 64]. Various approaches for a theoretical explanation of the observed
smallness exist, e. g. [65,66]. Nonetheless, it is the goal of heavy-ion collision pro-
grams to extract experimentally the equation of state as well as transport properties
of the quark-gluon plasma.

Compact stellar objects

The physics of neutron stars deals with the domain of small temperatures but large
baryon densities. Typical neutron stars possess a mass M ∼ 1.4M⊙ (M⊙ denotes
the solar mass) and radii R . 15 Km, while also extreme cases of neutron star
candidates with M > 2M⊙, R > 15 Km and rotational frequencies above 10 Hz
have been observed. Their structure is dictated by the EoS which is constraint by
astronomical observations. However, at these large baryon densities of about ten
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times nuclear matter density, a firm knowledge on the QCD equation of state is
currently rather scarce. Gross-properties like the mass, radius or the structure of
spherical, non-rotating stars are determined by the Tolman-Oppenheimer-Volkov
(TOV) equations reading

dm

dr
= 4πr2e(r) , (1.6)

dp

dr
= −G

r2
[e(r) + p(r)]

(

m(r) + 4πr3p(r)
)

[

1 − 2Gm(r)

r

]−1

, (1.7)

where m is the gravitational mass inside a sphere of radius r including the gravi-
tational binding energy.

The TOV equations can be solved by supplementing an interrelation e(p) at
T ≃ 0, where the radius R of the star is obtained from demanding p(R) = 0.
The corresponding star mass is then given by M = m(R). While neutron stars
with masses M ∼ 2M⊙ are presumably nuclear or hybrid stars with quark matter
cores, neutron stars with M . 1.5M⊙ must involve some kind of exotic matter
such as hyperons or quark matter. Nonetheless, strange quark matter in the colour-
flavour locked phase is forbidden due to gravitational instabilities [67–69]. Although
measurements of the relation between M and R can rule out some of the EoS (for
instance, M > 2.3M⊙ is not possible with any realistic EoS), only observations
of the cooling behaviour can distinguish between different equations of state [70].
By adding rotational degrees of freedom, more complicated equations need to be
solved.

Concept of quasiparticles

The QCD equation of state can be obtained from various systematic approaches
such as first-principle numerical calculations on a discretized finite space-time grid,
called lattice QCD calculations, improved perturbative QCD or chiral perturba-
tion theory but also from various phenomenological models. All these approaches
are restricted to a certain region of applicability in the QCD thermodynamic pa-
rameter space. The advantage of phenomenological models lies in the fact that
their regions of applicability overlap with those of the systematic approaches, thus,
giving constraints for the model parameters. For an overview, cf. Appendix A.3.
In this thesis, the QCD EoS is obtained and discussed within a phenomenological
quasiparticle model.

The notion of quasiparticles has proven to be a powerful and useful concept
for understanding the properties of strongly correlated systems (cf. [71] for an
overview). In 1941, L. D. Landau [24] introduced this concept in condensed mat-
ter physics to explain superfluidity and the thermodynamics of superfluid 4He.
B. M. Galitzkii and A. B. Migdal derived in 1958 [72] a consistent microscopic
theory of quasiparticles using Green’s functions. Accordingly, quasi-stationary ex-
citations are expressed via the partition function Z viz

Z =
∏

α

(

1 ∓ e−
ξα(V )

T

)∓1
× Zint , (1.8)

where ξα = |Reωα − µ| depends on the volume and on a set of parameters α de-
scribing the system. ωα are poles of the respective Green’s functions supposing
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|Imωα| ≪ |Reωα − µ| for quasi-stationary excitations. Thus, ωα(~p) quantifies the
dispersion relation of the quasiparticles. Eq. (1.8) states that for describing strongly
correlated systems it suffices to know the spectra of elementary quasi-stationary
excitations which carry the same quantum numbers as the corresponding free par-
ticles of the system under consideration. A solid or a fluid is, thus, considered as
a dilute gas of weakly interacting quasiparticles with possible mutual interactions
encoded in Zint.

The existence of quasi-stationary collective modes, carrying the same elemen-
tary motion, allows for an efficient description of the system in terms of single-
particle states with approximately additive energies and momenta. Accumulating
collective phenomena in such a way, certainly, leads to a simplification in the de-
scription of the strongly correlated many-particle system. Furthermore, the life-
time of these single-particle states is limited by the interaction among the modes.

The complexity of the correlations is encoded in the dispersion relations of the
quasiparticles. In the case of QCD at finite T and µ, one can attribute effective
state dependent masses M(T, µ) to the excitations such that the dispersion relation
ωα = ωα(k,M(T, µ)) becomes medium dependent. However, as first noted by
Gorenstein and Yang [73], this introduces explicitly a temperature dependence into
the Hamiltonian. In order to maintain thermodynamic consistency, an effective
Hamiltonian Heff = Hid +E∗

0 has to be considered, where E∗
0(M(T, µ)) represents

the system’s energy in the absence of any quasiparticle excitations. For temperature
independent Hamiltonians, the zero point energy is constant and, thus, usually
discarded. Here, however, this zero point energy becomes T and µ dependent and
cannot be subtracted from the energy spectrum, i. e. changing T and µ also affects
E∗

0 .

In the thermodynamic potential, medium contributions from E∗
0 , which have to

be taken into account, assemble in the bag function B = lim
V →∞

E∗
0/V in the thermo-

dynamic limit. This ansatz will be used in the following work. In a generalization
of the argument of Gorenstein and Yang, it was recently shown [74] that innumer-
able other possibilities, in principle, exist for including a temperature dependent
Hamiltonian. For example, one could equally well include the whole interaction
energy into the quasiparticle masses as employed in a different quasiparticle model
approach [75,76].

Various different phenomenological models incorporating quasiparticles were
proposed in the literature. Among these, a quark-gluon liquid model [77], a quasi-
particle model with T and µ dependent confinement factor accounting for the
reduction in the number of thermodynamically active degrees of freedom when
approaching the phase boundary [78,79], a HTL quasiparticle model including mo-
mentum dependent HTL self-energies, Landau damping and collective modes [80],
a model including quark and gluon collisional widths [81, 82] and a dynamical
quasiparticle model [83] have to be mentioned.

The focus of the present work represents the already emphasized equation of
state of hot deconfined QCD matter at nonzero net baryon density. For this pur-
pose, the formerly developed quasiparticle model [84–87] based on dressed quark
and gluon degrees of freedom and aiming at an appropriate description of QCD
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thermodynamics is reviewed in section 2.1 and then in the subsequent sections
of chapter 2 extended into two different directions. In section 2.3, an imaginary
chemical potential is considered, and in section 2.4 the model incorporating two
independent real quark chemical potentials is introduced. Both extensions of the
quasiparticle description of QCD matter aim at providing access into the realm
of nonzero baryon densities and allow for a sensitive test of the model’s ability to
extrapolate to finite nB by comparison with available first-principle lattice QCD
results. In addition, in section 2.2 the employed quasiparticle picture is put on
firmer ground by relating it to QCD via the Φ-functional formalism performing
mathematical simplifications.

Chapter 3 is devoted to a detailed comparison of the quasiparticle model with
available lattice QCD results for finite temperature and zero as well as nonzero
net baryon density. Starting with QCD thermodynamics at zero nB , basic bulk
thermodynamic quantities for different numbers of active quark flavour degrees of
freedom are successfully compared in section 3.1. Furthermore, the applicability of
the model to extrapolate results to different quark mass parameters, in particular
to the chiral limit, as well as to asymptotically large temperatures is shown which
demonstrates the predictive power of the quasiparticle model. In section 3.2, ef-
fects of nonzero net baryon density are considered. In particular, investigations
of baryon number, electric charge and isovector susceptibilities, of diagonal and
off-diagonal susceptibilities, of QCD thermodynamics and the phase diagram for
imaginary chemical potential as well as the analytic continuation of these results
to real chemical potential have to be mentioned. Furthermore, studies concerning
isentropic evolutionary paths in the phase diagram and the equation of state along
them, physical implications of attributing different quark flavour chemical poten-
tials and a discussion of the chemical potential dependence in the quasiparticle
dispersion relations used in the model are presented. All these considerations in
section 3.2 aim at proving the applicability of the quasiparticle model to extrap-
olate the EoS from zero net baryon density towards nonzero nB , and indeed, the
model turns out to faithfully describe the baryon-density dependence in the QCD
equation of state in a consistent picture. Section 3.3 deals with the equation of
state of strongly interacting matter for Nf = 2 + 1. Besides the important depen-
dence p(e, nB), scaling properties of the resulting EoS with Nf , the quark mass
parameters and the numerical value of Tc are worked out. In addition, it is shown
that p(e, nB) is rather robust in the regions of small and large energy densities.

The constructed EoS is applied in hydrodynamic simulations for heavy-ion col-
lision experiments in chapter 4. As the large energy density part, based on lattice
QCD results parametrized by the model, does not continuously match in the tran-
sition region with a hadron resonance gas equation of state, reliable at small energy
densities, an interpolation prescription is outlined in section 4.1 resulting in a whole
family of equations of state. This family of equations of state takes into account
uncertainties arising in the transition region which are also discussed in section 3.3.
In section 4.2, exemplarily two members of the family of equations of state are em-
ployed in hydrodynamic simulations, first, with initial conditions relevant for top
RHIC energies and then with assumed LHC initial conditions providing compar-
isons of and predictions for transverse momentum spectra and differential elliptic
flow of, in particular, directly emitted strange baryons. Finally, section 4.3 is de-
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voted to recent developments, discussing a new EoS which continuously combines
small and large energy density regimes.

In chapter 5, effects of including static QCD critical point phenomena into the
equation of state are discussed. Constructing singular contributions from a para-
metric representation of the thermodynamic potential in section 5.1, divergencies
in appropriate susceptibilities at CP and a first-order behaviour in entropy and
net baryon densities across the phase boundary in the first-order phase transition
region are recovered. These considerations are, first, discussed in the context of a
toy model approach in section 5.2 and, then, extended to the quasiparticle model
in section 5.3. With these preparations, possible CP effects in the QCD equation
of state which may be relevant for FAIR physics can be discussed in the future.

A summary and an outlook on further future investigations is given in chap-
ter 6. More details on the theory of strong interactions, the thermodynamics of
QCD and a discussion of different approaches for accessing the QCD equation of
state are relegated to Appendix A. For better readability, the flow equations solv-
ing for the effective coupling, as important ingredient of the model accounting for
the non-perturbative behaviour, in the entire thermodynamic parameter space are
posted in Appendix B, first, for the quasiparticle model reviewed in section 2.1, but
also for both extensions of the model presented in sections 2.3 and 2.4. In addition,
a discussion of the chemical potential dependence in the quasiparticle dispersion
relations which is related to the unique determination of different susceptibilities
can be found in Appendix B. Finally, Appendix C touches the problem of ex-
trapolating numerical lattice QCD results obtained on a finite space-time grid to
thermodynamic and continuum limits.

Parts of the results presented in this work are already published in [88–99].
In addition, the extrapolation of the EoS into the region of asymptotically large
temperatures in section 3.1.3, the discussion of scaling properties of the equation
of state in section 3.3.3 and the properties of the new EoS combining continu-
ously small and large energy density regions in section 4.3 represent recent and yet
unpublished results.





2 Quasiparticle Model

In this chapter, the quasiparticle model (QPM), which will be used within this
work, is introduced. It basically rests on the developments in [84–87] which were
inspired by ideas in [100, 101]. Within the QPM, the QGP is considered as a sys-
tem in thermal equilibrium consisting of prominent quasiparticle excitations with
dispersion relations of the type ω2

i = k2 + Πi + m2
i , where Πi is the self-energy.

Assuming real self-energies, they are approximated by Πi(T, µ) in a certain momen-
tum (k) range and may be combined with m2

i to result in effective state dependent
masses Mi(T, µ). Bulk properties, given by thermodynamic integrals, are governed
by hard momenta k ∼ T , µ such that, in the weak coupling regime [102, 103],
the relevant modes are merely transversal gluons and (anti-)quark single-particle
excitations. Collective modes, i. e. plasmons and (anti-)plasminos, are exponen-
tially suppressed, instead. Soft and ultra-hard modes are expected to influence
thermodynamic quantities rather less.

Details of the QPM for one independent chemical potential are explained in sec-
tion 2.1 followed by a theoretical motivation in section 2.2. In sections 2.3 and 2.4,
the QPM for imaginary chemical potential and for two independent chemical po-
tentials, respectively, is considered.

2.1 Model description

Being mainly interested in providing an equation of state applicable for hydro-
dynamic calculations, the strangeness neutrality constraint, which is due to initial
zero strangeness in heavy-ion collisions and the very short time available during the
collision process, allows to set for the strange (s) quark chemical potential µs = 0.
(Matter anti-matter symmetric systems are realized for according zero chemical
potential.) Furthermore, zero net electric charge in the fireball matter created
near midrapidity in heavy-ion collisions as well as degenerate up (u) and down
(d) quarks with chemical potentials µu and µd, respectively, can be assumed such
that for the isovector chemical potential, which is fixed by the net electric charge
density of the medium and associated with the (in strong interaction processes)
conserved quantum number of isospin, one sets µI ≡ (µu −µd)/2 = 0. In this case,
a system with one independent quark flavour chemical potential µu = µd = µ is
described such that the quark chemical potential and the baryo-chemical potential
associated with net quark number and net baryon number densities, respectively,
read µq ≡ (µu + µd)/2 = µ and µB ≡ 3µq = 3µ. Such a system will be considered
in this section. In principle, however, different quark flavour chemical potentials
could be taken into account altering the chemical potential dependence of the mass
gaps Mi(T, µ), as discussed in section 2.4. As the number of gluons, being gauge
bosons of the strong interaction, is not conserved in thermal equilibrium, the gluon
chemical potential must be zero, µg ≡ 0.
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In the phenomenological quasiparticle model, the pressure p, which is considered
as primary thermodynamic potential in the thermodynamic limit, is constructed
by assuming a quasiparticle picture for the u, d and s quarks and for the gluons
(g) viz

p(T, µ) =
∑

i=u,d,s,g

pi(T, µi,Mi(T, µ)) −B(Mu,d,s,g(T, µ)) , (2.1)

where B depends on T and µ only via Mi(T, µ), while the partial pressures with
l = u, d, s read

pl(T, µl,Ml(T, µ)) =
dl

2π2
T

∞
∫

0

dkk2

(

ln
[

1 + e−{ωl[k,Ml(T,µ)]−µl}/T
]

+ ln
[

1 + e−{ωl[k,Ml(T,µ)]+µl}/T
]

)

, (2.2)

pg(T, µg,Mg(T, µ)) = − dg

π2
T

∞
∫

0

dkk2 ln
[

1 − e−ωg [k,Mg(T,µ)]/T
]

. (2.3)

Here, dl = du = dd = ds = 2Nc and dg = N2
c − 1 represent the spin-colour

degeneracy factors. The two different transversal gluon polarizations are already
absorbed in the integral in Eq. (2.3).

The quasiparticles are assumed to propagate on-shell, i. e. with real energies

ωi given by dispersion relations of the form ωi =
√

k2 +M2
i (T, µ) which hold for

weakly interacting quarks and gluons with thermal momenta k and mass gaps
Mi(T, µ). The according on-shell spectral functions result in zero residual inter-
actions among the quasiparticles, i. e. with the notation introduced in chapter 1,
Zint = 1. Thus, the corresponding infinite mean free paths translate into a large
viscosity of the plasma in contrast to experimental observations at RHIC. How-
ever, it was shown in [66] that an inclusion of finite (even large) collisional widths
in the quasiparticle spectral functions yields a small viscosity in agreement with
experiments and an equally good description of lattice QCD thermodynamics. As,
however, the equation of state necessary for hydrodynamics is independent of the
underlying microscopic picture, the much simpler on-shell quasiparticle description
will be used in this work.

With Eqs. (2.1)-(2.3), the QPM pressure is expressed in terms of standard
phase space integrals over thermal equilibrium distribution functions for quasipar-
ticles with quark and gluon quantum numbers but medium dependent dispersion
relations. Formally, these expressions look like the ones for the ideal gas pressures,
though, with the substantial modification Mi(T, µ). The partial pressure integrals
in Eqs. (2.2) and (2.3) are dominated by momenta of order k ∼ T for small µ.
Thus, weak coupling perturbation theory suggests that the dominant propagating
modes in the plasma are transversal gluon-like and (anti)quark-like excitations,
whereas plasmons and (anti)plasminos are exponentially suppressed.

In principle, within Eqs. (2.1)-(2.3) different numbers of quark flavours can be
investigated. For instance, a plasma containing two light and one heavier quark
flavours is inherent by considering u and d quarks as degenerate while attributing a
different dispersion relation to the s quark. Nf = 2 is then obtained by neglecting
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any s quark contributions (ds = 0) and other Nf systems are maintained from this
by considering the appropriate number of quark degrees of freedom in the sum of
Eq. (2.1).

Thermodynamic quantities like entropy density or net quark flavour number
densities result from Eq. (1.2) taking into account the stationarity property of the
thermodynamic potential with respect to the effective quasiparticle masses [73]

δp

δM2
i

∣

∣

∣

∣

T,µ,M2
j 6=i

= 0 , (2.4)

resulting in the important condition

∂B

∂M2
i

=
∂pi

∂M2
i

. (2.5)

They read s =
∑

i=u,d,s,g

si =
∂p

∂T

∣

∣

∣

∣

µ

with

sl =
dl

2π2

∞
∫

0

dkk2

(

ln
[

1 + e−{ωl−µl}/T
]

+
{ωl − µl}/T

[

e{ωl−µl}/T + 1
]

+[µl → −µl]

)

, (2.6)

sg = − dg

π2

∞
∫

0

dkk2

(

ln
[

1 − e−ωg/T
]

− ωg/T
[

eωg/T − 1
]

)

(2.7)

for the entropy density and

nl =
∂p

∂µl

∣

∣

∣

∣

T

=
dl

2π2

∞
∫

0

dkk2

(

1
[

e{ωl−µl}/T + 1
] − 1

[

e{ωl+µl}/T + 1
]

)

(2.8)

for the net quark flavour number densities. In the case applicable for heavy-ion
collisions near midrapidity as considered above with µs = 0 and µI = 0 and
assuming, furthermore, degenerate u and d quarks, one finds ns = 0, nu = nd

and for the net quark number density nq ≡ nu + nd = 3nB while the isovector
density nI ≡ nu−nd = 0. This underlines the picture that in the QPM the baryon
charge is carried by quark-like quasiparticle excitations.

Entropy density as well as net quark flavour number densities are explicitly
determined from quasiparticle contributions with zero residual interaction terms.
The additional derivative terms associated with Mi(T, µ) are compensated by the
mean field interaction term B via

∂B

∂T

∣

∣

∣

∣

µ

=
∑

i=u,d,s,g

(

∂pi(T, µi,Mi(T, µ))

∂M2
i

∂M2
i (T, µ)

∂T

∣

∣

∣

∣

µ

)

, (2.9)

∂B

∂µ

∣

∣

∣

∣

T

=
∑

i=u,d,s,g

(

∂pi(T, µi,Mi(T, µ))

∂M2
i

∂M2
i (T, µ)

∂µ

∣

∣

∣

∣

T

)

, (2.10)
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where

∂pl

∂M2
l

= − dl

2π2

∞
∫

0

dk
k2

2ωl

(

1
[

e{ωl−µl}/T + 1
] +

1
[

e{ωl+µl}/T + 1
]

)

, (2.11)

∂pg

∂M2
g

= − dg

π2

∞
∫

0

dk
k2

2ωg

1
[

eωg/T − 1
] . (2.12)

This assumes that, as defined in Eq. (2.1), all temperature and chemical potential
dependence of the mean field interaction B is merely inherent in the functions
Mi(T, µ). The explicit derivative expressions of M2

i (T, µ) in Eqs. (2.9) and (2.10)
are relegated to Appendix B.1. B is determined by an appropriate line integral in
the thermodynamic parameter space viz

B = B0 +

∫

(

∂B

∂T

∣

∣

∣

∣

µ

dT +
∂B

∂µ

∣

∣

∣

∣

T

dµ

)

(2.13)

with integration constant B0 which needs to be fixed. For instance, at µ = 0 the line
integral is chosen along the temperature axis from the pseudo-critical temperature
Tc to temperature T with integration constant B0 ≡ B(Tc).

One specific choice for the effective quasiparticle masses is

M2
l (T, µ) = m2

l + 2mlM+,l(T, µ) + 2M2
+,l(T, µ) , (2.14)

M2
g (T, µ) = m2

∞(T, µ) , (2.15)

with

2M2
+,l(T, µ) =

1

3

[

T 2 +
µ2

l

π2

]

g2 , (2.16)

m2
∞(T, µ) =

1

12

(

[6 +Nf ]T 2 + 3
∑

l

µ2
l

π2

)

g2 , (2.17)

which are related to the asymptotic forms of the gauge independent hard thermal
(dense) loop self-energies [102, 103]. Note again that in the case considered in
this section µs = 0 while µu = µd = µ. Thus, the effective quasiparticle masses
depend on T and one chemical potential µ, only. While the form of M2

g (T, µ) is
actually defined only for zero bare quark masses, the definition of M2

l (T, µ) takes
into account a finite bare quark mass ml as, for instance, employed in lattice QCD
calculations. In some lattice calculation set-ups, for example, the bare quark masses
depend on temperature, ml = ml(T ). When comparing the QPM thermodynamics
with lattice QCD results, in the following, ml entering Eq. (2.14) will be adjusted
to the values used on the lattice. (Note that mg = 0.)

The approximation in Eq. (2.14) is motivated from perturbative considerations
of the high temperature limit of the renormalized quark propagator for small quark
masses ml [104] and the assumption that the relation between asymptotic mass and
plasma frequency known for zero quark masses holds approximately true also for
small ml. In the case of degenerate u and d quarks, mu = md ≡ mq holds such
that one finds ωu = ωd ≡ ωq since M2

+,u = M2
+,d ≡M2

+,q.
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Some of the model assumptions are inspired by perturbation theory, i. e. strictly
valid only in the weak coupling regime. For instance, one assumes that also close to
the pseudo-critical temperature Tc collective excitations can be neglected and that
the quasiparticle dispersion relations can be approximated by the simplistic on-shell
expressions stated above with energy and momentum independent self-energies.
Nonetheless, perturbation theory is expected to break down in the vicinity of the
phase boundary. Thus, non-perturbative effects in the vicinity of Tc need to be
modeled in the QPM which is achieved by replacing the perturbative expression for
the running coupling g2 entering Eqs. (2.16) and (2.17) by an effective coupling G2

which depends on temperature and chemical potential. The T and µ dependence in
G2 is dictated by the T and µ dependence of thermodynamic quantities from lattice
QCD. Thus, comparisons with lattice QCD results serve for a test of the model
and check whether the QPM can cope with the complexity of QCD. Note that the
expression for p in Eqs. (2.1)-(2.3) is highly non-perturbative in G2 as within a
series expansion in powers of G2 a thermodynamically consistent resummation of
all orders in G2 is found.

The temperature and chemical potential dependence of the effective coupling
is obtained from solving a quasi-linear partial differential equation of first-order
which is based on Maxwell’s relation for the pressure, i. e. from

∂2p

∂µ∂T
=
∂s

∂µ
=
∂nq

∂T
=

∂2p

∂T∂µ
(2.18)

follows

aµ
∂G2

∂µ
+ aT

∂G2

∂T
= b . (2.19)

The coefficients aµ, aT and b depending on T , µ and G2(T, µ) are listed in Ap-
pendix B.1. This flow equation Eq. (2.19) is solved for G2(T, µ) by the method of
characteristics starting from an initial condition on a Cauchy surface in the ther-
modynamic parameter space, for instance from knowing G2(T, µ = 0). Thus, the
flow equation transports information about G2 from the temperature axis, once
the model is adjusted to lattice QCD results, to nonzero chemical potential and,
thus, determines to a large extent the nB dependence of the EoS. One possibility
to parametrize G2(T, µ = 0) is via1

G2(T, µ=0) =







G2
2−loop(T ), T ≥Tc,

G2
2−loop(Tc) + b

(

1− T
Tc

)

, T <Tc .
(2.20)

In order to recover perturbation theory in the (massless) high temperature limit,
G2

2−loop is taken to have the same form as the perturbative running coupling at
2-loop order

G2
2−loop(T ) =

16π2

β0 log ζ2

(

1 − 2β1

β0

log(log ζ2)

log ζ2

)

(2.21)

with ζ = λ(T −Ts)/Tc, β0 = 11− 2
3Nf and β1 = 51− 19

3 Nf . This phenomenological
parametrization contains two parameters, a scale parameter λ and a temperature
shift Ts which regulates the infrared divergence in the logarithmic dependence of

1Different definitions for the parametrization of G2 where studied in [105].
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the coupling by shifting it somewhat below the pseudo-critical temperature, where,
anyway below Tc, a continuous linear behaviour with parameter b is postulated.
The parameters entering G2 depend in general on the considered number of quark
flavours and the quark mass parameters. The change in the curvature behaviour of
G2 at Tc is further discussed in chapters 3 and 5. For large T , Eq. (2.21) resembles
the perturbative result of the QCD running coupling.

For nonzero chemical potential, B(T, µ) can, for instance, be determined by first
integrating along the temperature axis from Tc to T̃ with integration constant B0 ≡
B(Tc), and then performing the line integral in Eq. (2.13) along the characteristic
curve which is the solution of Eq. (2.19) emerging at T̃ which eventually approaches
T .

Susceptibilities represent second-order derivatives of the pressure in the chemi-
cal potential direction and, thus, serve as sensible quantities probing baryon-density
effects in the equation of state. For instance, the quark number susceptibility reads

χq =
∂nq

∂µ

∣

∣

∣

∣

T

=
dq

2π2T

∞
∫

0

dkk2

(

e{ωq−µ}/T

[e{ωq−µ}/T + 1]2
+

e{ωq+µ}/T

[e{ωq+µ}/T + 1]2

−
{

e{ωq−µ}/T

[e{ωq−µ}/T + 1]2
− e{ωq+µ}/T

[e{ωq+µ}/T + 1]2

}

1

2ωq

∂M2
q

∂µ

∣

∣

∣

∣

∣

T

)

, (2.22)

where dq = 2Nc Nq for degenerate u and d quarks (Nq = Nf = 2 denotes the
number of degenerate light quark flavours). The derivative of the effective quark
quasiparticle mass is given by Eq. (B.3) in Appendix B.1.

2.2 Theoretical motivation

It would be desirable to relate the QPM intuitively introduced in section 2.1 with
QCD as the fundamental microscopic gauge field theory of strong interactions. In
order to motivate the quasiparticle model, a chain of approximations is manda-
tory starting from the Φ-functional approach to QCD [94, 106]. This is based on
the pioneering work in [107–111] containing a more rigorous approach than the
one presented below. Note that here merely formal mathematical manipulations
are imposed and that the assumptions entering the model, which are based on
perturbation theory, need to be justified by confronting the model with the non-
perturbative lattice QCD results.

It is favourable to concentrate on entropy density s and net number density n, as
both turn out to possess a simple structure supporting the picture of quasiparticle
excitations. Other thermodynamic quantities such as pressure or energy density
can be determined from s and n by integration.

In the Φ-functional approach to QCD, where the variational parameters are
the dressed propagators [112,113], lnZ can be expressed as a functional of dressed
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propagators of gluons D, quarks S and Faddeev-Popov ghost fields G,

lnZ[D,S,G] = −1

2
Tr[lnD−1 − ΠD] + Tr[lnS−1 − ΣS]

+Tr[lnG−1 − ΞG] − Φ[D,S,G] . (2.23)

Here, ghost field contributions compensate for possible unphysical degrees of free-
dom in the gluon propagator. While the propagators in Eq. (2.23) depend on the
specific gauge, lnZ must be gauge independent. For convenience, the Coulomb
gauge is chosen in the following in which ghost fields do not propagate and the
gluon propagator consists only of the physical transversal and longitudinal modes.
The functional Φ[D,S] is given by the infinite sum of all 2 -particle irreducible
skeleton diagrams constructed from D and S.

The self-energies in Eq. (2.23) are related to the dressed propagators by Dyson’s
equations

Π[D] = D−1 −D−1
0 , Σ[S] = S−1 − S−1

0 , (2.24)

where D0 and S0 represent the bare propagators of gluon and quark fields, respec-
tively. Demanding the stationarity of lnZ under functional variation with respect
to the dressed propagators [114] viz

δ lnZ[D,S]

δD
=
δ lnZ[D,S]

δS
= 0 , (2.25)

the self-energies follow self-consistently by cutting a dressed propagator line in Φ
resulting in the gap equations

Π = 2
δΦ[D,S]

δD
, Σ = −δΦ[D,S]

δS
. (2.26)

The trace ”Tr” in Eq. (2.23) has to be taken over all states of the relativistic
many-particle system. In the imaginary time formalism it can be rewritten in
the form Tr → trβV T

∑+∞
n=−∞

∫

d3k/(2π)3. Here, β = 1/T and ”tr” denotes the
remaining trace over occuring discrete indices including colour, flavour, Lorentz and
spinor indices. Introducing the four-momentum kν = (ω,~k) = (iωn, ~k), the sums
have to be taken over the Matsubara frequencies ωn = 2nπT (or (2n+ 1)πT − iµ)
for gluons (or quarks). For simplicity, only one quark chemical potential µ is
considered in the following. They can be evaluated by using standard contour
integration techniques in the complex ω-plane [102, 103] wrapping up the poles of
the propagators. Expressing the analytic propagators in terms of their spectral
densities ρ, one can define

ρD(S)(ω, |~k|) = 2 lim
ǫ→0

ImD(S)(ω + iǫ, |~k|) (2.27)

for real ω. Similarly, the imaginary parts of functions of the analytic propagators
obeying the same pole structures can be defined. Hence, lnZ reads with retarded
propagators D and S depending on ω and k = |~k|

T

V
lnZ[D,S] = −tr

∫

d4k

(2π)4
n(ω) Im[lnD−1 − ΠD]

−2tr

∫

d4k

(2π)4
f(ω) Im[lnS−1 − ΣS] − T

V
Φ[D,S] , (2.28)
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where
∫

d4k =
∫

d3k
∫

dω, and n(ω) = (eβω − 1)−1 (f(ω) = (eβ{ω−µ} + 1)−1)
denotes the thermal equilibrium statistical distribution function for gluons (quarks
with chemical potential µ).

Due to the stationarity property in Eq. (2.25), entropy density s =
∂(T lnZ/V )/∂T and net number density n = ∂(T lnZ/V )/∂µ contain only ex-
plicit temperature and chemical potential derivatives of n(ω) and f(ω), although
the propagators in Eq. (2.28) depend implicitly on T and µ through their spec-
tral densities. Using Im (ΠD) = Im ΠReD + ReΠ ImD, one finds for the entropy
density s = sg + sq + s′ with

sg = −tr

∫

d4k

(2π)4
∂n(ω)

∂T
[Im lnD−1 − Im ΠReD] , (2.29)

sq = −2tr

∫

d4k

(2π)4
∂f(ω)

∂T
[Im lnS−1 − Im Σ ReS] , (2.30)

s′ = − ∂( T
V Φ[D,S])

∂T

∣

∣

∣

∣

∣

D,S

+ 2tr

∫

d4k

(2π)4
∂f(ω)

∂T
ReΣ ImS

+tr

∫

d4k

(2π)4
∂n(ω)

∂T
ReΠ ImD . (2.31)

Similarly, for the net number density one finds n = nq + n′ with

nq = −2tr

∫

d4k

(2π)4
∂f(ω)

∂µ
[Im lnS−1 − Im Σ ReS], (2.32)

n′ = 2tr

∫

d4k

(2π)4
∂f(ω)

∂µ
ReΣ ImS − ∂( T

V Φ[D,S])

∂µ

∣

∣

∣

∣

∣

D,S

. (2.33)

While the sum integrals in lnZ according to Eq. (2.28) contain ultraviolet divergen-
cies which must be regularized, the expressions for sg, sq and nq in Eqs. (2.29), (2.30)
and (2.32) are manifestly ultraviolet convergent because the derivatives of the sta-
tistical distribution functions vanish for ω → ±∞.

Self-consistent (or Φ-derivable) approximation schemes preserve the stationar-
ity property in Eq. (2.25) of lnZ when truncating the infinite sum in Φ at a specific
loop order while corresponding self-energies and propagators are self-consistently
evaluated from Eq. (2.26) and Dyson’s equations. Nevertheless, self-consistency
does not guarantee gauge invariance which is an important issue in truncated ex-
pansion schemes. In fact, by modifying propagators but leaving vertices unaffected
the Ward identities can be violated.

In the following, Φ is considered at 2-loop order which is diagrammatically
represented in Figure 2.1 showing also the according self-consistent self-energies.
Although vertex corrections can be implemented self-consistently [115], they turn
out to be negligible at 2-loop order in Φ [109]. In addition, s′ = n′ = 0 is found for
the residual contributions of entropy density and net number density in Eqs. (2.31)
and (2.33) at 2-loop order [109]. Thus, in particular s exhibits an additivity of the
individual quasiparticle contributions si which is a result of the 2-loop approach to
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Figure 2.1: Diagrammatic representation of the Φ functional at 2-loop
order. Wiggly (solid) lines denote gluons (quarks). The according
self-energies of gluons, Π, and quarks, Σ, are obtained by cutting
internal propagator lines according to Eq. (2.26).

Φ. This topological feature, being related to Eq. (2.26), has also been observed in
massless φ4-theory [116,117] and in QED [118].

Concentrating on the gluonic contribution sg, Eq. (2.29) can be rewritten by
using the identity

Im[lnD−1(ω, k)] = −πsgn(ω)Θ(−ReD−1(ω, k))

+ arctan

(

ImΠ(ω, k)

ReD−1(ω, k)

)

(2.34)

where −π/2 < arctan x < π/2. Hence, sg can be decomposed into sg = sg,QP +
sg,LD with

sg,QP = tr

∫

d3k

(2π)3

∞
∫

−∞

dω

2

∂n(ω)

∂T
sgn(ω)Θ(−ReD−1) , (2.35)

sg,LD = tr

∫

d4k

(2π)4
∂n(ω)

∂T

{

ImΠReD − arctan

(

ImΠ

ReD−1

)}

. (2.36)

Here, Eq. (2.35) accounts for the contribution of dynamical quasiparticles to sg

defined by the poles of D and Eq. (2.36) represents the contribution from the
continuum part of the spectral density associated with a cut below the light cone
|ω| < k [81,82,104,119] representing Landau damping. Applying a similar identity
for Im[lnS−1(ω, k)], sq and nq in Eqs. (2.30) and (2.32) can be decomposed similarly
into quasiparticle and Landau damping contributions (cf. [94,106]).

In Coulomb gauge, D consists of a longitudinal and a transverse part, DL and
DT . Similarly, the (massless) quark propagator consists of two different branches
with chirality either equal (positive energy states) or opposite (negative energy
states) to helicity. By employing the gauge invariant hard thermal loop (HTL)
expressions Π̂ (Σ̂) for the gluon (quark) self-energies in the following, one obtains
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gauge invariant approximations of s and n. The HTL expressions read [103]

Π̂L(ω, k) = 2m2
∞(T, µ)

(

1 − ω

2k
ln
ω + k

ω − k

)

, (2.37)

Π̂T (ω, k) =
1

2

(

2m2
∞(T, µ) +

ω2 − k2

k2
Π̂L(ω, k)

)

, (2.38)

Σ̂±(ω, k) =
M2

+,l(T, µ)

k

(

1 − ω ∓ k

2k
ln
ω + k

ω − k

)

, (2.39)

where m2
∞(T, µ) and M2

+,l(T, µ) are defined in section 2.1. Although being derived
originally for soft external momenta ω, k ∼ gT ≪ T , they coincide on the light
cone with complete 1-loop results [94,120]. Finite quark masses, ml < T , turn out
to be negligible [120]. The corresponding propagators are evaluated from Dyson’s
equations. In this way, a first assumption inspired by perturbation theory enters
into the model.

For k ∼ T, µ in the weak coupling regime, the poles of both, longitudinal
gluon propagator as well as abnormal fermion branch, have exponentially vanishing
residues [104,119] giving only minor contributions to the thermodynamics. Another
assumption of the model is that these collective modes can be neglected also in the
non-perturbative realm. Furthermore, on-shell quasiparticle dispersion relations
are considered by neglecting imaginary parts in the self-energies, i. e. ImΠ̂T =
ImΣ̂+ = 0. In this way, also Landau damping contributions to sg, sq and nq

vanish.

Performing the ω-integration in Eq. (2.35) (but now for D̂T ), the only contri-
butions stem from ω2 ≥ ω2

T because of the Θ-function, where ωT is the positive

solution of ω2 − k2 − Π̂T (ω, k) = 0. Therefore, the ω-integral in Eq. (2.35) reads

∞
∫

−∞

dω

2

∂n(ω)

∂T
sgn(ω)Θ(−ReD̂−1

T ) =

ωT
∫

∞

dω

2

(

∂n(−ω)

∂T
− ∂n(ω)

∂T

)

. (2.40)

The remaining integration is performed through an integration by parts using
−∂n(ω)/∂T = ∂n(−ω)/∂T = ∂σ(ω)/∂ω for the spectral function σ(ω) =
−n(ω) lnn(ω) + (1 + n(ω)) ln (1 + n(ω)). Taking the trace over polarization and
colour degrees of freedom for the transversal gluon modes, one finds

sg,QP = −2(N2
c − 1)

∫

d3k

(2π)3

(

ln(1 − e−βωT ) − βωT

eβωT − 1

)

. (2.41)

This expression is equivalent to Eq. (2.7).

Similarly, sq,QP can be evaluated, where non-vanishing contributions to the ω-

integration stem from ω ≥ ω+. Here, ω+ is the solution of ω − k − Σ̂+(ω, k) = 0
for the positive fermion branch. Using −∂f(ω)/∂T = ∂σ(ω)/∂ω for the spectral
function σ(ω) = −f(ω) ln f(ω) − (1 − f(ω)) ln(1 − f(ω)), the ω-integral can be
integrated by parts. Antiquarks are included by simply replacing µ → −µ in
f(ω). Taking the trace over remaining spin, colour and flavour degrees of freedom,
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assuming Nq degenerate (light) quark flavours, one finds

sq,QP = 2NcNq

∫

d3k

(2π)3

(

ln(1 + e−β{ω+−µ}) +
β{ω+ − µ}
eβ{ω+−µ} + 1

)

+2NcNq

∫

d3k

(2π)3

(

ln(1 + e−β{ω++µ}) +
β{ω+ + µ}
eβ{ω++µ} + 1

)

. (2.42)

This expression is equivalent to Eq. (2.6) now for Nf = Nq degenerate quark
flavours with one independent chemical potential µ. sg,QP and sq,QP in Eqs. (2.41)
and (2.42) represent entropy density contributions of non-interacting quasiparticles
with quantum numbers of transverse gluons (quarks) and dispersion relation ωT

(ω+).

Correspondingly, nq,QP is evaluated using −∂f(ω)/∂µ = ∂f(ω)/∂ω. Adding
antiquarks by µ→ −µ in f(ω) (note, now ∂f(ω)/∂µ = ∂f(ω)/∂ω) and taking the
trace, nq,QP reads

nq,QP = 2NcNq

∫

d3k
(2π)3

(

1

eβ{ω+−µ}+1
− 1

eβ{ω++µ}+1

)

, (2.43)

which is similar to Eq. (2.8) for Nf = Nq degenerate quark flavours and one in-
dependent µ. The quark number susceptibility χq follows from straightforward
differentiation with respect to µ.

Finally, the quasiparticle dispersion relations need to be specified. One pos-
sibility, guided by expressions from weak coupling expansions, was introduced in
section 2.1. The entering assumption is that for thermodynamic bulk properties
the form ω2

i = k2 +Πi +m2
i is sufficient, where Πi are approximated in the relevant

region of ω and k by constants in (ω, ~k), depending only on T and µ. The expres-
sions for Πi are, again, guided by weak coupling results. However, the replacement
of g2 by G2 in these dispersion relations is substantial for a proper description
of non-perturbative lattice QCD results beyond the agreement for T > 2Tc as
presented in [109].

Natural extensions of the quasiparticle model are obvious from the above pre-
sented chain of approximations. For instance, one could also include collective
modes as well as consider the full energy and momentum dependence of the HTL
self-energies including imaginary parts and, thus, Landau damping contributions,
as reported in [80,105,106].

2.3 Imaginary chemical potential

As pointed out in Appendix A.3, the notorious sign problem occuring in lattice
QCD simulations with finite (real) quark chemical potential can be circumvented
when formulating QCD thermodynamics, instead, in terms of a purely imaginary
chemical potential. Here, information is obtained by considering µ2 < 0 which, in
principle, allows for the identification µ = ±iµi. Strictly speaking, µ in section 2.1
is analytically continued to complex values µ = µr + iµi but with the restriction to
vanishing real parts µr = 0. Results obtained in this way have to be analytically
continued back to real chemical potentials into the µ2 > 0 half-plane in order to
gain physical information. This task can be accomplished, for instance, within
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the framework of phenomenological models which easily provide a translation be-
tween imaginary and real chemical potentials. There, the purely imaginary variable
µ = iµi is continued to the entire complex plane and finally the limit Imµ → 0
is taken. This procedure is clearly valid only within the analyticity domain of
QCD thermodynamics, in which general arguments guarantee the uniqueness of
this continuation.

The QCD partition function Z for imaginary chemical potential µ = iµi reads
according to Eq. (A.6) in Appendix A.2

Z(µi/T ) =

∫

D
[

ψ, ψ̄,Aa
α

]

e−SE
QCD exp







1/T
∫

0

dτ

∫

d3x iµiψ
†ψ






, (2.44)

which is a periodic function in µi/T with period 2π
3 for the underlying gauge group

of QCD, SU(3), [121]. This Roberge-Weiss periodicity means that Z(µi/T ) =
Z(µi/T + 2π

3 k) for any integer k which becomes obvious by showing that Z(µi/T )
is invariant under Z3-transformations of the form ψ → Uψ, Aα → UAαU

−1 −
i
g (∂αU)U−1, µi/T → µi/T+ 2π

3 k, where U(~x, τ) are elements of SU(3) with bound-

ary condition U(~x, β) = exp(−2
3πik)U(~x, 0), Aα = taAa

α with ta as fundamental
representations of the colour SU(3) Lie Algebra and τ is the Euclidean time. In
addition, the QCD partition function is even in µ, i. e. Z(µ) = Z(−µ), such that
one can focus on the positive identification µ = iµi, in the following.

In the high temperature region, the first derivative −d(T lnZ(µi/T ))/d(µi/T )
becomes discontinuous as a function of µi/T at µi/T = 2π

3 k+ π
3 while lnZ(µi/T ) is

analytic in the low temperature region with µi/T . This implies that the Roberge-
Weiss periodicity is characterized by lines of first-order Z3-transitions at µi/T =
2π
3 k + π

3 for all integers k and sufficiently high T , while for smaller temperatures
thermodynamic quantities behave analytically. (The first-order phase transition
nature of the Roberge-Weiss transition at high T was confirmed in finite volume
first-principle lattice QCD simulations [122–126].) The endpoint of first-order tran-
sitions is determined by the crossing of the Roberge-Weiss phase transition line
with the chiral critical (or deconfinement) line whose order desicively depends on
the quark mass parameters and the number of quark flavours determining the be-
haviour of the chiral condensate (or the Polyakov loop). A sketch of the QCD
phase diagram for imaginary chemical potential is illustrated in Figure 2.2. In the
case of Nf = 4 degenerate quark flavours, for instance, the chiral phase transition
is of first-order as found in lattice simulations [123].

The Roberge-Weiss periodicity implies that in the T − µi/T plane all sectors
between µi/T = 2π

3 k and µi/T = 2π
3 (k + 1) are copies of the sector between

µi/T = 0 and µi/T = 2π
3 . Furthermore, the subsector between µi/T = π/3 and

µi/T = 2π/3 is a reflected copy of the subsector between µi/T = 0 and µi/T = π/3
mirrored at the first Roberge-Weiss transition line. As thermodynamic quantities
behave non-analytically at µi/T = π/3 (first Roberge-Weiss transition), an analytic
continuation of results obtained for imaginary chemical potential to real µ has direct
access to the region µ < µc(T ) = π/3T only.

Due to the severe approximations made when relating the phenomenological
QPM to QCD, as discussed in section 2.2, the Roberge-Weiss periodicity inherent
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Figure 2.2: Sketch of the QCD phase diagram for imaginary chemical
potential µi scaled by the temperature T . Solid vertical curves
at µi/T = (2k + 1)π

3
depict the Roberge-Weiss phase transitions

which are of first-order at high T because the Polyakov loop be-
comes discontinuous as function of µi/T . At low T the transition is
of crossover type. The endpoints of the first-order Roberge-Weiss
transitions are determined by the crossings with the chiral phase
transition lines (dotted curves) whose order, as inferred from the
behaviour of the chiral condensate, depends on the quark mass
parameters as well as the number of quark flavours.

in QCD is not longer apparent in the QPM as the pressure p as thermodynamic
potential is not invariant under Z3-transformations. Considering an extended Z3-
transformation [127], instead, which allows additionally for the transformation
e±iµi/T → e±iµi/T e±2πik/3, p would keep the same form under µi → µi+

2π
3 kT if the

quasiparticle dispersion relations would be chemical potential independent. Assum-
ing only an implicit µi dependence via G2 in ωi already requires that G2(T, iµi) =
G2(T, iµi + 2π

3 ikT ). Whether this equality can be fulfilled or not is encoded in the
non-trivial µi dependence of G2 via the flow equation and demands future studies.

Having in mind a later comparison of the QPM with lattice QCD results ob-
tained for Nq = Nf = 4 degenerate quark flavours, the thermodynamics is straight-
forwardly formulated by replacing µ by a purely imaginary chemical potential
µ = iµi in Eqs. (2.1)-(2.3) which changes the pressure expressions to [98]

p(T, iµi) =
∑

a=q,g

pa(T, iµi,Ma(T, iµi)) −B(Mq,g(T, iµi)) (2.45)

with

pq(T, iµi,Mq(T, iµi)) =
dq

2π2
T

∞
∫

0

dkk2

(

ln
[

1 + e{iµi−ωq}/T
]

+ ln
[

1 + e{−iµi−ωq}/T
]

)

, (2.46)
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pg(T, iµi,Mg(T, iµi)) = − dg

π2
T

∞
∫

0

dkk2 ln
[

1 − e−ωg/T
]

(2.47)

for quarks and gluons, respectively, leaving the notation established in section 2.1
unchanged.

From the standard thermodynamic relations in Eq. (1.2) the entropy density
reads s = sq + sg with

sq(T, iµi,Mq(T, iµi)) =
dq

π2T

∞
∫

0

dkk2

(

[43k
2 +M2

q ]

ωq

×
{

eωq/T cos(µi/T ) + 1

e2ωq/T + 2eωq/T cos(µi/T ) + 1

}

+µi

{

eωq/T sin(µi/T )

e2ωq/T + 2eωq/T cos(µi/T ) + 1

}

)

, (2.48)

sg(T, iµi,Mg(T, iµi)) =
dg

π2T

∞
∫

0

dkk2 [43k
2 +M2

g ]

ωg[eωg/T − 1]
, (2.49)

which is purely real while the net quark number density, nq(T, iµi) =
−i∂p(T, iµi)/∂µi, is given by

nq(T, iµi) =
dq

2π2

∞
∫

0

dkk2

(

1

[e{ωq−iµi}/T + 1]
− 1

[e{ωq+iµi}/T + 1]

)

, (2.50)

= i
dq

π2

∞
∫

0

dkk2

(

eωq/T sin(µi/T )

e2ωq/T + 2eωq/T cos(µi/T ) + 1

)

, (2.51)

which is purely imaginary and positive (negative) for small positive (negative) µi,
i. e. nq is an odd function in µi.

The quasiparticle dispersion relations introduced in section 2.1 alter by changing
the signs in front of the µ2 terms in Eqs. (2.16) and (2.17) via

2M2
+,q(T, iµi) =

1

3

[

T 2 − µ2
i

π2

]

G2(T, iµi) , (2.52)

m2
∞(T, iµi) =

1

12

(

[6 +Nf ]T 2 − 3Nf
µ2

i

π2

)

G2(T, iµi) . (2.53)

Consequently, also signs in the flow equation determining the effective coupling
G2 in the T -µi thermodynamic parameter space change as is summarized in Ap-
pendix B.2. Since, in this way, the µ dependence of the model is sensibly affected by
going to purely imaginary chemical potential, a detailed comparison with first prin-
ciple lattice QCD results serves for a direct examination of the proper µ dependence
implementation in the model. Analytically continuing the expressions from imag-
inary to real chemical potential, the quasiparticle model for Nf degenerate quark
flavours with one independent real quark chemical potential is recovered [98].
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An effective analytic continuation requires a positive second derivative of Z with
respect to µ, cf. [125, 128, 129], i. e. the quark number susceptibility
χq(T, µ) = ∂nq(T, µ)/∂µ > 0. The QPM result for χq reads for imaginary chemical
potential

χq(T, iµi) =
dq

2π2T

∞
∫

0

dkk2

(

2e3ωq/T cos(µi/T ) + 4e2ωq/T + 2eωq/T cos(µi/T )
)

[

e2ωq/T + 2eωq/T cos(µi/T ) + 1
]2

+
dq

2π2T

∞
∫

0

dk
k2

ωq

(

e3ωq/T sin(µi/T ) − eωq/T sin(µi/T )
)

[

e2ωq/T + 2eωq/T cos(µi/T ) + 1
]2

×N
2
c − 1

8Nc

(

2

π2
µiG

2 −
[

T 2 − µ2
i

π2

]

∂G2

∂µi

)

; (2.54)

it is purely real and symmetric under µi → −µi because of the symmetry properties
of the trigonometric functions and the behaviour of ∂G2/∂µi which is also symmet-
ric under µi → −µi. The latter can be seen from Eq. (B.21) which reformulated
reads

∂G2

∂µi
=

b

aµi

− aT

aµi

∂G2

∂T
. (2.55)

For the individual expressions entering Eq. (2.55), as summarized in Appendix B.2,
one finds I1 → −I1, I2 → I2 and I3 → I3 for µi → −µi such that b → −b,
aT → −aT and aµi

→ aµi
. In addition, a Taylor series expansion of G2(T, iµi)

in powers of µi consists only of even powers in µi [90, 130] such that ∂G2/∂T is
symmetric under µi → −µi. In the limit µi → 0, one obtains ∂G2/∂µi → 0 as
b → 0, aT → 0 while aµi

and ∂G2/∂T remain nonzero. Thus at µ = iµi = 0, one
finds

χq(T, µ = 0) =
dq

π2T

∞
∫

0

dkk2 eω̃q/T

[

e2ω̃q/T + 2eω̃q/T + 1
] > 0 , (2.56)

with ω̃q = ωq(T, µ = 0). Furthermore, for small µi, the first term in Eq. (2.54) is
positive and dominates the second term. This implies a positive second derivative
of Z, at least, for small µi/T .

2.4 Extension to independent chemical potentials

In this section, the QPM as introduced in section 2.1 is formulated for a set of
conserved nonzero charges giving rise to a multi-valued chemical potential ~µ. It is
straightforward to generalize the model by including two independent quark flavour
chemical potentials, i. e. ~µ→ µu,d. This is necessary for accessing flavour diagonal
and off-diagonal susceptibilities as well as related baryon number, isovector and
electric charge susceptibilities which will be compared with available lattice QCD
results in chapter 3. These lattice QCD results are obtained by means of Taylor
series expansions in the chemical potentials. The susceptibilities sensibly probe the
model’s baryon-density dependence of the EoS and allow for analyzing the impact
of changes in different quark flavour sectors on this baryon-density dependence.
Furthermore, a detailed knowledge about the dependence of thermodynamics on
different quark flavour chemical potentials is important when discussing various
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physical situations such as β-stability or electric charge neutrality e. g. in hypo-
thetical ultra-dense hot proto-neutron stars or a fixed electric charge per baryon
ratio in ultra-relativistic heavy-ion collisions.

As primary thermodynamic potential, the pressure p(T, µu, µd) for Nf = 2
degenerate up and down quarks with two independent quark flavour chemical po-
tentials µu and µd reads [99]

p(T, µu, µd) =
∑

i=u,d,g

pi(T, µu, µd,Mi(T, µu, µd)) −B(Mu,d,g(T, µu, µd)) . (2.57)

This special case is considered in analogy to the available lattice QCD results to
be compared with in chapter 3. These data are obtained for the mass symmetric
case, i. e. mu = md. In Eq. (2.57), the partial pressures pi are defined in analogy
to Eqs. (2.2) and (2.3) via

pl(T, µl,Ml(T, µu, µd)) =
dl

2π2
T

∞
∫

0

dkk2

(

ln
[

1 + e−{ωl[k,Ml(T,µu,µd)]−µl}/T
]

+ ln
[

1 + e−{ωl[k,Ml(T,µu,µd)]+µl}/T
]

)

, (2.58)

pg(T,Mg(T, µu, µd)) = − dg

π2
T

∞
∫

0

dkk2 ln
[

1 − e−ωg[k,Mg(T,µu,µd)]/T
]

, (2.59)

where l = u, d, Mu, Md and Mg now depend on µu and µd and the notation
from section 2.1 is unchanged. The function B is again determined by demanding
thermodynamic consistency and stationarity. Quark and isovector chemical poten-
tials µq and µI , respectively, are defined from µu and µd as stated in section 2.1
but now, in general, µu 6= µd such that µI 6= 0. The entropy density follows as
s = su+sd+sg with sl and sq analogous to Eqs. (2.6) and (2.7) while the individual
net quark flavour number densities nu and nd are similar to Eq. (2.8). However,
these expressions substantially differ from the ones in section 2.1 as, now, the quasi-
particle dispersion relations depend on both µu and µd according to Eqs. (2.16)
and (2.17) which become

2M2
+,l(T, µu, µd) =

1

3

[

T 2 +
µ2

l

π2

]

G2(T, µu, µd) , (2.60)

m2
∞(T, µu, µd) =

1

12

(

[6 +Nf ]T 2 +
3

π2
[µ2

u + µ2
d]

)

G2(T, µu, µd) . (2.61)

Besides the displayed explicit dependence of the effective quasiparticle masses on
µu and µd (and on T ), the effective coupling G2 now depends on two different quark
flavour chemical potentials (and on T ) [99].

The dependence of G2 on µu and µd is determined from consistency require-
ments given by Maxwell type relations and the stationarity property of p in analogy
to Eq. (2.18). In the case of two independent chemical potentials, however, a system
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of three coupled partial differential equations is obtained

∂s

∂µd
=

∂nd

∂T
, (2.62)

∂s

∂µu
=

∂nu

∂T
, (2.63)

∂nd

∂µu
=

∂nu

∂µd
. (2.64)

This system generalizes the flow equation in Eq. (2.19) propagating, for instance,
G2(T, µu = 0, µd = 0) into the thermodynamic parameter space, i. e. to nonzero
µu and µd.

In the basis (µq, µI), the generalized system of flow equations following
Eqs. (2.62)-(2.64) reads

A1
∂G2

∂µI
+B1

∂G2

∂T
= C1 , (2.65)

A2
∂G2

∂µq
+B2

∂G2

∂T
= C2 , (2.66)

(A3 −B3)
∂G2

∂µq
= (A3 +B3)

∂G2

∂µI
, (2.67)

where the coefficients A1,2,3, B1,2,3 and C1,2 are relegated to Appendix B.3. The
explicit structure of the flow equations’ coefficients mirrors the coupling among
gluon and various quark flavour sectors.

Reformulating Eqs. (2.65)-(2.67) in the basis (µu, µd) making use of the ana-
logue of Eq. (2.67) in terms of µu and µd, the generalized system of flow equations
is transformed into

A1
∂G2

∂µu
+ B1

∂G2

∂T
= C1 , (2.68)

A2
∂G2

∂µu
+ B2

∂G2

∂T
= C2 , (2.69)

which can be solved uniquely for G2(T, µu, µd) if the coefficients, as listed in Ap-
pendix B.3, are pairwise equal. Indeed, one finds A1 = A2 and B1 = B2 but, in
general, C1 = C2 is only found for small values of µu,d ≪ πT , i. e. not for arbitrary
µu and µd as elaborated in Appendix B.3. Actually, C1 = C2 is given up to order
O(µ2

u,d) in a Taylor series expansion in terms of µu and µd whereas coefficients of

third-order terms start to differ. As a consequence, G2 can uniquely be determined
only for these small µu and µd and, therefore, p and related thermodynamic quan-
tities are restricted to the region µu,d ≪ πT . The issue of this potential limitation
is further discussed in Appendix B.3. In Appendix B.4, one possible way of circum-
venting this shortcoming is outlined. Note that the condition C1 = C2 is trivially
fulfilled for any value of the quark chemical potentials when µu = µd, which is
a special case of µd = µd(µu), i. e. when considering one independent chemical
potential.

For discussing the various susceptibilities in terms of Taylor series expansions,
it is instructive to note that the Taylor coefficients are associated with generalized
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quark number susceptibilities which are defined by

χju,jd
(T ) =

∂(ju+jd)p(T, µu, µd)

∂µju
u ∂µjd

d

∣

∣

∣

∣

∣

µu=µd=0

. (2.70)

Because lnZ(T, µu, µd) = V p(T, µu, µd)/T is symmetric under CP transformations,
derivatives for odd (ju + jd) vanish. Furthermore, in the flavour symmetric case,
mu = md, χju,jd

(T ) = χjd,ju(T ) is found.

These generalized quark number susceptibilities represent a rich testing ground.
Besides the mentioned physical meaning of susceptibilities as measures for fluctu-
ations, they additionally constitute the Taylor coefficients of the excess pressure
∆p(T, µu, µd) ≡ p(T, µu, µd) − p(T, µu = 0, µd = 0), expanded simultaneously in
powers of µu and µd via

∆p(T, µu, µd) =
∑

ju,jd

χju,jd
(T )

µju
u

ju!

µjd

d

jd!
, (2.71)

thus containing information about baryon-density effects in the EoS. The excess
pressure becomes increasingly important in the domain of larger values of µu,d and
lower temperatures, even though, a Taylor expansion in µu,d directions may not
suffice at small T for a satisfying description of the thermodynamics.

In order to calculate the Taylor coefficients, higher-order derivatives of the
effective coupling with respect to the chemical potentials need to be evaluated
at µu = µd = 0 or, equivalently, at µq = µI = 0 as described in chapter 3.
These derivatives are obtained by mathematical manipulations of the generalized
system of flow equations. However, as a result of the limitations mentioned above,
susceptibility coefficients can be obtained uniquely only up to and including fourth-
order. This is due to the fact that, in general, an n-th order derivative ofG2 requires
derivatives up to and including the (n−1)-st derivative of C1 or C2. As exploited in
Appendix B.3, derivatives of the effective coupling up to third-order with respect

to the chemical potentials can trustfully be taken, but already ∂4G2

∂µ4
u

∣

∣

∣

µu=µd=0
is not

uniquely determined from the generalized system of flow equations. This derivative
enters sixth- and higher-order susceptibility coefficients.

Necessary derivatives are obtained by exploiting Eqs. (2.65)-(2.67), yielding
∂G2

∂µq

∣

∣

∣

µq=µI=0
= ∂G2

∂µI

∣

∣

∣

µq=µI=0
= 0 and

∂2G2

∂µ2
q

∣

∣

∣

∣

µq=µI=0

=
1

N

{

N1

[

2ξumu + 2ξuM+,u +
1

3

mu

M+,u
TG2

+
2

3
TG2(T ) +

(

1

3
+

1

6

mu

M+,u

)

T 2 ∂G
2(T )

∂T

]

+N2

[

2ξdmd + 2ξdM+,d +
1

3

md

M+,d
TG2

+
2

3
TG2(T ) +

(

1

3
+

1

6

md

M+,d

)

T 2∂G
2(T )

∂T

]

+
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−I3
1

π2
G2(T ) − I4

1

3π2
G2(T )

(

2 +
mu

M+,u

)

−I5
1

3π2
G2(T )

(

2 +
mu

M+,u

)}

, (2.72)

while from Eqs. (2.68) and (2.69), one finds ∂G2

∂µu

∣

∣

∣

µu=µd=0
= ∂G2

∂µd

∣

∣

∣

µu=µd=0
= 0 and

∂2G2

∂µ2
u

∣

∣

∣

∣

µu=µd=0

=
1

N

{

N1

[

2ξumu + 2ξuM+,u +
1

3

mu

M+,u
TG2

+
2

3
TG2(T ) +

(

1

3
+

1

6

mu

M+,u

)

T 2∂G
2(T )

∂T

]

−I3
1

2π2
G2(T ) − I4

1

3π2
G2(T )

(

2 +
mu

M+,u

)}

, (2.73)

with coefficients N , N1,2 listed in Appendix B.3, G2(T ) = G2(T, µu = 0, µd = 0)
and I3,4,5 as well as M+,u and M+,d considered at µq = µI = 0 or, equivalently, at
µu = µd = 0. Note that in the flavour symmetric case considered here Eqs. (2.72)

and (2.73) are related via ∂2G2

∂µ2
u

∣

∣

∣

µu,d=0
= 1

2
∂2G2

∂µ2
q

∣

∣

∣

µq,I=0
. In addition, odd derivatives

with respect to the chemical potentials such as ∂3G2

∂µ3
u

or mixed derivatives such

as ∂2G2

∂µu∂µd
or ∂2G2

∂µq∂µI
vanish at µu = µd = 0 = µq = µI . These expressions and

equalities are uniquely obtained from the generalized system of flow equations.





3 Comparison with Lattice QCD Data

In this chapter, it is shown that the quasiparticle model introduced in chapter 2
provides an efficient and accurate parametrization of a variety of lattice QCD re-
sults for different numbers of dynamical quark flavours with different quark masses
at zero and nonzero baryon density and temperatures T ≥ 0.75Tc. In particular,
the parametrization of the effective coupling as defined in Eqs. (2.20) and (2.21)
turns out to be flexible enough to account appropriately for the complexity ob-
served in some thermodynamic quantities. Sections 3.1 and 3.2 are devoted to the
thermodynamics at zero and nonzero net baryon densities, respectively. In sec-
tion 3.3, the equation of state for Nf = 2+1 is discussed and some of its properties
are analyzed.

3.1 Zero baryon density

Here, the thermodynamics at zero chemical potential is studied. QPM results for
pressure and entropy density as primary thermodynamic quantities are compared
with corresponding lattice QCD results for Nf = 2 and 2 + 1 in section 3.1.1. The
extrapolation of results to different quark mass parameters within the quasiparticle
model is tested in section 3.1.2 for pressure and interaction measure. An application
is the chiral extrapolation of the EoS. In section 3.1.3, the asymptotic equation of
state at zero net baryon density is examined for the pure SU(3) gauge theory and
for Nf = 2 + 1.

3.1.1 Basic thermodynamic quantities

To start with, the QPM introduced in section 2.1 is confronted with lattice QCD
results for the pressure of Nf = 2 degenerate quark flavours at zero chemical po-
tential, µ = 0, obtained by the Bielefeld-Swansea collaboration [8,131]. The lattice
simulations were performed in Nσ = 16 spatial and in Nτ = 4 temporal extensions
using improved fermion and gauge boson actions but rather large temperature de-
pendent quark mass parameters mu,d(T ) = ξu,dT with ξu,d = 0.4 implying a pion
mass of about mπ = 770 MeV around T = Tc.

Usually, results obtained in lattice simulations need a proper extrapolation to
the thermodynamic as well as the continuum limit due to finite size and cut-off
effects. This issue is further discussed in Appendix C. It is true that employing
improved actions strongly reduces lattice discretization errors at high temperatures,
but, in particular, simulations with Nτ = 4 temporal extensions can still exhibit
large deviations from the continuum limit. One simple way of approximating the
continuum limit is by multiplying the lattice QCD data for quantity X by a specific
constant continuum extrapolation factor d(X). Note that this estimated correction
factor does not necessarily have to be temperature independent, as assumed here.
In fact, the lattice QCD data presented in [8] represent a continuum extrapolation
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Figure 3.1: Comparison of QPM (solid curve) with lattice QCD re-
sults (circles) [8] for the scaled pressure p(T )/T 4 as a function of
T/Tc for Nf = 2 degenerate quark flavours at zero baryo-chemical
potential. The QPM parameters entering Eqs. (2.20) and (2.21)
read λ = 11.5, Ts = 0.88Tc, b = 333.4 and B(Tc) = 0.17T 4

c with
Tc = 175 MeV as suggested in [9]. The horizontal dashed curve
indicates the value pSB(T )/T 4 = (32 + 21Ñf)π2/180 of an ideal,

non-interacting gas of quarks and gluons, where Ñf = g(0.4T )Nf

with Nf = 2 and g(0.4T ) = 0.9672 accounts for the considered
nonzero quark mass.

of the data in [131] by d(p) = 1.15. This is in line with the suggestions in [131]
which advocate a continuum extrapolation of about 10-20% above the data for
T ≥ 1.2Tc.

Figure 3.1 shows the lattice QCD data [8] for the scaled pressure p(T )/T 4 to-
gether with the QPM results according to Eqs. (2.1)-(2.3). A very good description
is found even below Tc, where a quasiparticle picture is not well justified and should
be replaced by a realistic hadron resonance gas (HRG) model. Formally, the proper
description of the lattice QCD results below Tc within the QPM requires fairly
large values of the effective coupling G2. The corresponding excitations become
very massive, ranging to hadronic mass scales, such that these massive excitations
are sufficient to reproduce fairly well the lattice QCD data within the interval 0.75
Tc - Tc. Numerically, this is not too distinct from the HRG model, where several
resonances may be regrouped into a few representative excitations. (Vice versa, one
should mention that the HRG model [132,133] coincides with lattice QCD data also
slightly above Tc. For an even more extreme point of view on quark-hadron duality
cf. [134].) Nevertheless, due to the successful description of lattice QCD results,
the linear ansatz in Eq. (2.20) for G2 below Tc can be considered as convenient
parametrization.

Concentrating on the physical case of Nf = 2 + 1 with two degenerate light
(up and down) and one heavier (strange) quark flavours, the goal is a proper
parametrization of the EoS in the form p(e, nB) as needed in hydrodynamic ap-
plications. For this purpose, the QPM is adjusted to lattice QCD results of the
scaled pressure from [132] which represent again a continuum extrapolation of the
lattice QCD data in [131] by d(p) = 1.15 but now for Nf = 2+1. This is due to the
fact that discretization errors for improved actions turn out to be of equal size for
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Figure 3.2: Comparison of QPM (solid curve) with lattice QCD results
(circles) [132] for the scaled pressure p(T )/T 4 as a function of T/Tc

for Nf = 2 + 1 dynamical quark flavours at zero baryo-chemical
potential. The QPM parameters entering Eqs. (2.20) and (2.21)
read λ = 7.8, Ts = 0.8Tc, b = 347 and B(Tc) = 0.61T 4

c with
Tc = 170 MeV as suggested in [6, 8]. The horizontal dashed curve
indicates the value pSB(T )/T 4 = (32 + 21Ñf)π2/180 of an ideal,

non-interacting gas of quarks and gluons, where Ñf = 2 g(0.4T )+
g(T ) with g(0.4T ) = 0.9672 and g(T ) = 0.8275 accounts for the
considered nonzero quark masses.

different Nf cases [131]. The employed quark mass parameters read mi(T ) = ξiT
with ξu,d = 0.4 and ξs = 1. In Figure 3.2, the lattice QCD results for p(T )/T 4

are exhibited together with the QPM results. As evident, the QPM accurately
parametrizes the pressure for Nf = 2 + 1. Accordingly, the scaled entropy density
s(T )/T 3 as related thermodynamic quantity is equally well described by the QPM
as shown in Figure 3.3.

3.1.2 Chiral extrapolation and conformal limit

As pointed out in section 3.1.1, the lattice QCD results are obtained for rather large
quark mass parameters. For hydrodynamic applications, however, i. e. when using
a reliable QCD equation of state of the form p(e, nB) for solving the hydrodynamic
equations of motion based on Eq. (1.4), these results need to be extrapolated to
the quark mass values realized in nature. As an approximation, one can consider
the chiral limit, for which naively mu = md = ms = 0 MeV can be set. This task is
easily accomplished within the QPM, as the quark mass parameters directly enter
into the model via Eq. (2.14).

Recently, lattice QCD results [135] for the QCD thermodynamics of Nf = 2+1
quark flavours with almost physical quark masses became available. This opens
the avenue for directly examining the incorporated quark mass dependence in the
employed quasiparticle dispersion relations. Adjusting the QPM parameters to
p(T )/T 4 for the heavier quark mass parameter set-up in [132] as in section 3.1.1,
one can perform a naive extrapolation to the lighter quark masses in [135] by leaving
the parameters in G2 as well as B(Tc) unchanged. In this way, a negligible impact of
the quark mass parameters on G2 and on the pressure integration constant B(Tc)
is assumed. A dependence of the QPM parameters on ml, nonetheless, could,
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Figure 3.3: Comparison of QPM (solid curve) with lattice QCD re-
sults (circles) [132] for the scaled entropy density s(T )/T 3 as a
function of T/Tc for Nf = 2 + 1 dynamical quark flavours at zero
baryo-chemical potential. The QPM parameters are the same as
in Figure 3.2. The horizontal dashed curve indicates the value
sSB/T 3 = (32 + 21Ñf)π2/45 of an ideal, non-interacting gas of

quarks and gluons with Ñf as in Figure 3.2.

in principle, be possible. For instance, the behaviour of p(T )/T 4 for T < Tc as
constraint by the lattice QCD results in [135] demands a readjustment of B(Tc),
which mostly affects the pressure for temperatures close to and below Tc, with
changes in mu,d and ms (cf. the discussion in section 4.3).

The lattice QCD results in [135] are obtained for Nτ = 6 temporal extensions
and improved actions for which Tc(Nτ = 6) = 196 MeV was found in [10]. Note,
that a comparison of results for p(T )/T 4 at Nτ = 4 andNτ = 6 as well as Nτ = 8 for
larger temperatures suggests that the considered lattice QCD data are already close
to the continuum limit. This justifies the use of Tc(Nτ → ∞) = 192 MeV [10] in this
section. The quark masses employed in [135] can be parametrized by mu,d(T ) =
a0T

2
c /T + a1T with a0 = 0.017 and a1 = 0.004 and ms = 10mu,d, implying that

the strange quark mass is set to its physical value while up and down quark masses
are set such that mπ = 220 MeV close to Tc. Over a large temperature interval,
however, they can be approximated by mu,d(T ) = 0.015T and ms = 10mu,d, for
simplicity, which is rather close to the chiral limit.

Applying the strategy outlined above, the parameters of G2 employed for Fig-
ure 3.2 remain fixed while the quark mass parameters and consequently B(Tc) are
changed according to [135]. The result of the mass extrapolation for p(T )/T 4 is
exhibited in Figure 3.4 showing an almost perfect description of the lattice QCD
results [135]. This success suggests that the quark mass dependence of the effective
coupling G2 is indeed tiny and that the employed quasiparticle dispersion relations
are suitable for a reasonable chiral extrapolation of thermodynamic bulk proper-
ties [96]. Setting mu = md = ms = 0 MeV, the corresponding result is exhibited by
the dashed curve in Figure 3.4. Note that within the QPM, results obtained for the
temperature dependent quark mass parameters reported in [135] are numerically
equivalent to results obtained for constant mu = md = 0 MeV and ms = 55 MeV.

As pointed out in [136], the correct model description of the interaction mea-
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Figure 3.4: Test of the quark mass dependence in the employed quasi-
particle dispersion relations via Eq. (2.14). Circles and squares
exhibit lattice QCD results for the scaled pressure p(T )/T 4 for
Nf = 2 + 1 at µB = 0 for larger [132] and smaller [135] quark
mass parameters, respectively, while the black (lower) solid curve
shows the QPM parametrization from Figure 3.2 complying with
the quark mass parameters in [132]. Red (upper) solid curve ex-
hibits the QPM result when changing the quark masses according
to [135] leaving the parameters in G2 unchanged but changing
B(Tc) = 0.76T 4

c with Tc = 192 MeV [10]. The blue dashed curve
shows the corresponding chiral limit by settingmu = md = ms = 0
MeV and B(Tc) = 0.78T 4

c .

sure (e− 3p) is important for constructing an appropriate hydrodynamic equation
of state. In Figure 3.5, the comparison between lattice QCD results [135] for
(e − 3p)/T 4 with almost physical quark masses and the QPM results employing
the parameters of G2 from Figure 3.2 but the quark mass parameters and B(Tc)
according to [135] from Figure 3.4, respectively, is exhibited. A nice agreement is
found. The peak in (e − 3p)/T 4 located at T = 1.08Tc is related to the softest
point in the EoS which is signalled by a minimum in p/e as a function of e. For
larger temperatures, (e− 3p)/T 4 approaches logarithmically zero corresponding to
the logarithmic decrease of G2 with T in Eqs. (2.20) and (2.21), but is for T = 10Tc

already close to the conformal limit e = 3 p, implying for the trace of the thermal
part of the energy-momentum tensor Θµ

µ(T ) = 0 (cf. Appendix A.2).

3.1.3 Asymptotic equation of state

The QCD equation of state in the form p(e) at nB = 0 and asymptotically large
temperatures is important for the description of the dynamics of the early universe
at T > Tc via Friedmann’s equations in Eq. (1.3) (cf. [18]). Until recently, first-
principle lattice QCD simulations at large T were hampered by the time-consuming
T = 0 simulations needed for the renormalization in the standard integral method
computation of p. In contrast, adjusting the QPM parameters to the EoS for
temperatures around Tc known from lattice QCD, the model can easily be continued
to large T .

Recently, a new method was proposed for directly evaluating the asymptotic
EoS in lattice QCD simulations [137]. Within this approach, the pressure for
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Figure 3.5: Comparison of QPM (solid curve) with lattice QCD results
(circles) [135] for the scaled interaction measure (e − 3p)/T 4 as a
function of T/Tc for Nf = 2 + 1 dynamical quark flavours at zero
baryo-chemical potential. The QPM parameters are the same as
for the red (upper) solid curve in Figure 3.4.

pure SU(3) gauge theory was, first, successfully compared with former continuum
extrapolated lattice QCD results [138] calculated in the temperature interval Tc −
5Tc, and then, evaluated up to temperatures of the order of 107 Tc [137, 139].
Applying a similar strategy within the QPM by adjusting the QPM parameters to
the lattice QCD data [138] in the interval Tc - 5Tc and then continuing without
any further parameter adjustment to large T , the validity of this procedure can
directly be tested. As evident from Figure 3.6, the QPM accurately parametrizes
the lattice QCD results for p/pSB from [138] and also describes fairly well p/pSB

for asymptotically large temperatures. This is a highly non-trivial result, as one
could argue that the QPM reproduces lattice QCD results in a restricted (small)
temperature range above Tc, only. It happens, however, that the employed QPM
parametrization catches the thermodynamically relevant QCD degrees of freedom
in a very large range of T .

Having successfully tested the applicability of the QPM for extrapolating lattice
QCD results of Nf = 0 known at moderate temperatures to large T , one can
proceed and predict the asymptotic EoS of Nf = 2+1. For this purpose, the QPM
parameters are adjusted to the continuum extrapolated lattice QCD results [140] for
p(T )/T 4 of Nf = 2+1 at zero baryo-chemical potential in the temperature interval
0.8Tc - 2.55Tc. The simulations are performed on a lattice with Nσ = 18 spatial
andNτ = 6 temporal extensions and for physical quark massesmu,d = 4.5 MeV and
ms = 112.5 MeV. In contrast to the lattice simulations examined in sections 3.1.1
and 3.1.2, non-improved actions are used in [140] resulting in increased finite size
and cut-off effects. Therefore, the lattice QCD results are extrapolated to the
continuum limit by multiplication with a constant factor d(p) = 0.663 according
to [140] representing the ratio of the Stefan-Boltzmann pressures calculated in the
continuum limit and at Nτ = 6. As exhibited in Figure 3.7, the QPM appropriately
reproduces the lattice QCD data [140] in the temperature interval 0.8Tc - 2.55Tc.
Continuing to asymptotically large temperatures, the scaled pressure still shows
deviations of about 4.5% from the Stefan-Boltzmann limit for temperatures of the
order of 105 Tc indicating that even at these large temperatures the system is not
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Figure 3.6: Comparison of QPM (solid curve) with lattice QCD re-
sults (circles [138] and squares [137,139]) for the pressure of pure
SU(3) gauge theory scaled by its Stefan-Boltzmann pressure pSB

as a function of T/Tc for T ≥ Tc. The QPM is adjusted to the lat-
tice QCD results from [138] between Tc and 5Tc with parameters
reading λ = 5, Ts = 0.756Tc and B(Tc) = 0.01T 4

c with Tc = 271
MeV as suggested in [6,8] and then continued without any change
of parameters to asymptotically large temperatures.

a weakly interacting gas. Nonetheless, the EoS is rather close to the ideal gas
equation of state because the corresponding squared speed of sound is less than
0.1% below its Stefan-Boltzmann value c2s = 1

3 .

The results exhibited in Figure 3.7 serve as predictions, while corresponding
lattice QCD results are expected in the near future. The effective quark and gluon
quasiparticle masses exhibit a behaviour ∼ T G implying that at asymptotically
large temperatures the quasiparticle excitations are fairly heavy. At T = 105 Tc,
the dynamically generated mass parameters (self-energy parts) read Mg ∼ 12 TeV
and Mq ∼ 8 TeV, thus invalidating the naive picture of weakly coupled quarks and
gluons with negligible masses. On the other hand, the naive Stefan-Boltzmann
limit is approached, from below, up to 90% at T ∼ 50Tc with logarithmically
decreasing deviations when going to larger T . In addition, at these asymptotically
large temperatures, charm and even heavier quark degrees of freedom should be
included into the considerations in line with [88].
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Figure 3.7: Comparison of QPM (solid curve) with lattice QCD results
(circles) [140] for the scaled pressure p(T )/T 4 as a function of T/Tc

for Nf = 2 + 1 dynamical quark flavours at zero baryo-chemical
potential. The QPM parameters are adjusted to the lattice QCD
data between 0.8Tc - 2.55Tc reading λ = 1, Ts = 0.49Tc, b = 286
and B(Tc) = 0.51T 4

c with Tc = 170 MeV as suggested in [6,8]. For
predicting the asymptotic equation of state, the QPM is continued
to temperatures of the order of 105 Tc. The horizontal dashed curve
indicates the value pSB(T )/T 4 = (32 + 21Ñf)π2/180 of an ideal,

non-interacting gas of quarks and gluons, where Ñf ≈ 3 accounts
for the considered almost physical quark masses.

3.2 Nonzero baryon density

Having demonstrated the ability of the QPM to successfully reproduce lattice QCD
data for zero chemical potential, recent progress in lattice QCD simulations with
small nonzero chemical potential is exploited in this section to examine the ability
of the QPM to correctly predict the thermodynamic functions at arbitrary T and
µ. For this purpose, first, available lattice QCD data for Nf = 2 are investigated.
In section 3.2.1, the pressure coefficients are considered which simultaneously con-
stitute Taylor expansions of net baryon density and quark number susceptibility.
Corresponding coefficients for entropy density and energy density are studied in
section 3.2.2 providing all necessary information for discussing the isentropic evo-
lutionary paths of constant entropy per baryon in the T - µB plane as well as the
equation of state along them. In section 3.2.3, various susceptibilities are discussed
and related implications in different physical situations are analyzed in section 3.2.4.
Turning to the case of Nf = 4, nonzero baryon-density effects are studied in detail
for purely imaginary chemical potential in section 3.2.5. Pronounced structures
observed in this case allow, exemplarily, a discussion of the form of the chemi-
cal potential dependence in the quasiparticle dispersion relations as elaborated in
section 3.2.6.

3.2.1 Taylor expansion approach

Effects of finite quark chemical potential can be studied in line with lattice QCD
simulations [141] by expanding the pressure into a Taylor series in powers of (µq/T )
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around µq = 0 at µI = 0 via

p(T, µq, µI = 0) = T 4
∞
∑

n=0,2,4,6,...

cn(T )
(µq

T

)n
. (3.1)

Here, c0(T ) = p(T )/T 4 is the scaled pressure at zero chemical potential as con-
sidered in section 3.1. Due to the invariance of lnZ under CP transformations,
cn(T ) = 0 for odd n. The coefficients c2(T ), c4(T ) and c6(T ) in Eq. (3.1) are
defined viz

cn(T ) =
1

n!

∂n(p(T, µq + µI , µq − µI)/T
4)

∂(µq/T )n

∣

∣

∣

∣

µq=µI=0

, (3.2)

and extracted from appropriate derivatives of lnZ in [141]. The simulations in [141]
are performed on a lattice with Nσ = 16 spatial and Nτ = 4 temporal extensions
using improved actions for Nf = 2 degenerate quark flavours with mu,d = ξu,dT
and ξu,d = 0.4. Note that the lattice QCD data from [141] as considered in the fol-
lowing are not extrapolated to the continuum limit. Even though the computation
of cn(T ), n ≥ 2, is not related to the expensive integral method needed when evalu-
ating c0(T ) [8], deviations from the continuum limit are expected to be of the same
order of magnitude as in the case of p(T )/T 4 [142]; i. e. of about additional 10-20%.
Nonetheless, corrections seem to increase for higher-order coefficients [142].

Starting from Eqs. (2.57)-(2.59) by noting that in the considered case of µI = 0
one employs µu = µd = µq = µ, the Taylor coefficients c2(T ), c4(T ) and c6(T )
can be evaluated within the QPM following Eq. (3.2). The expressions explicitly
read [90]
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. (3.5)

Here, dq = 2NcNq with Nq = Nf = 2, fq(a) = (ea + 1)−1, f
(n)
q (a) = ∂nfq(a)/∂a

n,
ω̃q = ωq(T, µq = 0, µI = 0) and the derivatives of M2

q with respect to µq, which
need to be evaluated at µq = µI = 0, are relegated to Appendix B.1. In this
way, c2(T ) depends on G2(T ), c4(T ) depends on G2(T ) and its second derivative
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Figure 3.8: Comparison of QPM results (solid curves) and lattice
QCD results [141] (symbols) for c2(T ) (red curve and squares)
and c4(T ) (blue curve and circles). The refitted QPM parameters
read λ = 12, Ts = 0.87Tc with Tc = 175 MeV and b = 426.05.
The horizontal dashed curves represent the corresponding Stefan-
Boltzmann results for c̄2 = Nf/2 and c̄4 = Nf/(4π

2) with Nf = 2.
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Figure 3.9: Comparison of QPM results (solid red curve) and lattice
QCD results [141] (squares) for c6(T ). The QPM parameters are
the same as in Figure 3.8. The horizontal dashed curve represents
the Stefan-Boltzmann value for c̄6 = 0.

with respect to µq and c6(T ) depends on G2(T ) as well as its second and fourth
derivative with respect to µq.

Applying the QPM parametrization for the continuum extrapolated results of
c0(T ), as summarized in Figure 3.1, now to c2(T ) according to Eq. (3.3), the
description of the lattice QCD results [141] is not perfect, but exhibits some devi-
ations [90]. In particular, for 0.9Tc-Tc the QPM underestimates the lattice QCD
data by about 50% whereas for T ≥ 1.02Tc the agreement is impressive. This
demands a slight refit of the QPM parameters to the lattice QCD results of c2(T )
as exhibited in Figure 3.8. The quality of the model is tested by its ability to also
reproduce c4(T ) and c6(T ) with this parametrization. As evident from Figures 3.8
and 3.9, the QPM gives an excellent description of c2(T ) and, simultaneously, yields
an impressive agreement with the lattice QCD data for c4(T ) and c6(T ). In par-
ticular, the pronounced structures seen in c4(T ) and c6(T ) in the vicinity of the
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Figure 3.10: Scaled net baryon density nB/T
3 as a function of T/Tc,

for µB/Tc = 2.4, 1.8, 1.2, 0.6 (from top to bottom). QPM results
from the truncated expansion in Eq. (3.7) (solid curves) are com-
pared with lattice QCD results (symbols) from [141] for Nf = 2
based on the same truncation. Dashed curves represent the full
QPM result for nB = nq/3 according to nq = nu+nd and Eq. (2.8)
for the individual net quark flavour number densities. The QPM
parameters are the same as in Figure 3.8.

transition temperature are quantitatively reproduced as a result of the change in
the curvature of G2(T ) at T = Tc according to Eq. (2.20). The peak structure
in c4(T ), giving the dominant µB-dependent contribution to the quark number
susceptibility according to

χq(T, µq)

T 2
= 2c2(T ) + 12c4(T )

(µq

T

)2
+ O(µ4

q) , (3.6)

can be interpreted as an indication for some critical behaviour in χq(T, µq) across
the quark-hadron phase transition.

Other thermodynamic quantities can equally be constructed from these Taylor
coefficients by means of expansions of the form in Eqs. (3.1) or (3.6). For instance,
the net baryon density, using c2,4,6(T ), reads

nB(T, µB)

T 3
=

2

3
c2(T )

(µB

3T

)

+
4

3
c4(T )

(µB

3T

)3
+ 2c6(T )

(µB

3T

)5
+ O

(

µ7
B

)

, (3.7)

yielding a truncated expansion for nB. In Figure 3.10, QPM results for the full
expression of nB/T

3 defined in chapter 2 as well as for the truncated expansion up
to O(µ5

B) according to Eq. (3.7) are compared with lattice QCD results [141] based
on the same truncation. In this way, the truncation error can be estimated. For
µB/Tc ≤ 1.8, truncated and exact results for nB/T

3 agree within the linewidth.
Only for µB/Tc = 2.4, significant deviations between truncated and exact results
become evident near T = Tc which are of about 23% [89, 90]. These deviations,
however, can be traced back to an artificial mechanical instability of the form
∂p/∂nB ≤ 0 in the truncated expressions. The full QPM expression, in contrast,
is free of this artifact providing a thermodynamically consistent description.
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Figure 3.11: Comparison of the Taylor coefficients e2(T )
(squares/black dashed curve) and s2(T ) (circles/red solid curve)
for Nf = 2 from [9] (symbols) with corresponding QPM results
(curves). The QPM parameters are the same as in Figure 3.8.

3.2.2 Isentropic trajectories

As entropy and net baryon densities are locally conserved in ideal fluid dynamics,
the specific entropy s/nB of each fluid cell stays constant in its comoving frame.
Although different cells usually start out with different initial specific entropies, and
thus the expanding fireball as a whole maps out a broad band of widely varying
s/nB values, each fully equilibrated fluid cell follows a single line of constant s/nB

in the T−µB phase diagram. It is therefore of interest to study the characteristics
of these isentropic expansion trajectories, in particular the behaviour of the EoS
along them.

The isentropic trajectories for different values of s/nB follow directly from the
first-principles evaluation of the lattice EoS and its QPM parametrization consid-
ered in sections 3.1.1 and 3.2.1. In the following, needed thermodynamic quantities
are considered within truncated expansions like in Eq. (3.7) for nB. In a similar
way, energy and entropy densities can be decomposed via

e(T, µq)

T 4
=
∑

n

en(T )
(µq

T

)n
, en(T ) = 3cn(T ) + c′n(T ) , (3.8)

s(T, µq)

T 3
=
∑

n

sn(T )
(µq

T

)n
, sn(T ) = (4−n)cn(T ) + c′n(T ) , (3.9)

where the cn(T ) are defined in section 3.2.1 and c′n(T ) ≡ T dcn(T )/dT . The Taylor
coefficients en(T ) and sn(T ) were calculated in [9] via fine but finite difference
approximations of the Taylor coefficients cn(T ). Since they contain both, cn(T ) and
their derivatives with respect to T , they provide a more sensitive test of the QPM
than the pressure coefficients alone. Figures 3.11 and 3.12 exhibit the comparison
of the lattice QCD data [9] with the QPM results for e2,4(T ) and s2,4(T ) obtained
in the same way as in [9] finding a fairly good agreement. Applying a somewhat
coarser finite difference approximation, the agreement, in particular in the vicinity
of Tc, improves to some extent [93].

For Nf = 2 dynamical quark flavours, truncated Taylor expansions for nB and
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for Nf = 2 from [9] (symbols) with corresponding QPM results
(curves). The QPM parameters are the same as in Figure 3.8.

s up to O((µB/T )6) were employed in [9] to determine the isentropic trajectories
for s/nB = 300, 45, 30, sampling those regions of the phase diagram which can
be explored with heavy-ion collisions at RHIC, SPS, and at AGS or FAIR/SIS300,
respectively. In the same way, nB and s are evaluated within the QPM according
to Eqs. (3.7) and (3.9) up to O((µB/T )6).

In Figure 3.13, lattice QCD and QPM results are compared for s/nB = 300
and 45 employing simultaneously the two separately optimized QPM parametriza-
tions for c0(T ) and c2(T ) (cf. Figures 3.1 and 3.8) [93]. Although both QPM
parametrizations are almost the same, this approach would give up thermodynamic
consistency of the model. Employing instead one single self-consistent parametriza-
tion for both c0(T ) and c2(T ), trajectories for large s/nB remain unchanged whereas
those for smaller s/nB disagree with the results exhibited in Figure 3.13 in the vicin-
ity of Tc [95]. This is mainly caused by differences in s(T )/T 3 and translates, for a
given isentropic trajectory, into large variations of µB near Tc while causing only
small differences of about 6% at large T . In particular, the pronounced structures
of the isentropic trajectory near the estimated phase boundary are lost in the self-
consistent fit procedure. This shows that the pattern of the isentropic expansion
trajectories is quite sensitive to details in the EoS (cf. the discussion in [95]).

Also, the results exhibited in Figure 3.13 depend on the value of Tc. Changing
the deconfinement transition temperature to Tc = 170 MeV results in a shift of the
trajectories by about 10% in µB direction near Tc but has negligible consequences
for T ≥ 1.5Tc. At asymptotically large T , where c0,2(T ) are essentially flat, the
relation µB

T = 18 c0
c2

(nB

s ) holds for small µB , i. e. lines of constant specific entropy
are essentially given by lines of constant µB/T , as is the case in a quark-gluon
plasma with perturbatively weak interactions.

Figure 3.13 also exhibits the chemical freeze-out points deduced from hadron
multiplicity data for Au+Au collisions at

√
s = 130AGeV at RHIC (Tf.o. = 169±6

MeV and µB,f.o. = 38 ± 4 MeV [49]) and for 158AGeV Pb+Pb collisions at SPS
(Tf.o. = 154.6 ± 2.7 MeV and µB,f.o. = 245.9 ± 10.0 MeV [50]). Applying the
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Figure 3.13: Isentropic evolutionary paths. Triangles and circles in-
dicate Nf = 2 lattice QCD data from [9] for s/nB = 300 and 45,
respectively. Corresponding QPM results are depicted for a mixed
parametrization where c0(T ) and c2(T ) are fitted independently
according to Figures 3.1 and 3.8. Full red squares show chemical
freeze-out points deduced in [49,50] from hadron multiplicity data,
as summarized in [51].

statistical model in [46], the specific entropies at these freeze-out points can be
deduced to s/nB = 200 for RHIC-130 and s/nB = 30 for SPS-158, i. e. to only
about 2/3 of the values corresponding to the QPM parametrization of the QCD
lattice data. One should remember, though, that the phenomenological values are
deduced from experimental data using a complete spectrum of hadronic resonances
whereas the lattice simulations were performed for only Nf = 2 dynamical quark
flavours with not quite realistic quark masses.

Figure 3.14 shows that along isentropic expansion lines the EoS is almost in-
dependent of the value of s/nB [93, 95]. Accordingly, the squared speed of sound
c2s, controlling the build-up of hydrodynamic flow, is essentially independent of the
specific entropy. Note that the results exhibited in Figure 3.14 do not significantly
depend on the employed fit procedure outlined above. The EoS along the isen-
tropes remains almost unaffected; for large energy densities e & 30 GeV/fm3 the
differences in p(e) are less than 2% [95].

3.2.3 Susceptibilities

Information on various susceptibilities has been accumulated from first-principle
lattice QCD calculations, cf. [141, 143–145] to mention some of them. (For more
information cf. references in [99].) Keeping in mind limitations due to finite-size,
numerical set-up and quark mass effects they represent a source of insight into
baryon-density effects in the hot quark-gluon medium. Phenomenologically, these
lattice QCD results can be described within models such as the hadron resonance
gas model [146,147] for T ≤ Tc. Above Tc, different models including various bary-
onic bound states [148], Nambu–Jona-Lasinio model [149] and Polyakov loop exten-
sions thereof [150–154] or quasiparticle models [90,96] deliver a suitable agreement.
In addition, qualitative agreement with lattice QCD results [144] was obtained for
T ≥ 1.5Tc within the Φ-functional approach to QCD [155].
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Figure 3.14: Lattice QCD data [9] of p as a function of e for Nf =
2 along isentropes with s/nB =300 (triangles) and 45 (circles),
compared with the corresponding QPM results (blue solid and
black dashed curves, respectively) being indistinguishable for the
different s/nB.

In this section, the QPM as extended in section 2.4 towards two independent
quark flavour chemical potentials is confronted with lattice QCD data of various
susceptibilities for Nf = 2 degenerate quark flavours. In the following, two different
expansions are considered: An expansion in terms of µq and µI in line with the
lattice QCD simulations in [141] and an expansion in terms of µu and µd in line with
the considerations in [143,145]. Even though µI is defined differently in [143,145]
via µI = 1

4(µu−µd) compared to the definition in [141] and in chapter 2, expressions
in chapter 2 as well as results exhibited in this section turn out to be unaffected
by different definitions of µI .

Besides the quark number susceptibility defined in Eq. (3.6), also isovector as
well as diagonal and off-diagonal susceptibilities have been calculated in [141] in
terms of an expansion in µq/T at µI = 0. The isovector susceptibility χI(T, µq)
obeys the expansion

χI(T, µq)

T 2
= 2cI2(T ) + 12cI4(T )

(µq

T

)2
+ O(µ4

q) , (3.10)

where the susceptibility coefficients as in the case of cn(T ) follow from differenti-
ating the pressure, now via

cIn(T ) =
1

n!

∂n(p(T, µq + µI , µq − µI)/T
4)

∂(µI/T )2∂(µq/T )n−2

∣

∣

∣

∣

µq=µI=0

. (3.11)

Due to the invariance of lnZ under CP transformations, cIn(T ) = 0 for odd n.

As in section 3.2.1, the QPM expressions for cIn(T ) follow from Eqs. (2.57)-(2.59)
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Figure 3.15: Comparison of QPM results (solid curves) with lattice
QCD data [141] (symbols) for cIn(T ) (back curve and circles for
n = 2 and red curve and squares for n = 4) for Nf = 2 quark
flavours. The QPM parameters are the same as in Figure 3.8.

reading (cf. [99]) with the notation of section 3.2.1

cI2(T ) = − dq

2π2T 3

∞
∫

0

dkk2f (1)
q (ω̃q/T ) , (3.12)

cI4(T ) = − dq

48π2

∞
∫

0

dkk2

(

2

T 3
f (3)

q (ω̃q/T )

+
2

T 2ω̃q
f (2)

q (ω̃q/T )

[

2
∂2M2

q

∂µ2
u

∣

∣

∣

∣

∣

0

− 1

2

∂2M2
q

∂µ2
q

∣

∣

∣

∣

∣

0

])

, (3.13)

which implies cI2(T ) = c2(T ) within the QPM. The derivatives of M2
q evaluated

at zero chemical potentials entering cI4(T ) are relegated to Appendix B.1 and the

incorporated second derivatives ∂2G2

∂µ2
q

∣

∣

∣

µq=µI=0
and ∂2G2

∂µ2
u

∣

∣

∣

µu=µd=0
of the effective

coupling G2 are given in Eqs. (2.72) and (2.73).

The numerically evaluated QPM results for cI2(T ) and cI4(T ) are exhibited in
Figure 3.15 and compared with lattice QCD data [141] finding a fairly good agree-
ment. Similar to c4(T ), the expansion coefficient cI4(T ) slightly underestimates the
lattice QCD data [141] approaching its Stefan-Boltzmann limit Nf/(4π

2), while
cI2(T ) agrees remarkably well with the data for T ≥ Tc approaching its Stefan-
Boltzmann limit Nf/2 asymptotically. Whereas χq(T, µq), due to the growing
importance of the higher-order coefficients with increasing chemical potential, ex-
hibits a significant peak structure close to Tc for large µq/T , χI(T, µq) does not
develop such pronounced structures. This behaviour is a consequence of the much
less pronounced peak in cI4(T ) compared to c4(T ). Similar findings were reported
in [41], where a phenomenological sigma model was considered.

The behaviour of the electric charge susceptibility χQ(T, µq) is strongly related
to χq(T, µq) and χI(T, µq) via χQ = 1

4

(

χI + 1
9χq

)

. The corresponding Taylor
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Figure 3.16: Comparison of QPM results (solid curves) for the co-
efficients cuu

n (T ) of the flavour diagonal susceptibility χuu(T, µq)
with lattice QCD data [141] (black curve and circles for n = 2, red
curve and squares for n = 4). QPM parameters as in Figure 3.8.

expansion reads

χQ(T, µq)

T 2
= 2cQ2 (T ) + 12cQ4 (T )

(µq

T

)2
+ O(µ4

q) , (3.14)

with coefficients cQn (T ) = 1
4

(

cIn(T ) + 1
9cn(T )

)

. From the definition of cQn (T ) it is
clear that the structures appearing in higher-order coefficients are mainly influenced
by contributions from cIn(T ). Thus, similar to χI(T, µq), χQ(T, µq) exhibits a much
less pronounced behaviour at large µq/T than χq(T, µq).

Correlations between fluctuations in different flavour components can be dis-
cussed by considering flavour diagonal, χuu = 1

4 (χq + χI), and off-diagonal, χud =
1
4(χq − χI), susceptibilities. They read

χuu(T, µq)

T 2
= 2cuu

2 (T ) + 12cuu
4 (T )

(µq

T

)2
+ O(µ4

q) (3.15)

for the flavour diagonal susceptibility and

χud(T, µq)

T 2
= 2cud

2 (T ) + 12cud
4 (T )

(µq

T

)2
+ O(µ4

q) (3.16)

for the flavour off-diagonal susceptibility, where the individual coefficients are de-
fined by cuu

n (T ) = (cn(T ) + cIn(T ))/4 and cud
n (T ) = (cn(T ) − cIn(T ))/4.

The susceptibilities cuu
n (T ) and cud

n (T ) for n = 2, 4 are exhibited in Figures 3.16
and 3.17, respectively, and compared with lattice QCD data [141]. The diag-
onal coefficients cuu

2,4(T ) show a similar pattern as c2,4(T ) and cI2,4(T ), approach-
ing their Stefan-Boltzmann limits Nf/4 asymptotically in the case of cuu

2 (T ) and
Nf/(8π

2) for T > 2Tc in the case of cuu
4 (T ). The pronounced peak structure

in the off-diagonal coefficient cud
4 (T ) is well reproduced, while cud

2 (T ) is zero for
all temperatures, in contrast to the data [141], which are numerically small but
differ noticeably from zero in the region T . Tc. cud

2 (T ) = 0 is a consequence
of cI2(T ) = c2(T ) in the QPM. As the flavour off-diagonal susceptibilities cud

n (T )
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Figure 3.17: Comparison of QPM results (solid curves) for the coef-
ficients cud

n (T ) of the flavour off-diagonal susceptibility χud(T, µq)
with lattice QCD data [141] (black curve and circles for n = 2, red
curve and squares for n = 4). QPM parameters as in Figure 3.8.

rapidly approach zero for all n, χud(T, µq) vanishes for large T indicating that fluc-
tuations in different flavour channels are uncorrelated at high temperatures. On
the other hand, χud(T, µq) increases rapidly with increasing µq in the vicinity of
Tc, indicating increasing correlations between fluctuations in different flavour chan-
nels in the phase transition region. This explains the observed different behaviour
in χq(T, µq and χI(T, µq): While peak structures effectively add up in χq, they
approximately cancel each other in χI .

Turning to the expansion of thermodynamic quantities in terms of µu and µd,
in the following, the QPM is confronted with lattice QCD data [143, 145] of some
generalized quark number susceptibilities χju,jd

(T ) as defined in Eq. (2.70). The
lattice simulations [143, 145] are performed for Nf = 2 degenerate quark flavours
on a lattice with spatial and temporal extensions Nσ = 16 and Nτ = 4. In this
respect, the lattice calculation set-up in [141] and in [143,145] is identical. However,
the employed quark mass parameter reads mu = md = 0.1Tc and is constant for
a given value of Tc, i. e. it is temperature independent in contrast to the lattice
set-up in [141]. Consequently, some of the coefficients in the generalized system of
flow equations change as summarized in Appendix B.3.

Furthermore, non-improved actions are employed in [143, 145]. Thus, cut-off
effects in these numerical results are sizeably increased compared to results of
simulations using improved actions. While the lattice QCD data from [141] were
assumed to be rather close to the continuum limit in the previous section 3.2.1
and the above discussion in this section, the lattice QCD results in [143,145] must
be appropriately extrapolated to the continuum limit. By investigating different
Nτ at fixed large temperature T in [156–158], temperature independent continuum
extrapolation factors were estimated reading d(χ2) = 0.47 for χ2,0(T )/T 2 [156–158]
and d(χ4) = 0.32 for χ4,0(T ) [158]. These correction factors are applied to the
lattice QCD data in [143, 145] for all T although they are strictly valid only for
large temperatures. Similar to the findings in [142] as discussed in section 3.2.1,
continuum limit corrections increase for higher-order coefficients.

This estimate of the continuum limit is necessary for making a meaningful
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comparison between the two different expansions in terms of (µq, µI) and (µu, µd)
possible. In fact, flavour diagonal and off-diagonal susceptibilities are closely re-
lated to the generalized quark number susceptibilities via [99]

cuu
2 =

1

2

χ2,0

T 2
, (3.17)

cud
2 =

1

2

χ1,1

T 2
, (3.18)

cuu
4 =

1

24
(χ4,0 + 2χ3,1 + χ2,2) , (3.19)

cud
4 =

1

24
(2χ3,1 + 2χ2,2) . (3.20)

From Eqs. (2.70) and (2.57)-(2.59), some of the generalized quark number suscep-
tibilities explicitly read [99]

χ2,0(T )

T 2
= − dq

2π2T 3

∞
∫

0

dkk2f (1)
q (ω̃q/T ) , (3.21)

χ4,0(T ) = − dq

2π2

∞
∫

0

dkk2

(

1

T 3
f (3)

q (ω̃q/T )

+
3

2T 2ω̃q
f (2)

q (ω̃q/T )
∂2M2

q

∂µ2
u

∣

∣

∣

∣

∣

0

)

, (3.22)

χ2,2(T ) = − dq

2π2

∞
∫

0

dkk2 1

2T 2ω̃q
f (2)

q (ω̃q/T )

×
(

∂2M2
q

∂µ2
q

∣

∣

∣

∣

∣

0

−
∂2M2

q

∂µ2
u

∣

∣

∣

∣

∣

0

)

, (3.23)

where χ1,1(T ) = 0 and χ3,1(T ) = 0 for all temperatures. Again, the derivatives
of M2

q entering Eqs. (3.22) and (3.23) are evaluated at zero chemical potentials

as summarized in Appendix B.1 and the embedded derivatives ∂2G2

∂µ2
q

∣

∣

∣

µq=µI=0
and

∂2G2

∂µ2
u

∣

∣

∣

µu=µd=0
are given in Eqs. (2.72) and (2.73).

The relation χ3,1(T ) = 0 holds because the above derivatives of the effective
coupling are related with each other in the flavour symmetric case as noted in sec-
tion 2.4. Furthermore, χ1,1(T ) = 0 because cud

2 (T ) = 0 for all temperatures. In
particular χ1,1(T ) vanishes because flavour-mixing effects, which describe the de-
pendence of one quark flavour sector on changes in another one, are inherent in the
QPM only via the quasiparticle dispersion relations resulting in terms which van-
ish at µu,d = 0. Qualitatively, the observed deviations in the flavour off-diagonal
susceptibilities, can be understood from perturbative QCD arguments. In a pertur-
bative expansion of the thermodynamic potential different partonic sectors start to
couple only at order O(g3) of the QCD running coupling. However, these plasmon
term contributions ∝ g3 are not completely reproduced in a similar expansion of the
QPM thermodynamic potential, cf. [80]. Similar findings, pointing to the necessity
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Figure 3.18: Comparison of QPM results (solid curve) with the con-
tinuum limit estimate of the lattice QCD results [143, 145] (cir-
cles) for χ2,0(T )/T 2. The refitted QPM parameters read λ = 7,
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Figure 3.19: Comparison of QPM results (solid curve) with the contin-
uum limit estimate of the lattice QCD results [143,145] (circles) for
χ4,0(T ). The QPM parameters are the same as in Figure 3.18. The
corresponding QPM result for χ2,2(T ) is exhibited by the dashed
curve.

of properly including flavour-mixing effects for affecting the flavour off-diagonal
susceptibilities, were reported in [159].

In Figures 3.18 and 3.19, the QPM results for χ2,0(T )/T 2 and for χ4,0(T ),
respectively, are compared with the corresponding lattice QCD results [143, 145]
extrapolated to the continuum limit by the correction factors summarized above.
As the simulation set-up between [141] and [143, 145] differs noticeably, the QPM
parameters have to be readjusted to χ2,0(T )/T 2 and then the quality of the QPM
is probed by predicting, according to Eqs. (3.22) and (3.23), χ4,0(T ) and χ2,2(T ),
which are exhibited in Figure 3.19. Note that the lattice QCD results for 2cuu

2 (T )
from [141] and the depicted results for χ2,0(T )/T 2 would agree fairly well except
for the transition region, if a continuum extrapolation factor of d(c2) = 1.1 in line
with [142] would be applied to the data from [141].
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3.2.4 Physical applications

As pointed out in sections 2.4 as well as 3.2.1 and 3.2.3, susceptibility coefficients
constitute the Taylor expansions of various thermodynamic quantities such as pres-
sure or net baryon density and, thus, carry information on baryon-density effects in
the equation of state. Basing on these Taylor expansions, some bulk properties of
deconfined quark matter of Nf = 2 dynamical quark flavours are discussed in this
section. It turns out that the interplay between the different quark flavour sectors
decisively dictates the baryon-density dependence of bulk thermodynamic quanti-
ties in various physical situations [99]. Clearly, these considerations are limited by
the range of validity of such an approach, say by conservatively guessing the quark
flavour chemical potentials to be individually restricted by µu,d/T < 1.

In terms of the generalized quark number susceptibilities discussed at the end
of section 3.2.3, the net baryon density nB can be decomposed into

nB(µu, µd) ≈ 1

3

{

(χ2,0 + χ1,1)(µu + µd) +
(χ4,0

3!
+
χ3,1

3!

)

(µ3
u + µ3

d)

+
1

2
(χ3,1 + χ2,2)(µ

2
uµd + µuµ

2
d)

}

, (3.24)

including only terms up to O(µ3) and omitting the explicit notation of the T depen-
dence in the following. Thus, the net baryon density simultaneously depends on two
independent chemical potentials, µu and µd. (This is similarly the case for a non-
interacting gas of gluons and massless quarks with two independent quark flavour
chemical potentials.) Only in the special case of µI = 0, i. e µu = µd = µq, nB is a
function of one chemical potential alone ensuring constant net baryon density for
constant µB = 3µq. This illustrates the importance of a detailed knowledge on the
quark flavour chemical potential dependencies in bulk thermodynamic quantities.

In Figure 3.20, the interrelation between µu and µd for various physical situ-
ations is exhibited. Curves of constant µB are given by µd

T = 2
3

µB

T − µu

T as, for
instance, shown by the linear short-dashed curve in Figure 3.20 for µB

T = 1. In this
case, µu

T + µd

T = 2
3 ensuring that the considerations stay within the range of valid-

ity of the employed Taylor expansion approach. The individual net quark number
densities read

nu = χ2,0µu + χ1,1µd +
χ4,0

3!
µ3

u +
χ3,1

2
µ2

uµd +
χ3,1

3!
µ3

d +
χ2,2

2
µuµ

2
d , (3.25)

nd = χ2,0µd + χ1,1µu +
χ4,0

3!
µ3

d +
χ3,1

2
µuµ

2
d +

χ3,1

3!
µ3

u +
χ2,2

2
µ2

uµd . (3.26)

In the QPM, χ1,1 = χ3,1 = 0, such that lines of constant nu or nd are approximately
given by lines of constant µu or µd. Only at temperatures T ≈ Tc, where the
influence of χ2,2 is non-negligible, the simple pattern is deformed somewhat. For
µu = 2

3T and µd = 0 or µu = 0 and µd = 2
3T , nB/T

3 ≈ 0.187 at T = 1.1Tc

according to Eq. (3.24). Considering constant scaled net baryon density nB/T
3 =

0.187, the interrelation between µu/T and µd/T is depicted by the solid curve in
Figure 3.20, for which µB/T > 1 except for µu = 0 or µd = 0. Due to the small
differences between curves of constant µB and curves of constant nB as exhibited
in Figure 3.20, one is tempted to conclude that variations in the individual quark
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Figure 3.20: Dependencies µd(µu) for various side conditions or
physical situations. Bulk thermodynamic quantities are discussed
within truncated Taylor expansions using the generalized quark
number susceptibilities χ2,0, χ4,0 and χ2,2 exhibited in Figures 3.18
and 3.19. µB = T is depicted by the short-dashed curve, whereas
constant nB/T

3 = 0.187 holds along the solid curve where µB ≥ T .
Electric charge neutrality is given along the long-dashed curve for
pure Nf = 2 quark matter, while the dash-dotted curve includes
additionally electrons, imposing β-equilibrium. The dotted curve
reflects the situation in Au+Au heavy-ion collisions. (The curves
end where µu/T + µd/T ≥ 1.) In all cases, T = 1.1Tc.

flavour chemical potentials affect thermodynamic quantities only little as long as
µB is constant.

However, there are physical situations, where the corresponding side condi-
tions require the separate knowledge about the non-trivial µu and µd dependencies
of bulk thermodynamic quantities. In heavy-ion collisions one often relates the
quantum numbers of the entrance channel with the ones of the emerging fire-
ball. Isospin-symmetric nuclear matter, for instance, is characterized by an electric
charge per baryon ratio of 1:2. This translates into 2

3nu − 1
3nd = 1

2nB which is
fulfilled for µd = µu. Discussing, instead, Au + Au collisions, the electric charge
per baryon ratio is approximately 0.4. The corresponding dependence µd(µu) for
T = 1.1Tc is depicted by the dotted curve in Figure 3.20.

Another important issue concerns electric charge neutrality in bulk matter. In
pure Nf = 2 quark matter, electric charge neutrality would require 2

3nu − 1
3nd = 0.

The according dependence µd(µu) is depicted in Figure 3.20 by the long-dashed
curve, again for T = 1.1Tc. More relevant for hypothetical very hot neutron star
matter in a deconfined state is β-equilibrium. Flavour changing weak currents give
rise to the balance equation d ↔ u + e + ν̄e, i. e. in weak interaction equilibrium
µe = µd−µu, where µe is the electron chemical potential, as the produced neutrinos
are supposed to leave the star and do not participate in the balance. The electron
net density can be approximated by ne = 1

3µeT
2 + 1

3π2µ
3
e, and electrically neutral

bulk matter is determined by the condition 2
3nu− 1

3nd−ne = 0. The corresponding
dependence µd(µu) is depicted by the dash-dotted curve in Figure 3.20 for T =
1.1Tc. Along this line, the equation of state has to be determined as important
ingredient for solving the TOV equations in Eqs. (1.6) and (1.7). nd decreases by
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requiring β-equilibrium, demanding also a nonzero electron density for electrically
neutral bulk matter whereas nu is not affected when including electrons and β-
equilibrium. This is in contrast to findings for the cold colour-flavour locked phase
of QCD [160] for Nf = 2 + 1 dynamical quarks, where no electrons are required.

3.2.5 Imaginary chemical potential

In the following section, the QPM formulated for imaginary chemical potential
µi in section 2.3 is confronted with lattice QCD results [125, 161] at finite T and
µi. In particular, net quark number density and corresponding quark number sus-
ceptibility are investigated as functions of imaginary chemical potential exhibiting
prominent structures which serve as further sensitive test of the model. For the
net baryon density, results for imaginary chemical potential are analytically con-
tinued to real chemical potential and an interesting scaling behaviour is found. In
addition, features of the phase diagram for real and imaginary chemical potential
are discussed.

The simulations are performed on a lattice with spatial and temporal extensions
Nσ = 16 and Nτ = 4 for Nf = 4 degenerate quark flavours with mq = ξqT
and ξq = 0.2. Basic quantity of interest is the net quark number density nq and
the corresponding net baryon density, which are purely imaginary and positive
for imaginary µi > 0 as discussed in section 2.3. As non-improved actions are
used in the simulations [125, 161], a proper extrapolation of the lattice QCD data
to the continuum limit is required. Taking the Stefan-Boltzmann result nSB

B /T 3

calculated for Nτ = 4 [125] and applying the same strategy as in section 3.1.3
now for nB, a continuum extrapolation factor for the net quark number density
can be estimated to d(nq) = 0.456 assuming that the continuum extrapolations for
QCD and for the non-interacting gas of massless quarks and gluons are similar
(cf. discussion in Appendix C). This compares well with continuum extrapolation
factors reported in [162] reading 0.446 and in [156–158] reading 0.47, where similar
actions have been used in the lattice simulations (cf. section 3.2.3).

In Figure 3.21, QPM results are compared with continuum estimated lattice
QCD data [125,161] for the imaginary part of the scaled net quark number density
as a function of µi/Tc at constant T ≥ Tc. The QPM parameters of the effective
coupling G2(T, µi = 0) are adjusted to perfectly describe nq/T

3 at T = 1.1Tc.
This is because the pronounced bending close to the critical chemical potential
µc/Tc = 11π/30 of the Roberge-Weiss transition for T = 1.1Tc represents the
most sensitive test of the QPM. In fact, the description of the linear behaviour of
nq/T

3 with µi for all temperatures is rather robust under slight variations of the
parameters, whereas the onset of the pronounced structure at T = 1.1Tc decisively
depends on the parameter values. Therefore, a minimum χ2-fit to all available
lattice QCD data [125,161] is rather equivalent to a perfect parametrization of the
data at T = 1.1Tc [98].

The continuum extrapolated lattice QCD results, in particular the pronounced
bending of nq/T

3 for T = 1.1Tc, are impressively well described by the QPM
parametrization summarized in Figure 3.21. The drastic change in the slope of
nq/T

3 for T = 1.1Tc signals the onset of the Roberge-Weiss transition, where nq

exhibits a discontinuity according to [125, 161]. In the QPM, this change in slope
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Figure 3.21: Comparison of QPM results (solid curves) for the scaled
net quark number density nq/T

3 for Nf = 4 degenerate quark
flavours as a function of µi/Tc with continuum estimates of the lat-
tice QCD data [125, 161] for temperatures T = 1.1, 1.5, 2.5, 3.5Tc

(diamonds, circles, squares and triangles, respectively). The QPM
parameters are adjusted to nq/T

3 at T = 1.1Tc and read λ = 40
and Ts = 0.95Tc. For the case at hand, Tc = 163 MeV according
to [123] is utilized. The obvious discontinuity in the lattice data of
nq/T

3 takes place at the Roberge-Weiss critical chemical potential
µc/T = π/3 for T = 1.1Tc.

is driven by the behaviour of the effective quasiparticle mass with µi as exhibited
in Figure 3.22 for constant T , which also determines the dependence of G2 on µi as
dictated by the flow equation in Eq. (B.21). For decreasing µi/T , i. e. for small µi

or increasing T , the effective quasiparticle mass shows decreasing sensitivity on µi

while nonzero chemical potential effects become important close to µc = π
3T . The

chemical potential dependence in the quasiparticle dispersion relations is further
discussed in section 3.2.6.

For larger temperatures and small µi, nq/T
3 exhibits a linear dependence on

µi. In fact, exhibiting nq/T
3 as a function of µi/T , it shows an independence of

the explicit value of T for temperatures T ≥ 1.5Tc and not too large µi/T . This
independence can be understood from Eq. (2.51) as long as ωq is approximately in-
dependent of µi (cf. Figure 3.22). Below Tc, however, nq/T

3 displays a qualitatively
different behaviour being continuous and periodic as a function of µi/T [125].

Performing a naive chiral extrapolation by simply putting mq = 0 but keeping
the parametrization of G2(T, µi = 0) fixed, modifies nq/T

3 by less than 1% for the
considered range of temperatures and chemical potentials. In principle, however, a
general quark mass dependence of the parameters λ and Ts in the effective coupling
would be conceivable as noted in section 3.1.2.

Within the QPM, results obtained for purely imaginary chemical potential can
uniquely be analytically continued to real µ for µ < µc(T ) keeping the QPM param-
eters λ and Ts fixed [98]. These results may be compared with other analytic contin-
uations. For instance, in [125], a polynomial fit to nq/T

3 was considered. Despite
the fact that a polynomial fit nq(T, µi,mq) = a(T,mq)µi + b(T,mq)µ

3
i for imag-
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Figure 3.22: Effective quark quasiparticle mass M ≡Mq(T, µi) scaled
by T (solid curves) as a function of µi/Tc for T = 1.1, 1.5, 2.5, 3.5Tc

(from top to bottom) employing the QPM parameters from Fig-
ure 3.21.

inary chemical potential, with analytic continuation nq(T, µ,mq) = a(T,mq)µ −
b(T,mq)µ

3, cannot account for the change in slope observed for T = 1.1Tc at large
µi/Tc, its coefficients a and b have to be temperature and quark mass dependent
in order to follow the trend observed in lattice QCD. In addition, the behaviour
of analytic continuations of polynomial fits decisively depends on the considered
maximum order in µ2

i , as discussed in [126, 163]. In contrast, λ and Ts are once
adjusted to nq/T

3 at T = 1.1Tc (cf. Figure 3.21) and then kept fixed for all temper-
atures and chemical potentials, where the QPM contains all orders of µ2

i respecting
the symmetry lnZ(µ) = lnZ(−µ). For decreasing T , the analytic continuations
of QPM and of the polynomial fit of order O(µ3) start to increasingly deviate for
smaller µ/Tc. Due to the pronounced structure in nq/T

3 close to µc(T ), a sensible
analytic continuation is required.

In Figure 3.23, the net baryon density nB/T
3 is exhibited as a function of T/Tc

for constant imaginary (solid curves) as well as for real baryo-chemical potential
(dashed curves). As for small µB or large temperatures nB depends linearly on
chemical potential, the results for real µB significantly deviate from the original
results for imaginary chemical potential only at large µB and temperatures close
to Tc. Note that in these considerations µB is restricted to |µB| ≤ πT .

Furthermore, one finds an interesting scaling for the ratio nB/n
SB
B as depicted

in Figure 3.24, where nSB
B denotes the Stefan-Boltzmann expression of the net

baryon density. When considering nB/n
SB
B either for real or for imaginary chemi-

cal potential, in both cases, µB effects become visible only in the vicinity of Tc. In
fact, for the baryo-chemical potentials considered in Figure 3.24, the ratio nB/n

SB
B

is found to be independent of µB for T ≥ 1.2Tc. Besides, nB/n
SB
B = 1 is ap-

proached only asymptotically, signalling the expected strong deviations from the
free field behaviour. Apart from the observed differences in the ratio between real
and imaginary chemical potentials close to Tc, an interesting pattern develops:
nB/n

SB
B decreases with increasing baryo-chemical potential for real µB , while the

ratio increases in the case of imaginary chemical potential. This is partly caused
by differences in nB/T

3 between real and imaginary chemical potential which be-
come smaller for increasing temperature (cf. Figure 3.23). But it is also related to
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Figure 3.23: Scaled net baryon density nB/T
3 for Nf = 4 degen-

erate quark flavours as a function of T/Tc for constant imagi-
nary µB/Tc = 3iµi/Tc (solid curves) and for corresponding real
µB/Tc (dashed curves). Note that for all temperatures, ∂n/∂T > 0
is fulfilled, as required from thermodynamic stability conditions.
nB/T

3 exhibits the same shape as in Figure 3.10 for Nf = 2 de-
generate quark flavours.

different signs in nSB
B for real or imaginary chemical potential as elaborated in [98].

The quark number susceptibility χq represents also a sensitive probe of the
QPM. In Figure 3.25, χq/T

2 is exhibited for T = 1.1Tc as a function of µi/Tc,
where both, lattice QCD results [161] as well as QPM results are obtained by
numerical differentiation of nq. The behaviour of χq is, thus, determined from the
behaviour of nq with µi; possible systematic differences between QPM and lattice
QCD results should enhance, accordingly, in this higher-order derivative. However,
as the comparison of QPM results with the lattice QCD data does not point to
such a behaviour, the agreement depicted in Figure 3.25 serves for an impressive
test of the QPM.

With the above comparisons at hand, the deconfinement phase transition line
can be discussed for Nf = 4 degenerate quark flavours. For this purpose, the
QPM parameters λ and Ts remain fixed to the values in Figure 3.21. Within the
QPM, the characteristic curve emerging at T = Tc and µ = 0 as solution of the
flow equation in Eq. (B.21) can be considered as an indicator of the pseudo-critical
curve. The phase transition line was calculated in lattice QCD simulations [123]
for imaginary chemical potential. The lattice QCD data were analyzed by applying
polynomial fits which were analytically continued to real µ [123].

In Figure 3.26, the phase diagram is exhibited in a specific coordinate system
in which both, purely imaginary baryo-chemical potential as well as real µB are
depicted. Diamonds represent the polynomial fit from [123] for imaginary chemical
potential and the corresponding analytically continued results. For comparison,
the QPM characteristic (solid) curve starting at T = Tc for imaginary chemical
potential as well as for real µB is also shown. Deviations become visible only for
larger |µB/Tc|, where small differences in the imaginary chemical potential sector
turn into larger deviations in the sector of real µB , in particular for µB ≥ 330 MeV.

In Figure 3.26, the first two Roberge-Weiss transition lines (characterized by
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Figure 3.24: Ratio nB/n
SB
B as a function of T/Tc for different imagi-

nary and real baryo-chemical potentials. Dashed curves represent
results for imaginary baryo-chemical potential, with |µB/Tc| =
0.6, 1.2, 1.8 from bottom to top, while solid curves depict corre-
sponding results for real µB , with |µB/Tc| = 0.6, 1.2, 1.8 in inverted
order, i. e. from top to bottom.

µ2
B/T

2
c = −T 2π2(2k + 1)2/T 2

c for k = 1, 2) are shown with fat dashed sections
indicating the analytic region and fat solid section indicating a first-order phase
transition. In addition, the first Z3 centre symmetry line is exhibited (characterized
by µ2

B/T
2
c = −4T 2π2/T 2

c ) by the dotted curve. The repeated copies of these sectors
for k ≥ 2 are not displayed in Figure 3.26.

Numerically, one finds that the characteristic curve emerging at T = Tc and
the first Roberge-Weiss phase transition line cross each other at T ∗/Tc = 1.112
and (µ∗B)2/T 2

c = −12.214, whereas the lattice QCD simulations [123, 125] report
T ∗/Tc = 1.095 and (µ∗B)2/T 2

c = −11.834. These tiny differences can hardly be
resolved on the scale displayed in Figure 3.26. For larger imaginary µB, the char-
acteristic curve is mirrored at the Roberge-Weiss phase transition line (as displayed
in the section in the left edge below the first Roberge-Weiss phase transition line
in Figure 3.26).

In addition, the quark mass dependence of found results can be discussed by
naively setting mq → 0. For imaginary chemical potential, quark mass effects turn
out to be negligible. For real µB/Tc, quark mass effects are also small (at most 3%)
and visible only for very small temperatures. Decreasing the quark mass implies
a larger curvature of the estimated phase boundary and thus a smaller critical
chemical potential at T = 0 [98]. Similar minor quark mass dependencies with the
same trend when decreasing mq was found in lattice QCD simulations [164].

3.2.6 Discussion of the chemical potential dependence in the

quasiparticle dispersion relations

In order to examine the importance of the chemical potential dependence in the
effective quasiparticle masses (dubbed BKS effect in [148]) on the found results,
one can, for instance, omit the explicit µ2

i /π
2 terms in Eqs. (2.52) and (2.53) or

flip their signs. For simplicity, the dependence of G2 on µi, as dictated by the flow
equation, is left unchanged, for the moment being. While altering in this way the
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Figure 3.25: Comparison of QPM results (solid curve) for χq/T
2 as a

function of µi/Tc ≤ 1 for T = 1.1Tc with the continuum estimate
of the lattice QCD results [161].

Figure 3.26: Phase diagram for imaginary and real baryo-chemical
potential. Details are explained in the text.

effective quasiparticle masses, the QPM parameters found in section 3.2.5 are kept
fixed. In both cases, nq/T

3 is only affected for large µi, where the attenuation of µ2
i

by 1/π2 becomes smaller and the term proportional to µ2
i in Eqs. (2.52) and (2.53)

cannot be neglected compared to the term proportional to T 2. This implies that
for larger T significant effects can only be seen at sufficiently large values of µi.

Thermodynamic self-consistency, however, requires in both cases of changing
the effective quasiparticle masses also changes in the flow equation in Eq. (B.21)
affecting the coefficients b, aT and aµi

according to Maxwell’s relation. In such
thermodynamically self-consistent approaches, found results are indistinguishable
from the QPM results exhibited in Figure 3.21. The QPM results turn out to be
rather independent of the explicit form of the µi dependence in the quasiparticle
dispersion relations. However, a general dependence of the dispersion relations on
chemical potential and on temperature is important for a proper description of
lattice QCD data.
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Figure 3.27: Comparison of nq/T
3 as a function of µi/Tc employing ei-

ther a constant mass parameter M = 0.21 GeV (dashed curves) or
readjusting M/T = 1.17, 0.90, 0.81, 0.77 for T = 1.1, 1.5, 2.5, 3.5Tc

(solid curves from top to bottom) with the continuum extrapolated
lattice QCD data (symbols) exhibited in Figure 3.21.
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Figure 3.28: Comparison of found M/T values (squares) from Fig-
ure 3.27 as a function of T/Tc with the effective quark quasiparticle
mass M/T ≡ Mq(T, µi = 0)/T employing the QPM parameters
from Figure 3.21.

This can be illustrated by considering nq in Eq. (2.51) with dispersion rela-
tion ω2

q = k2 + M2. When neglecting µi completely in M , thermodynamic self-
consistency dictates also an independence of T in M which significantly changes
results. Even though the almost linear behaviour of nq/T

3 at T = 1.1Tc for
small µi/Tc can be reproduced by adjusting M = 0.21 GeV as shown in Fig-
ure 3.27 (dashed top curve), increasing deviations from the lattice QCD data for
µi/Tc > 0.66, in particular in the vicinity of the Roberge-Weiss critical chemical
potential, can be observed. This was already discussed in [161] by considering the
ratio n(µi)/n(µi)free signalling clear deviations of the lattice QCD data from a free
(ideal) gas behaviour. Furthermore, for increasing T , the description of the lattice
QCD data becomes less and less accurate for smaller µi/Tc suggesting a general
dependence of M on T (cf. Figure 3.27). Readjusting M individually for each tem-
perature, ignoring for the moment being thermodynamic self-consistency, the re-
sults are depicted by solid curves in Figure 3.27. The found scaled mass parameters
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M/T for the temperatures considered here are exhibited in Figure 3.28 (squares)
and compared with the scaled effective quark quasiparticle mass Mq(T, µi = 0)/T
(solid curve) employing the parametrization of Figure 3.21. Both results agree
fairly well, indicating the importance of a T dependence in ωq and that nonzero
chemical potential effects are tiny for small µi/T .

Nevertheless, the pronounced behaviour for T = 1.1Tc close to µc cannot be
obtained when neglecting the µi dependence in the quasiparticle dispersion rela-
tions. The above considerations prove that ωi must be chemical potential depen-
dent whereas the explicit form of this dependence is of negligible impact.

3.3 QCD equation of state

The heart of hydrodynamics is the equation of state relating thermodynamically
the pressure of the medium to its energy density and net baryon density (or, equiv-
alently, to its temperature and baryo-chemical potential). In this section, the
QCD equation of state for Nf = 2 + 1 dynamical quark flavours is investigated.
Anchored to lattice QCD results, the QPM parametrization established in sec-
tion 3.1.1 (Figure 3.2) is used as well as the chirally extrapolated results from
section 3.1.2 (Figure 3.4). In this way, a lattice QCD based QPM EoS of the form
p(e) at zero net baryon density is obtained in section 3.3.1. Finite baryon-density
effects result from solving the full QPM flow equation based on Maxwell’s relation
as discussed in section 3.3.2. The found EoS, as elaborated in section 3.3.3, exhibits
some interesting scaling properties with the pseudo-critical deconfinement temper-
ature as well as with the quark mass. In section 3.3.4, the robustness of the QPM
EoS against variations in various entering parameters is discussed and shown that,
in particular in the high energy density region, p(e, nB) is rather stable against
these variations. Only in the transition region, the equation of state exhibits some
sensitivity. Parts of this section are reported in [95], whereas the investigations
concerning the scaling properties of the QPM EoS represent recent results.

3.3.1 Pressure as a function of energy density at nB = 0

In Figure 3.29, the QPM equation of state p(e) at nB = 0 is compared with
the corresponding lattice QCD results [132] deduced from p and e data at nB =
0 in the energy density domain explored by heavy-ion collisions at RHIC. The
employed QPM parameters are the same as in Figure 3.2 established by adjustment
to p(T )/T 4. The physical scale is set to Tc = 170 MeV according to [6,8], neglecting
for the moment being remaining variations due to uncertainties in the exact value
of Tc. In the transition region, the energy density e(T ) varies by 300% within a
temperature interval of ∆T ≈ 20 MeV while p(T ) rises much more slowly. This
indicates a rapid but smooth crossover for the phase transition from hadronic to
quark-gluon matter. At large energy densities, e ≥ 30 GeV/fm3, the EoS follows
roughly the ideal gas relation p = 1

3e.

For the sake of comparison, a bag model equation of state describing a gas
of massless non-interacting quarks and gluons by p = 1

3e − B with bag constant

B1/4 = 230 MeV is also exhibited in Figure 3.29 (straight dotted curve) showing
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Figure 3.29: Nf =2+1 QPM equation of state of strongly interacting
matter at zero net baryon density (solid curve) compared with
corresponding continuum extrapolated lattice QCD results [132]
(squares). The dotted curve represents p(e, nB = 0) for a gas
of massless non-interacting quarks and gluons with bag constant
B1/4 = 230MeV.

strong deviations from the lattice QCD based EoS. Considering p/e as a function
of e, as softest point (p/e)min = 0.075 at ec = 0.92 GeV/fm3 is found.

3.3.2 Baryon-density effects

Since for hydrodynamics the relation p(e, nB) matters, the nB dependence of the
pressure at fixed energy density is considered in the following. Relying on the suc-
cess of the QPM in reproducing nonzero nB lattice QCD results for Nf = 2 and
Nf = 4 dynamical quark flavours in section 3.2, the nB dependence is obtained by
exploiting the full QPM rather than utilizing truncated Taylor expansions (cf. dis-
cussion in section 3.2.1). In this way, the parametrization found at µB = 0 is used
to determine required thermodynamic observables at nonzero µB according to the
Maxwell relation in Eq. (2.18).

Figure 3.30 shows that a significant baryon-density dependence of the pressure
at fixed energy density arises only for e ≤ 2 GeV/fm3. At the smallest energy
densities considered here, the dependence of p on nB cannot be determined over the
entire nB region shown since the flow equation in Eq. (2.19) has no unique solution
for G2(T, µB) at large µB and temperatures far below the estimated transition
temperature Tc(µB) (cf. discussion in [130]). However, in the family of equations
of state that is constructed and employed in chapter 4, this peculiar feature for
small e will not occur.

Whereas sizeable net baryon densities are relevant at AGS and SPS energies
or the future CBM (Compressed Baryonic Matter) project at the FAIR/SIS300
facility, they are, at least in the midrapidity region, comparably small at top RHIC
energies and even smaller at LHC energies. Thus, as evident from Figure 3.30, finite
baryon-density effects on the equation of state can be safely neglected under RHIC
and LHC conditions at all energy densities for which the QPM can be applied.
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Figure 3.30: Net baryon-density dependence of the EoS p(e, nB) at
constant energy density e as indicated. The curves end where the
solution of the flow equation in Eq. (2.19) is not longer unique.

3.3.3 Scaling properties of the QPM EoS

Starting from the QPM expression for the pressure p as function of temperature
and zero chemical potential including Eqs. (2.1)-(2.3) and Eqs. (2.9)-(2.13), some
interesting scaling properties of the equation of state can be deduced. Reformulat-
ing p in terms of dimensionless entities, one schematically obtains

p(T, µ = 0)

T 4
=

∑

i

ǫi
di

π2

∞
∫

0

dxx2 ln
(

1 + ǫie
−ω̃i(T )/T

)

− B(Tc)

T 4

+
∑

i

di

2π2T 4

T/Tc
∫

1

dM̃i
2
(T ′)

dT ′





∞
∫

0

dxx2

ω̃i(T ′)/T ′

1

eω̃i(T ′)/T ′ + ǫi





(

T ′

Tc

)2

d

(

T ′

Tc

)

, (3.27)

where ǫl = 1, ǫg = −1, B(Tc)/T
4 = b0/(T/Tc)

4 with real number b0, for instance

b0 = 0.61 in Figure 3.2, ω̃i(T )/T =

√

x2 + M̃i
2
(T )/T 2 and M̃i

2
(T ) ≡M2

i (T, µ = 0)
as well as according derivatives with respect to T given in Eqs. (2.14) and (2.15) as

well as (B.1) and (B.2), respectively. Since only G2(T ), which enters M̃i
2
(T ) and

the derivatives of M̃i
2
(T ), depends on Tc, but in the scaled form T/Tc, where Ts/Tc

is a given real number in the QPM parametrization, p/T 4(ξ) ≡ φ(ξ) displayed as a
function of ξ, with ξ ≡ T/Tc, is independent of the explicit value of Tc. In contrast,

M̃l
2
(T ) depends explicitly on the quark mass parameters ml such that p(T )/T 4 in

Eq. (3.27) is clearly a function of the employed quark mass parameters. Decreasing
ml, thus, leads to increasing pressure as observed in Figure 3.4.

Considering first the scaling of the QPM EoS at nB = 0 with Tc, one notes re-
formulated in terms of ξ that p = T 4

c ξ(φξ
3). Imposing φ(ξ) = φ(ξ′) from Eq. (3.27),

this implies that with changing Tc to T ′
c, p, considered as a function of T/Tc, changes
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Figure 3.31: Dependence of the QPM EoS for Nf = 2+1 on the cho-
sen value of the physical scale Tc. Dashed, solid and dash-dotted
curves correspond to Tc = 160, 170 and 180 MeV, respectively.
Lattice QCD data (squares) from [132].

according to

p′ =

(

T ′
c

Tc

)4

p . (3.28)

Consequently, the energy density e = −p+ ξ∂p/∂ξ changes via

e′ =

(

T ′
c

Tc

)4

e . (3.29)

For the EoS in the form p(e), this implies that the linear section in Figure 3.29
which can be approximated by p(e) = αe + p0 becomes p′(e′) = αe′ + (T ′

c/Tc)
4p0

with the same slope α but different off-set p′0 = (T ′
c/Tc)

4p0. For T ′
c > Tc, the

linear section of p(e) is, thus, parallely shifted downward whereas for T ′
c < Tc it

is shifted upward as evident from Figure 3.31. In other regions of p(e) similar
changes occur. For instance, p(e) = α̃

√
e+ p̃0 with α̃ ≈ 0.07 can be approximated

for e = 0.5...1 GeV/fm3 (cf. Figure 3.29). Changing Tc to T ′
c, the EoS changes into

p′(e′) = α̃′
√
e′ + p̃0

′ with α̃′ = (Tc/T
′
c)

4α and p̃0
′ = (T ′

c/Tc)
4p̃0 implying a change

in the off-set p̃0 but also a flatter curve, α̃′ < α̃, for T ′
c > Tc and a steeper curve,

α̃′ > α̃, for T ′
c < Tc. This behaviour is also exhibited in Figure 3.31.

As empirically evident from Figure 3.4, the pressure changes by decreasing the
quark mass parameters according to

p′ = m(ξ)p . (3.30)

Numerically, one finds m(ξ) = 1.107...1.081 in the interval ξ = 1.5...3 implying
small changes in m(ξ) with ξ whereas m(ξ) = 1.33 for ξ = 0.8 and m(ξ) = 1.51
for ξ = 0.9. This change is a result of the procedure employed in Figure 3.4.
(When decreasing the quark mass parameters but not changing B(Tc) in the QPM
parametrization as done in Figure 3.4, even m(ξ) = 4.47 for ξ = 0.8 is found.)
Thus, for small ξ changes in m(ξ) with ξ turn out to be sizeable when performing
the (naive) extrapolation to smaller quark mass values. According to Eq. (3.30),
the energy density is affected via

e′ = m(ξ)e+ ξp
∂m(ξ)

∂ξ
. (3.31)
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Figure 3.32: QPM EoS for Nf = 2+1 (solid red curve) at nB = 0
and its naive chiral extrapolation to zero quark masses ml = 0
MeV (long-dashed blue curve) leaving also B(Tc) = 0.61T 4

c with
Tc = 170 MeV unchanged. Squares show lattice QCD data [132]
using unphysical quark masses (cf. section 3.1.1). The solid green
curve exhibits a hadron resonance gas model EoS.

Considering, again, the linear section in the EoS p(e) = αe+p0, it changes according
to Eqs. (3.30) and (3.31) to

p′ =
α

1 + αξ
m

∂m(ξ)
∂ξ

e′ + p0
m

1 + αξ
m

∂m(ξ)
∂ξ

≡ α′e′ + p′0 . (3.32)

The numerical result for the chirally extrapolated EoS p(e) at nB = 0 leaving,
though, the value of Tc and also B(Tc) unchanged (naive chiral extrapolation) is ex-
hibited in Figure 3.32. For energy densities e ≥ 2 GeV/fm3, quark mass effects are
seen to be negligible, whereas in the transition region (e ∼ 1GeV/fm3) the chirally
extrapolated result exceeds the original QPM equation of state (cf. Figure 3.29) by
approximately 10%. Adjusting B(Tc) in line with Figure 3.4 to B(Tc) = 0.78T 4

c ,
the original QPM EoS (cf. Figure 3.29) is notably affected only in the region of
very small e, whereas by changing the value of Tc according to the employed quark
mass parameters, the EoS is changed in line with the considerations above. Con-
sequences of this behaviour are further discussed in section 4.3. For the chirally
extrapolated QPM EoS, the softest point moves slightly upward compared to the
result noted in section 3.3.1 to (p/e)min = 0.087 at ec = 1.1 GeV/fm3. However,
both results are in good agreement with the lattice QCD data which show a softest
point (p/e)min = 0.080 at ec = 1 GeV/fm3.

The negligible quark mass dependence observed in the linear section of p(e) can
be explained from Eq. (3.32). The found numerical results demand that the off-set
in p(e) is almost not changed by Eqs. (3.30) and (3.31), implying that m(ξ) follows
the differential equation m2 −m = αξ∂m(ξ)/∂ξ which is solved by

m(ξ) =
−C

ξ1/α − C
. (3.33)

The constant C must be determined from an additional condition. As, obviously,
also α′ ≈ α, one finds C ≫ 1 by determining ∂m(ξ)/∂ξ from Eq. (3.33) which
implies that m(ξ) ≈ 1 and ∂m(ξ)/∂ξ ≈ 0. Both conditions are approximately
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Figure 3.33: QPM results for the squared speed of sound c2s as a func-
tion of T/Tc for Nf = 2+1 compared with lattice QCD data [165]
(diamonds and triangles) for Nf = 2. Differences between the
QPM parametrization (solid red curve) and its naive chiral ex-
trapolation (long-dashed blue curve) are almost invisible. The
solid green curve denotes the corresponding result for the HRG
model EoS exhibited in Figure 3.32. Short-dashed horizontal curve
indicates the Stefan-Boltzmann value c2s = 1

3
.

fulfilled in the linear region of larger energy densities (and asymptotically also
expected) explaining the observations in Figure 3.32. Nonetheless, for smaller
e, and in particular in the transition region, both conditions hold less and less
(apart from the fact that a different approximation for the dependence p(e) has
to be investigated for smaller e) resulting in α′ 6= α and p′0 6= p0 as evident from
Figure 3.32. In this region, the term ∝ ∂m(ξ)/∂ξ in Eq. (3.31) cannot be neglected.

For e ≤ e1 ≡ 0.45 GeV/fm3, the fat solid (green) curve in Figure 3.32 shows
a hadron resonance gas model EoS with physical mass spectrum in chemical equi-
librium.1 Obviously, it exceeds both the lattice QCD data [132] and their QPM
parametrization. The QPM EoS obtained by the naive chiral extrapolation proce-
dure, instead, approaches and interesects the hadron resonance gas EoS but still
does not match the HRG EoS at e1. This mismatch will be of relevance in chap-
ter 4 when constructing equations of state which are applied in hydrodynamic
calculations.

The small differences observed in Figure 3.32 between the lattice QCD adjusted
QPM EoS and its naively chirally extrapolated version can be further analyzed
by studying the squared speed of sound c2s. In Figure 3.33, c2s is shown as a
function of T/Tc for both versions of the QPM EoS and compared with lattice QCD
results [165] available only for Nf = 2. As far as c2s is concerned, both versions
of the QPM EoS have almost identical driving power for collective hydrodynamic
flow. Thus, the extrapolation of the QPM EoS to the chiral limit has no discernible
consequences.

1A tabulated version of the EoS for a HRG in chemical equilibrium (EoS Q files named aa1*.dat)
is available at http://www.physics.ohio-state.edu/∼froderma/.
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Even though lattice QCD as well as QPM results for p and e deviate from
their corresponding Stefan-Boltzmann limits for an ideal gas of non-interacting
massless quarks and gluons by about 15-20% at T ≥ 3Tc (cf. Figure 3.2 for p),
these deviations are of similar magnitude in both, p and e, such that c2s is close to
its Stefan-Boltzmann limit 1

3 (dashed horizontal curve in Figure 3.33) for T & 2Tc.
Thus, concerning stiffness and accelerating power, lattice QCD as well as QPM
EoS are almost indistinguishable from that of an ideal parton gas for temperatures
T & 2Tc. On the other hand, as exhibited in Figure 3.33, c2s drops abruptly below
1
3 for T < 2Tc reaching a value that is about a factor of 3 smaller close to Tc. This
leads to a significant softening in the EoS compared to that of an ideal massless
gas.

3.3.4 Robustness of the QPM EoS

As shown in section 3.3.3, the QPM EoS at nB = 0 is rather robust against
changes in the employed quark mass parameters, in particular in the region of larger
energy densities, although individual thermodynamic quantities sensitively depend
on ml as evident from Figure 3.4, for instance. A similar behaviour is observed for
moderate changes in the value of the physical scale Tc. Even though p(e) varies by
about ± 20% for changes in Tc by ± 10 MeV in the intermediate energy density
region (cf. Figure 3.31), the EoS is fairly robust against such variations for small e
and for large e ≥ 5 GeV/fm3 as far as the accelerating power is concerned.

When finally applying the EoS in hydrodynamic simulations in chapter 4, these
uncertainties in the intermediate e region are taken into account by an interpolation
procedure between QPM EoS in the high e region and a HRG EoS in the low energy
density region. This interpolation is anyhow mandatory, as both regions do not
automatically match (cf. Figure 3.32). The weak dependence on Tc at large e is,
thus, irrelevant in practice. However, using the recently reported value of Tc = 192
MeV [10], this picture changes to some extent in agreement with the observed quark
mass behaviour in the transition region. This issue is discussed in section 4.3.

Furthermore, the EoS p(e) for Nf = 2+1 at nB = 0 is rather similar for different
existing lattice QCD simulations [132,140,166] which differ in their lattice calcula-
tion set-up including lattice action, lattice spacing, spatial and temporal extensions
or bare quark masses etc. These differences in the set-up are reflected in deviations
in basic thermodynamic quantities such as the pressure p(T )/T 4 exhibited in Fig-
ure 3.34. As evident from Figure 3.34, the differences in p(T )/T 4 can be absorbed
by adjusting individually the QPM parameters. However, when presenting these
results in the form of an EoS p(e), they all coincide for e ≥ 5 GeV/fm3 as shown
in Figure 3.35. The agreement is excellent up to e ≈ 30 GeV/fm3 while at even
higher energy densities small differences between the equations of state from [132]
and [140] begin to develop. In this large energy density region, the EoS can be
parameterized by p = αe + p0 with α = 0.310 ± 0.005 and p0 = −(0.56 ± 0.07)
GeV/fm3. The robustness of the lattice QCD EoS for e ≥ 5 GeV/fm3 implies that
it can be considered as stable input for hydrodynamic simulations of heavy-ion
collisions, and that the equation of state is well constrained at high energy densi-
ties. Even reasonable variations in the necessary continuum extrapolation proce-
dures manifest themselves only weakly in the EoS and are completely negligible for
e ≥ 5 GeV/fm3.
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Figure 3.34: The scaled pressure p(T )/T 4 at µB=0 for Nf = 2 + 1
from different lattice QCD calculations ( [132] (squares, cf. Fig-
ure 3.2), [140] (circles, cf. Figure 3.7) and [166] (triangles)), to-
gether with corresponding separate QPM parametrizations (solid
curve employing the QPM parameters from Figure 3.2, short-
dashed curve employing the QPM parameters from Figure 3.7 and
dash-dotted curve employing λ = 2.35, Ts = 0.385Tc, b = 425 and
B(Tc) = 0.51T 4

c with Tc = 170 MeV). The simulations in [166] are
performed inNτ = 6 temporal extensions employing as quark mass
parameters mu,d = 0.1ms and ms ≈ 78 MeV. Note that in [166]
improved actions are used and results for Nτ = 4 and 6 show only
minor deviations. Therefore, no continuum extrapolation of the
lattice QCD data from [166] was applied here.

As an aside, differences in p(e) at nB=0 arising from considering different num-
bers Nf of dynamical quark flavours are investigated in Figure 3.36. Comparing
the QPM result for Nf = 2+1 with the result for Nf = 2, the latter exceeds the
Nf = 2+1 result in the transition region by about 12% at e = 1 GeV/fm3. For
smaller energy densities e ≤ 0.7 GeV/fm3 and for larger energy densities e ≥ 3
GeV/fm3, the EoS is found to be fairly independent of Nf even though at fixed T
both p(T ) (cf. Figures 3.1 and 3.2) and e(T ) are significantly smaller for Nf = 2
than for Nf = 2+1. As in both cases, p and e, the deviations with Nf are, however,
of similar magnitude, the dependence in p(e) on Nf approximately compensates.
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Figure 3.35: The EoS p(e) at nB=0 corresponding to the lattice QCD
data and QPM parametrizations of p(T )/T 4 shown in Figure 3.34.
In particular for e ≥ 5 GeV/fm3, the EoS is almost the same for the
different simulations [132,140,166] despite the observed differences
in p(T )/T 4.
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Figure 3.36: QPM EoS at nB = 0 for Nf = 2 (dashed curve)
employing the QPM parameters from Figure 3.1 compared with
Nf = 2 + 1 QPM results (solid curve) and corresponding lattice
QCD data [132] (cf. Figure 3.29). The QPM EoS in the form
p(e) exhibits a scaling with Nf in the low and high energy density
regions.



4 Application of the QPM EoS in

Hydrodynamic Simulations

In this chapter, the equation of state discussed in chapter 3 is applied in hy-
drodynamic simulations for ultra-relativistic heavy-ion collisions. As the chirally
extrapolated QPM EoS does not continuously match with a realistic hadron res-
onance gas equation of state at low energy densities, an interpolation procedure
between QPM and HRG sections in the transition region becomes necessary. This
is elaborated in section 4.1. The linear interpolation applied in section 4.1, however,
is not unique and thus, a whole family of equations of state can be constructed.
Different family members deviate from each other only in the transition region al-
lowing for an investigation of the influence of details in the transition region of the
EoS. In this way, the sensitivity of the EoS in the transition region as discussed in
section 3.3.4 is incorporated in the following considerations.

In particular, transverse momentum spectra as well as differential elliptic flow
of directly emitted hadrons are studied in section 4.2. Focussing on regions of
small net baryon density, first, strange baryons for top RHIC energy conditions are
considered in section 4.2.1 and the calculated differential elliptic flow is compared
with experimental data. In section 4.2.2, these considerations are performed for
future LHC energies. These results are reported in [95,97]. Finally, in section 4.3,
a different QPM equation of state is discussed which, as a result of employing
almost physical quark mass parameters as well as the corresponding recently re-
ported lattice QCD value for the deconfinement transition temperature, continu-
ously matches the hadron resonance gas equation of state in the transition region
while, simultaneously, it describes available lattice QCD results.

4.1 Matching the QPM EoS to a realistic HRG EoS

While most existing hydrodynamic simulations use a realistic hadron resonance
gas EoS below the deconfinement transition temperature, building upon the mea-
sured spectrum of hadronic resonances either with full [55, 56, 58, 167, 168] or par-
tial [54,169–172] chemical equilibrium among the hadron species, they usually rely
on simple analytical models for the EoS of the quark-gluon plasma phase which
are based on the assumption of weak coupling among the deconfined quarks and
gluons. This assumption, however, is inconsistent with the phenomenological suc-
cess of hydrodynamics requiring rapid thermalization [59] and, therefore, strong
interactions among the constituents [22,60,61,64].

As in the temperature region Tc<T < 2Tc, which is explored during the early
stages of Au+Au collisions at RHIC [54–56,58,167–170], the lattice QCD equation
of state significantly differs from that of an ideal massless parton gas, hydrodynamic
evolution codes must be supplied with a model EoS that can faithfully reproduce
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lattice QCD results above Tc. Therefore, the QPM EoS discussed in section 3.3 is
considered, in the following, as reliable approach to the QCD equation of state in
the deconfined phase while the transition to a realistic HRG EoS at lower energy
densities allows for an explicit contact with experimentally observed final state
hadrons after decoupling from the expanding medium. In this way, an equation of
state is obtained which can be applied to all stages of the hydrodynamic expansion
of the hot matter created in relativistic heavy-ion collisions.

As shown in Figure 3.32, the QPM EoS at high energy densities, which is
naively extrapolated to the chiral limit, does not automatically match smoothly
with the hadron resonance gas EoS at low e. Although the gap between the two
branches of the EoS is much smaller than for models which assume non-interacting
quarks and gluons above Tc [54–56, 58, 62, 167–172], a certain degree of ambiguity
remains in the necessary interpolation process. For this reason, a set of different
interpolation prescriptions is explored in this section yielding a family of equations
of state based on lattice QCD results. This family of equations of state, exhibiting
slight differences in the phase transition region, allows for a discussion of the impact
of EoS details in the quark-hadron phase transition region on the flow pattern. In
this way, the sensitivity of the flow pattern on the uncertainties arising in the
transition region pointed out in sections 3.3.3 and 3.3.4 can be explored and the
results can be confronted with experimental data from RHIC and future LHC. For
instance, quark mass effects on the EoS matter most at the lower end of p(e) where
the transition from the QPM EoS to the HRG EoS must anyhow be implemented.

For the hadron resonance gas EoS [52, 173], the implementation developed for
the (2+1)-dimensional hydrodynamic code package AZHYDRO1 is employed which
provides this EoS in tabulated form on a grid in the (e, nB) plane. Specifically,
EoS “aa1” from the OSCAR website up to e1 = 0.45 GeV/fm3 is used. This
EoS describes a thermalized, but chemically non-equilibrated hadron resonance
gas, with hadron abundance yield ratios fixed at all temperatures at their chemical
equilibrium values at T = Tc = 170 MeV, as found empirically [174] in Au+Au
collisions at RHIC.

As p(e) of the hadron resonance gas EoS does not join smoothly to that of
the QPM EoS at e1 = 0.45 GeV/fm3, irrespective of whether one uses directly the
QPM adjustment to the lattice QCD data [132] which incorporate unphysical quark
masses (cf. solid red curve in Figure 3.32) or naively extrapolates the QPM to the
chiral limit (dashed blue curve in Figure 3.32), a thermodynamically consistent
treatment requires a Maxwell like construction, equating the two pressures at a
common temperature Tc and baryo-chemical potential µB .

Here, however, a slightly different approach is followed which has the advantage
of allowing a systematic exploration of the impact of details in the EoS near Tc,
such as stiffness or accelerating power, on hydrodynamic flow patterns: p(e, nB) is
interpolated at fixed baryon density nB linearly between the HRG (“aa1”) value
at e = e1 and its value in the QPM EoS at a larger value em, keeping e1 fixed
but letting the matching point value em vary. In this procedure T (em) ≥ T (e1), so
T (e) is also interpolated linearly, as is the baryo-chemical potential µB(e) at fixed

1A link to the hydrodynamic code AZHYDRO can be found at the OSCAR website
http://nt3.phys.columbia.edu/people/molnard/OSCAR/ and descriptions in the references given
there.
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Figure 4.1: A family of equations of state for Nf = 2 + 1, combining
the QPM EoS at high energy densities with a hadron resonance gas
model (“res. gas”) EoS in the low energy density regime through
linear interpolation. Shown is the range of energy densities rele-
vant for collisions at RHIC. The solid curves show p(e) at nB = 0
for EoS QPM(4.0), QPM(2.0), QPM(1.25), and QPM(1.0) (from
top to bottom), where the numerical label indicates the match-
ing point em in GeV/fm3. On the given scale, effects of varying
nB between zero and 0.5 fm−3 are not visible. For comparison,
lattice QCD data [132] (squares) incorporating unphysical quark
masses are also exhibited. A bag model (“bag”) EoS with a sharp
first-order phase transition is shown by the dashed curve.

nB. This is a convenient pragmatic procedure for interpolating the special tabular
forms of the EoS employed in the hydrodynamic simulations between e1 and em.
Complete thermodynamic consistency would, though, require involved polynomials
for temperature and chemical potential interpolation. As the hydrodynamic evo-
lution equations, however, do not explicitly refer to T and µB in the interpolation
region, i. e. only p(e, nB) matters, the linearized structures for T and µB can safely
be utilized.

Due to this interpolation procedure, a family of equations of state is produced
whose members are labelled by the matching point energy density em. In Figure 4.1,
the range 1.0 GeV/fm3 ≤ em ≤ 4.0 GeV/fm3 is explored. As stated in section 3.3,
quark mass effects in the EoS become visible only for small energy densities be-
low 1 GeV/fm3. Thus, for the here employed values of em, it does not matter
whether the direct QPM parametrization or its naive chiral extrapolation is em-
ployed. Figure 4.1 shows the result for four selected em values, em = 1.0, 1.25, 2.0,
and 4.0 GeV/fm3 (from bottom to top). For em = 3.0 GeV/fm3 one obtains a curve
p(e) (not exhibited) that extrapolates the HRG EoS with approximately constant
slope all the way to the QPM EoS. The dashed curve in Figure 4.1 depicts the
Maxwell construction between the hadron resonance gas and the bag model equa-
tion of state (cf. dashed curve in Figure 3.29) with c2s = 1

3 . Due to this construction,
a strong first-order phase transition with latent heat ∆elat = 1.1 GeV/fm3 is found
(this EoS is named EoS Q in [56,167,168]).
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Figure 4.2: Squared speed of sound c2s as a function of energy density
e along an isentropic expansion trajectory with s/nB = 100, for
the EoS family QPM(em) depicted in Figure 4.1. Baryon-density
effects are not visible on the given scale as long as nB < 0.5 fm−3.

Different phenomenological equations of state of strongly interacting matter
were proposed in previous studies [54–56,58,62,167–173], exhibiting either a strong
first-order phase transition with different values of latent heats [54–56, 167–170,
172, 173], a smooth but rapid crossover [58], or no phase transition at all [173].
These equations of state differ significantly in their high energy density regions
and softest points as well as in the squared speed of sound which controls details
of the developing flow pattern. Investigating the hydrodynamic consequences of
different equations of state helps to establish benchmarks for tracing specific phase
transition signatures and distinguishing them from other dynamical features such
as, so far, poorly explored viscous effects.

The construction utilized here differs, for instance, from the approach explored
in [54] where the hadron resonance gas is matched to an ideal quark-gluon gas
with varying values for the latent heat ∆elat. Varying, for example, the latent
heat in EoS Q from ∆elat = 0.4 GeV/fm3 to 0.8 GeV/fm3 and to 1.6 GeV/fm3,
the pressure p(e0, nB = 0) at a typical initial energy density e0 = 30 GeV/fm3 for
central Au+Au collisions at RHIC decreases by 1.4% and 4.3%, respectively, with
correspondingly small changes in the entropy density s0. In the linear interpola-
tion approach discussed above, however, the entropy density s0 at e0 is fixed by
lattice QCD constraints and significantly, i. e. by about 15%, smaller. Note that
EoS QPM(1.0), which interpolates linearly between QPM EoS and HRG EoS at
em = 1.0 GeV/fm3, is quite similar to EoS Q, except for the rather large latent heat
in EoS Q, whereas EoS QPM(1.0) does not exhibit a first-order phase transition.

Figure 4.2 shows the corresponding squared speed of sound as a function of
energy density e. The linear interpolation between the hadron resonance gas at
e ≤ e1 = 0.45 GeV/fm3 and the QPM at e ≥ em leads to a region of constant
squared speed of sound for e1 ≤ e ≤ em. This constant increases monotonically
with the matching point value em. As noted above, for em = 3GeV/fm3, the hadron
resonance gas EoS is extrapolated approximately smoothly to the QPM EoS. Thus,
the corresponding EoS QPM (3.0) exhibits no soft region of small c2s. In this case,
the typical phase transition signature of a softening of the EoS near Tc is minimized
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(also for EoS QPM (4.0)), leading to a minimal phase transition influence on the
development of hydrodynamic flow. Still, the corresponding squared speed of sound
exhibits a jump at em.

4.2 Azimuthal anisotropy and transverse momentum

spectra

Assuming no transverse flow at a certain initial time τ0, at which the hydrody-
namic expansion stage starts, the azimuthal asymmetry in the particle emission
for momenta perpendicular to the beam axis is completely determined by the act-
ing pressure. Therefore, the azimuthal asymmetry represents an ideal probe for
the equation of state. Equipped with the QCD based family of equations of state
discussed in section 4.1, effects of fine structures in the EoS near Tc on the evolution
of hydrodynamic flow can be studied.

In this section, transverse momentum spectra dN/(dy pTdpT dφ) (cf. Eq. (1.5))
and differential elliptic flow v2(pT ) for a variety of hadron species are analyzed.
The final anisotropy in the momentum distribution depends on the rescatterings
among the particles serving as measure for the degree of local thermalization. In
order to emphasize flow effects, here, only directly emitted hadrons are considered
and resonance decay distortions are neglected.

For the hydrodynamic simulations, P. Kolb’s 2+1 dimensional relativistic hy-
drodynamic program package version 0.0 as available from the OSCAR website
with Cooper-Frye freeze-out formalism used in [55, 56, 58, 167–170] is exploited.
It assumes longitudinally boost-invariant expansion à la Bjorken. Clearly, this is
appropriate only near midrapidity, y ≈ 0, but sufficient for purposes of these qual-
itative investigations. In addition, a constant-temperature freeze-out prescription
is applied.

Nonetheless, no systematic comparison with RHIC data is attempted here. Pre-
vious studies [54,56,58,167,168] have already qualitatively established that existing
RHIC data are best described by an EoS with either a phase transition or a rapid
crossover of significant strength exhibiting both, a soft section near Tc and a hard
section not too far above Tc. More quantitative statements about a preference of
one form of the EoS over another require a discussion that goes beyond the pure
ideal fluid dynamical approach discussed here, due to well-known strong viscous
effects on the evolution of elliptic flow in the late hadron resonance gas phase [175].
Studying the effects of EoS variations within a more complete framework that al-
lows to account for non-ideal fluid behaviour in the very early and late stages of the
fireball expansion is an important task for the future. Staying within the ideal fluid
approach, the discussion presented here improves over that in [58] by employing
below Tc a chemically non-equilibrated hadron resonance gas EoS which correctly
reproduces the measured hadron yields, irrespective of the selected value for the
hydrodynamic decoupling temperature. This is also in contrast to considerations
in [176], where a full equilibrium HRG EoS is used and the decoupling surface is
dynamically determined from comparing the hydrodynamic expansion rate with
the local pion-pion scattering rate.

While the study presented in [56,167,168] shows that at top RHIC energies most
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of the finally observed momentum anisotropy develops before the completion of the
quark-hadron phase transition, the build-up of elliptic flow still occurs mostly in
the temperature region where lattice QCD data significantly deviate from the ideal
quark-gluon gas. It is therefore of interest to investigate effects of these deviations
and of variations in the exact shape of the EoS in the transition region on the
final elliptic flow in some detail, both at RHIC energies, where they are expected
to matter, and at higher LHC energies where most (although not all [177]) of the
anisotropic flow will develop before the system enters the phase transition region,
thus reducing its sensitivity to details in the transition region. This is explored in
the following.

4.2.1 Top RHIC energy

Considering, first, top RHIC energy, the corresponding initial conditions are fixed
according to [56,167,168]:

s0 = 110 fm−3, n0 = 0.4 fm−3, τ0 = 0.6 fm/c . (4.1)

These parameters, describing the initial conditions in the fireball centre for central
(b= 0 fm) Au+Au collisions, are required input for the hydrodynamic code. Initial
profiles for non-central collisions are calculated from these initial conditions using
the Glauber model [56, 167, 168]. In the case of the QPM EoS, the values in
Eq. (4.1) translate, independently of the QPM EoS version of the family used,
into e0 = 29.8 GeV/fm3, p0 = 9.4 GeV/fm3 and T0 = 357 MeV. Since the physical
scale is set by the value of Tc in the QPM EoS, a variation of Tc in the range
(170±10) MeV would result in a variation of e0 between 25 and 33 GeV/fm3 when
keeping s0 fixed in order to maintain the same final charged particle multiplicity
dNch/dy ∝ s0τ0.

The calculations assume zero initial transverse velocity, vT,0 = 0 at τ = τ0.
In the hadron phase, the Kolb-Rapp chemical off-equilibrium EoS [172] is used
to account for frozen-out chemical reactions. The employed freeze-out criterion
is ef.o. = 0.075 GeV/fm3, corresponding to a freeze-out temperature of about 100
MeV, at which all hadrons are assumed to freeze out. This freeze-out temperature
is rather small compared to different approaches, e. g. [176], where about 140 - 150
MeV are used.

Usually, when analyzing data, the set of initial and final conditions is adjusted
to keep the transverse momentum spectra of a given set of hadron species fixed.
Then, variations in v2 are studied. Here, instead, the impact of details in the
EoS on these observables is illustrated by using a fixed set of initial and freeze-
out parameters. In the following, a fixed impact parameter b = 5.2 fm, is explored,
being adjusted to best reproduce minimum bias data from the STAR collaboration.

In Figures 4.3 and 4.4, transverse momentum spectra and differential elliptic
flow for directly emitted Λ, Ξ, and Ω hyperons are shown, respectively. These
hadron species are not expected to receive large resonance decay contributions.
Thus, by comparing the results for directly emitted particles with the measured
spectra, one can obtain a reasonable feeling for the level of quality of the model de-
scription. Here, only results obtained with the two extreme equations of state, EoS
QPM(4.0) and the bag model EoS (exhibited by the dashed curve in Figure 4.1) are
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Figure 4.3: Transverse momentum spectra for directly emitted strange
baryons. Solid and dashed curves are for EoS QPM(4.0) and the
bag model EoS, respectively. Details are explained in the text.

Figure 4.4: Differential elliptic flow v2(pT ) for directly emitted strange
baryons. Solid and dashed curves exhibit results for the equations
of state employed also in Figure 4.3. The symbols represent data
from the STAR collaboration [178] (small squares Λ, middle-sized
squares Ξ and large squares Ω). Details are explained in the text.

displayed. The results for EoS QPM(1.0) are very similar to those of the bag model
EoS, although the latter features a large latent heat. The two remaining equations
of state, EoS QPM(1.25) and EoS QPM(2.0), interpolate smoothly between the
two extreme cases exhibited in Figures 4.3 and 4.4.

From Figure 4.3 it is evident that EoS QPM(4.0) generates significantly larger
radial flow, resulting in flatter transverse momentum spectra especially for the
heavy hadrons considered here. This can be understood from Figures 4.1 and 4.2,
since EoS QPM(4.0) does not feature a soft region with small squared speed of
sound around Tc. Flatter transverse momentum spectra generically result in smaller
Fourier coefficients v2(pT ) [56, 167, 168]. But Figure 4.3 clearly indicates that for
pT < 1.5 GeV/c EoS QPM(4.0) actually produces larger v2(pT ) than the bag model
EoS. This implies that EoS QPM(4.0) also produces a larger overall momentum
anisotropy, i. e. pT -integrated elliptic flow, than the bag model EoS, again, due to
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the absence of a soft region near Tc. Only at large pT > 2 GeV/c, where the ideal
fluid dynamic picture is known to begin to break down [57], EoS QPM(4.0) gives
smaller elliptic flow than the bag model EoS, as naively expected [56,167,168] from
the flatter slope in the single particle transverse momentum distribution.

The larger v2(pT ) at low pT < 1.5 GeV/c from EoS QPM(4.0) is not favoured
by the experimental data. In this sense, the qualitative conclusion from earlier
studies [54,56,58,167,168] is confirmed that the data are best described by an EoS
with a soft region near Tc followed by a rapid increase in the speed of sound above
Tc.

4.2.2 LHC estimates

Turning to predictions for Pb+Pb collisions at the LHC, these involve a certain
amount of guesswork about the initial conditions at the higher collision energy. Not
embarking upon a systematic exploration by varying initial conditions, as proposed
e. g. in [179], proper LHC initial conditions are conservatively guessed as

s0 = 330 fm−3, τ0 = 0.6 fm/c , (4.2)

keeping all other parameters unchanged. This corresponds to three times larger
final multiplicities than measured at RHIC. Within the QPM these initial param-
eters translate into e0 = 127 GeV/fm3, p0 = 42 GeV/fm3 and T0 = 515 MeV for
the peak values in central Pb+Pb collisions. Again, collisions at impact parameter
b = 5.2 fm are investigated using the Glauber model to calculate the corresponding
initial density profiles from the above (b = 0 fm) parameters.

As in section 4.2.1, only the two extreme equations of state, EoS QPM(4.0) and
the bag model EoS, are considered. In Figures 4.5 and 4.6, transverse momentum
spectra of directly emitted Λ, Ξ, and Ω hyperons as well as of directly emitted pro-
tons (p), kaons (K) and pions (π) are exhibited, respectively. Figures 4.7 and 4.8
display the corresponding differential elliptic flow. Generally, the pT spectra for
LHC initial conditions are flatter than for RHIC initial conditions (cf. Figures 4.3
and 4.5), since the higher initial temperature, and correspondingly longer fireball
life-time, results in stronger radial flow. Figures 4.5 and 4.6 show again that EoS
QPM(4.0), which lacks a soft region near Tc, generates even larger radial flow,
i. e. flatter transverse momentum spectra, than the bag model EoS, whose results
are similar to those obtained for EoS QPM(1.0). The radial flow effects are partic-
ularly strong for the heavy hyperons.

The overall momentum anisotropy, i. e. the pT -integrated elliptic flow, increases
but not very much from RHIC to LHC [56]. This is naturally expected, since the
longer QGP phase life-time expected at LHC translates into a longer persistence
of pressure gradients generating elliptic flow. However, since the LHC spectra are
flatter in particular for heavier particles, i. e. have more weight at larger pT , than
the RHIC spectra (cf. Figures 4.3 and 4.5), the differential elliptic flow at fixed
pT must, therefore, decrease. This is clearly seen when comparing Figure 4.4 with
Figure 4.7. The decrease is particularly strong for the hyperons at low pT where the
LHC transverse momentum spectra become extremely flat (cf. Figure 4.5). This
behaviour is induced by the increased importance of the flow velocity for heavier
particles which overcompensates the increased flow asymmetry. Similar findings
for the v2 of protons are reported in [180].
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Figure 4.5: Transverse momentum spectra for strange baryons. The
spectra show only directly emitted hadrons. Solid and dashed
curves are for EoS QPM(4.0) and the bag model EoS being similar
to EoS QPM(1.0), respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.1

1

10

100

1000

 

 

dN
/d

y 
dp

T2  [G
eV

-2
]

pT [GeV/c]

K

p

Figure 4.6: Transverse momentum spectra for pions (π), kaons (K)
and protons (p). The spectra show only directly emitted hadrons.
Solid and dashed curves are for EoS QPM(4.0) and the bag model
EoS, respectively.

4.3 Future prospects

As the lattice QCD simulations reported in [132] employ unphysically large quark
masses, the pressure at small energy densities is too small in order to match with
a realistic hadron resonance gas. For this to happen, smaller quark masses are
necessary to account for the partial pressure which is generated by the light pion
modes and their remnants for temperatures in the vicinity but below Tc. On the
other hand, it was shown in [132,133] that the HRG yields results which are consis-
tent with the lattice QCD data in [132] below Tc when appropriately modifying the
HRG mass spectrum according to the lattice calculation set-up. In this respect, the
HRG model with physical quark mass spectrum [52,173] can be seen as appropriate
approximation of the hadronic phase [181].

With the availability of lattice QCD results [135] which employ almost realistic
quark masses, one feature of the QPM, namely the possibility of extrapolating
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Figure 4.7: Azimuthal anisotropy v2(pT ) for directly emitted strange
baryons. Solid and dashed curves are for EoS QPM(4.0) and the
bag model EoS, respectively.
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Figure 4.8: Azimuthal anisotropy v2(pT ) for directly emitted pions
(π), kaons (K) and protons (p). Solid and dashed curves are for
EoS QPM(4.0) and the bag model EoS, respectively.

to different quark mass parameters, could successfully be applied (cf. Figure 3.4
and the discussion in section 3.1.2). Nonetheless, the chirally extrapolated QPM
EoS, which is numerically not too distinct from the result one would obtain for the
nonzero but almost physical quark masses employed in [135] (cf. Figure 3.4), does
not smoothly match the HRG EoS at e1 as evident from Figure 3.32. Therefore,
an interpolation procedure between both sections of the equation of state became
necessary (cf. section 4.1). In these considerations, so far, the physical scale Tc =
170 MeV was kept fixed. Changing, however, in addition the value of Tc according
to the lighter quark mass parameters to Tc = 192 MeV [10], low energy density and
high energy density regions continuously combine with each other as exhibited in
Figure 4.9.

This new QPM equation of state is, thus, free from interpolation ambiguities.
The corresponding squared speed of sound, as exhibited in Figure 4.10, shows an
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Figure 4.9: Equation of state p(e) at nB = 0 for Nf = 2 + 1. For
comparison, lattice QCD results [132] (squares) and correspond-
ing QPM results (solid red curve) for unphysical quark masses are
exhibited. Performing an extrapolation of this QPM parametriza-
tion to almost physical quark masses in line with [135] and using
Tc = 192 MeV [10] to set the physical scale, the corresponding re-
sult is depicted by the dashed blue curve together with the accord-
ing lattice QCD data [135] (circles). This new QPM EoS smoothly
matches the HRG EoS (solid green curve in the lower left edge) at
e1.

almost identical behaviour compared to the EoS discussed in the previous sections.
Consisting of a very soft sector in the transition region followed by a rapid change
into a hard section above Tc, the new QPM EoS exhibits those features which are
necessary for reproducing experimentally observed data of transverse momentum
spectra and elliptic flow in hydrodynamic simulations. In fact, concerning acceler-
ating power and stiffness, the new QPM EoS is rather similar to EoS QPM (1.0),
featuring a rapid but smooth crossover behaviour in the transition region. It will,
though, be an issue of future investigations to study the influence of this new QPM
EoS on hydrodynamics.

For the observed smooth approach between QPM EoS and HRG EoS, both,
lighter quark masses as well as a corresponding change in the value of Tc are
equally mandatory. This is in line with the scaling properties of the QPM EoS
discussed in section 3.3.3. However, the continuous matching can only be observed
when performing a naive chiral extrapolation leaving also B(Tc) unchanged (in
contrast to the procedure employed in Figure 3.4). This mainly affects p(T )/T 4 in
the transition region and for T < Tc. The result for p(T )/T 4, which is necessary
for saturating the pressure at lower energy densities in order to match the HRG
pressure, is exhibited in Figure 4.11 (dashed curve) showing some deviations from
the lattice QCD results [135] for T < Tc.
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Figure 4.10: Squared speed of sound as a function of T/Tc for the
two QPM EoS exhibited in Figure 4.9 (same line code). Symbols
denote lattice QCD results [165] for Nf = 2 and short-dashed
horizontal curve exhibits the Stefan-Boltzmann limit c2s = 1
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Figure 4.11: Naive extrapolation of the scaled pressure p(T )/T 4 as
a function of T/Tc from the unphysical quark mass set-up (solid
curve, cf. Figure 3.2) to almost physical quark masses (dashed
curve) leaving, here, also B(Tc) unchanged (cf. Figure 3.4). The
increase in p(T )/T 4 compared to the lattice QCD data [135]
(squares) becomes necessary in order to produce the behaviour
of the new QPM EoS observed in Figure 4.9.



5 Study of QCD Critical Point Effects

In this chapter, the impact of the QCD critical point on the equation of state
is analyzed for the Nf = 2 case. In particular, the influence on higher-order
derivatives of the thermodynamic potential, such as quark number susceptibility or
specific heat, and on the behaviour of the isentropic trajectories is investigated. In
this way, effects of CP on the hydrodynamic expansion of the hot and dense fireball
can be studied. Here, in line with the arguments presented in Appendix A.2, the
existence of the QCD CP is assumed at TE ≈ 162 MeV and µE

B = 360 MeV [182].
Apart from that, the extension of the critical region around CP, which might be
crucial for searches of CP signals in future heavy-ion collision experiments, is fairly
unknown [183,184].

In section 5.1, a singular contribution to the entropy density assembling the
critical properties of the 3-dimensional Ising model is parametrically constructed
following [185]. Section 5.2 deals with the phenomenological implementation of
this singular entropy density contribution into a toy model. The ideas presented
here base on the work in [186]. Henceforth, the impact of the size of the criti-
cal region on the pattern of isentropic trajectories is analyzed. Furthermore, the
relative strength of singular and regular contributions to the thermodynamics can
be studied. Finally, QCD CP features are phenomenologically included into the
QPM for one independent chemical potential in a similar way in section 5.3. These
considerations, however, are constraint by lattice QCD results at finite net baryon
density which, supposed the numerical accuracy is sufficient, take into account all
the complexity of QCD. The results presented in this chapter are reported in [91,92].

5.1 Construction of QCD critical point phenomena

Starting point is the decomposition of the entropy density into s = sreg +ssing with
a regular part sreg and a singular part ssing. While sreg is defined according to the
considered analytic model, which will be specified in the following sections, ssing is
related to phase transitions and critical phenomena [187], instead. It is constructed
from the parametric representation [185] of the Gibbs’ free energy density G(r, h)
with critical behaviour belonging to the universality class of the 3-dimensional Ising
model. The order parameter of the 3-dimensional Ising model is the magnetization
M(r, h). G(r, h) and M(r, h) are functions of reduced temperature r ≡ (T −Tc)/Tc

and external magnetic field h.

From [185], the parametric form of G in terms of new, implicitly defined, pa-
rameters R and θ reads

G = F (M, r) −Mh , (5.1)

where the free energy density F (M, r) = h0M0R
2−αg(θ), M = M0R

βθ and M0,
h0 are normalization constants. The variables in this representation of the 3-
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dimensional Ising model are defined by

r = R
(

1 − θ2
)

, (5.2)

h = h0R
βδ

2
∑

i=0

a2i+1θ
2i+1 , (5.3)

where R ≥ 0, |θ| ≥ 1.154. The corresponding critical exponents read β = 0.326
and δ = 4.80 for the order parameter M(r, h), α = 2 − β (1 + δ) and γ = β(δ − 1)
according to Rushbrouke’s and Griffith’s equalities for the specific heat and the
magnetic susceptibility, respectively, while a1 = 1, a3 = −0.76201, and a5 =
0.00804. The function g(θ) in F (M, r) follows from solving the differential equation

2
∑

i=0

a2i+1θ
2i+1

(

1 − θ2 + 2βθ2
)

= 2(2 − α)θg(θ) + (1 − θ2)g′(θ) (5.4)

with integration constant g(θ = 1) = 0.04242 which stems from h = (∂F/∂M)|r.
Following these definitions, M(r, h) shows the correct critical behaviour M(r =
0, h) ∼ sgn(h)|h|1/δ , M(r < 0, h = 0+) ∼ |r|β close to r = 0, h = 0 when choosing
M0, h0 appropriately. The critical point is, by construction, located at r = 0 and
h = 0.

In Figures 5.1 and 5.2, the mappings between the variables of the 3-dimensional
Ising model (r, h) and the parametric representation (R, θ) of the Gibbs’ free energy
density in Eq. (5.1) is illustrated. Regions of opposite sign in the external magnetic
field h are separated in the (R, θ) parameter space. Striking, however, is that by
construction, the parametrization is continuous for r > 0, whereas it exhibits a
discontinuity for r < 0 at h = 0. Thus, identifying (r = 0, h = 0) with (TE , µE

B)
and choosing appropriately the orientation of the coordinate system (r, h) in the
QCD thermodynamic parameter space (T, µB), the anticipated phase transition
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θ

Figure 5.1: Mapping of Ising model variables (r, h) to the parameters
(R, θ) in the parametric representation of G in [185] according to
Eqs. (5.2) and (5.3). Solid curves depict lines of constant h = 0.5
(−0.5) for the upper (lower) curve. Dashed curves exhibit lines of
constant r > 0 (r = 0.5, 1, 2 from left to right), whereas dotted
lines represent constant negative r = −0.5.
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Figure 5.2: Inverse mapping (R, θ)→(r, h). Solid curves denote lines
of constant R = 0.5, 1, 2, 3 from inner to outer ring, dashed curves
lines of constant θ: For h < 0, θ is negative (θ = −1.1,−1 (here r =
0) and −0.5 from left to right); for h > 0, θ is positive (θ = 1.1, 1
(here r = 0) and 0.5 from left to right). For h = 0, θ = ±1.154 for
r < 0 and θ = 0 for r > 0.

pattern in the QCD phase diagram can be generated featuring a first-order phase
transition for µB > µE

B and an analytic crossover for µB < µE
B.

The singular part of the entropy density near the QCD critical point can be
constructed from the dimensionless quantity

Sc(T, µB) = −
√

(∆Tc)2 + (∆µB,c)2
(

∂G

∂T

)∣

∣

∣

∣

µB

. (5.5)

Assuming a rectangular critical region around CP, its extension in T and µB direc-
tions is approximated by ∆Tc and ∆µB,c. (This is clearly an idealization. Investi-
gations of the critical slowing down phenomenon near CP suggest rather a bending
of the critical region along the phase boundary [184].) Attributing the correct di-
mensions to Eq. (5.5), Sc(T, µB) quantifies the rapidity with which the entropy
density s changes across the r-axis. As for r < 0 Sc(T, µB) exhibits a discontinuity
at h = 0, implying a discontinuity in s and thus a first-order phase transition, it is
feasible to mimic the QCD phase transition line by the r-axis.

5.2 Study of QCD critical point effects in a toy model

As pointed out in section 5.1, the variables of the 3-dimensional Ising model need to
be mapped into the T -µB plane in the vicinity of CP. The coordinate transformation
incorporating the correct QCD phase transition features is illustrated in Figure 5.3.

The depicted phase boundary is estimated by Tc(µB) = Tc

(

1 + 1
2d(

µB

3Tc
)2
)

with

d = −0.122 which agrees with the solution of the QPM flow equation emanating at
Tc(µB = 0) = 175 MeV [130] for small µB. Note that the same curvature for the
estimated phase boundary was found in section 3.2.5 for Nf = 4 degenerate quark
flavours and in lattice QCD simulations [164] a similar d = −0.146 was reported.
This estimate for the phase transition line, however, implies a slightly different
TE = 170 MeV compared to [182] at fixed µE

B = 360 MeV, which is used in the
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Figure 5.3: Visualization of the coordinate transformation between
(T, µB) and (r, h). CP is located according to [182] on the esti-
mated phase boundary Tc(µB) and identified with r = 0, h = 0.
The r-axis is defined to be tangential to Tc(µB) at CP and oriented
such that r > 0 denotes the crossover region, r < 0 the region of
first-order phase transitions. The h-axis is put perpendicular to
the r-axis.

following. From Figure 5.3 it is clear that this phenomenological construction is
limited in accuracy by the increasing discrepancy between the r-axis and the actual
phase transition line in regions out of the vicinity of CP. Thus, this procedure works
best if CP is located at small µB in the flat region of Tc(µB).

In order to study CP effects, first, a simple toy model is considered. The regular
contribution to s is defined via a Taylor expansion for small µB

sreg(T, µB) = 4c̄0T
3 +

2

9
c̄2µ

2
BT (5.6)

with constant c̄0 = (32 + 21Nf )π2/180 and c̄2 = Nf/2 resembling the entropy
density of an ideal gas of gluons and Nf quarks. The construction of the singular
entropy density contribution together with the complex task of relating (T, µB)
with Eqs. (5.1) and (5.5) is performed in line with the ideas presented in [186]. It
reads

ssing(T, µB) =
2

9
c̄2µ

2
BTA tanh [Sc(T, µB)] , (5.7)

obeying the correct dimension of an entropy density. In this way, ssing includes the
proper critical exponents of the 3-dimensional Ising model and is continuous for
µB < µE

B, while it is discontinuous for µB > µE
B signalling the region of first-order

phase transitions. The parameter A describes the relative strength of the singular
contribution ssing in s compared to sreg and tanh [Sc(T, µB)] binds the function
Sc(T, µB) between +1 and -1, for convenience. The ansatz in Eq. (5.7) is chosen
such that ssing → 0 for T → 0 or for µB → 0.
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The net baryon density nB follows from

nB(T, µB) − nB(0, µB) =

T
∫

0

∂s(T ′, µB)

∂µB
dT ′ (5.8)

with integration constant nB(0, µB) = 4
3 c̄4
(µB

3

)3
and c̄4 =

Nf

4π2 which is com-
pletely determined from the regular part of the underlying thermodynamic poten-
tial. Thus, nB → 0 for µB → 0.

The parameters in ssing have to be chosen such that the standard thermody-
namic consistency conditions

(

∂s

∂T

)

nB

> 0 , (5.9)

(

∂nB

∂µB

)

T

> 0 (5.10)

are satisfied [186,188]. First, a critical region with moderate extension is considered
by applying ∆Tc = 15 MeV and ∆µB,c = 30 MeV. In Figure 5.4, the impact of
CP on the pattern of isentropic trajectories, characterized by constant s/nB, is
exhibited. For comparison, trajectories with ssing = 0 by setting A = 0 are depicted
by dashed curves. Increasing A > 0 results in an increasing bending of isentropic
trajectories towards larger µB where trajectories approaching the phase boundary
at µB > µE

B show the clear first-order phase transition signature of a finite latent
heat. In general, trajectories lying originally in the crossover region are attracted
by CP whereas those lying originally in the first-order phase transition realm seem
to be repelled. Shrinking the extension of the critical region towards ∆Tc = 0.6
MeV and ∆µB,c = 0.6 MeV, this general pattern remains unchanged, even though
the bending strength of CP towards larger µB decreases as exhibited in Figure 5.5.
In particular, the sections of isentropic trajectories in the hadronic phase are less
influenced.

The pattern observed in Figures 5.4 and 5.5 seems to be generic. Even though
isentropic trajectories are bent into the opposite direction for A < 0, this situation
implies that s and nB increase along the trajectory in the vicinity of the first-order
phase transition line during the adiabatic expansion of the hot and dense fireball
and its related cooling. As a result, thermodynamic consistency conditions are
violated which excludes negative values for the strength parameter A. Nonetheless,
this statement crucially bases on the employed ansatz for s, in particular in the
hadronic phase, as it also influences nB in the quark-gluon plasma phase according
to Eq. (5.8) (cf. [186] for a different ansatz for s). Clearly, Eqs. (5.6) and (5.7)
cannot account for the complexity of QCD.
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Figure 5.4: Isentropic trajectories in the toy model depending on
the strength parameter A for s/nB = 50, 28. Dashed, thin and
solid curves exhibit results for A = 0., 0.5, 1.0, respectively. Dot-
ted curve represents the r-axis defined tangentially to the esti-
mated phase boundary at CP. The extension of the critical region
is parametrized by ∆Tc = 15 MeV, ∆µB,c = 30 MeV.
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Figure 5.5: Isentropic trajectories as in Figure 5.4. Here, ∆Tc = 0.6
MeV, ∆µB,c = 0.6 MeV.

5.3 QPM with QCD critical point

The quasiparticle model introduced in section 2.1 per se does not include an ex-
plicit critical behaviour. The rapid changes in the vicinity of Tc observed in energy
density e and entropy density s for vanishing chemical potential (cf. Figure 3.3) or
in second-order Taylor coefficients of thermodynamic quantities for finite µ (cf. Fig-
ures 3.8 and 3.11) are described by the rapid increase in the effective couplingG2(T )
for T → T+

c making the active degrees of freedom rather heavy. Nonetheless, the
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change in the curvature of these thermodynamic quantities at T = Tc dictates a
change in the parametrization of G2(T ) for T < Tc as advocated in Eq. (2.20).

In principle, a parametrization for G2(T ) could be constructed such that G2(T )
would be continuously differentiable to arbitrary orders with respect to T at T =
Tc. However, such an ansatz cannot meet lattice QCD constraints while the
parametrization defined in Eqs. (2.20) and (2.21) can as successfully demonstrated
in chapter 3. In fact, the correct description of pronounced structures in higher-
order Taylor coefficients of thermodynamic quantities within the QPM is related to
higher-order derivatives of G2(T ) exhibiting a discontinuity at Tc. In this way, the
change in the curvature of G2(T ) mimics phase transition effects. Note, however,
that e, s and nB are continuous as any contributions stemming from derivatives of
G2(T ) are compensated by the bag function B due to thermodynamic consistency
as elaborated in section 2.1.

Arming the QPM with explicit CP features following the procedure presented
in section 5.2, the regular contribution sreg has to be adjusted to the known EoS
outside of the critical region. Thus, sreg can be defined by Eq. (3.9) together with
the QPM parametrization employed in Figure 3.8. Then, the singular contribution,
fulfilling thermodynamic consistency requirements, reads

ssing(T, µB) =
2

9
c2(T )µ2

BTA tanh [Sc(T, µB)] , (5.11)

where c2(T ) is defined in Eq. (3.3). Another conceivable possibility of defining ssing

would be to employ a µ3
B dependence rather than the advocated µ2

BT dependence.
The remaining parameters A and ∆Tc, ∆µB,c must be adjusted such that lattice
QCD results for the entropy density can be described by sreg + ssing. The net
baryon density follows similarly to Eq. (5.8) by integration of sreg + ssing with

nB(0, µB) = 4
3c4(T )

(µB

3

)3
and c4(T ) defined in Eq. (3.4).

As for small µB, lattice QCD data for s are already successfully reproduced by
sreg alone, one has to choose, for example, ∆Tc = ∆µB,c = 2 MeV and A = 0.1
mimicking a small critical region and a weak singular contribution compared to
sreg for small µB . (In contrast, applying the strategy of describing lattice QCD
results for small µB , in particular the pronounced structures in the Taylor coeffi-
cients, by increasing the strength of the singular contribution and decreasing the
influence of the regular contribution turns out not to be successful.) In this way,
bulk thermodynamic quantities are represented to a large extend by their regular
contributions as evident from Figure 5.6. For small µB , the influence of CP on the
EoS, here exhibited for the pattern of isentropic trajectories, is negligible. Only
in the vicinity of CP, the trajectories are slightly modified leaving, however, the
general pattern unchanged. A significant change of this pattern by increasing A or
∆Tc and ∆µB,c seems to be excluded by lattice QCD constraints.

Note that in this approach sreg and therefore ssing are based on a Taylor expan-
sion which is limited by its radius of convergence, µB/T ≤ 1.8 [164]. It is therefore
impractical to examine isentropic trajectories approaching the phase boundary at
µB > µE

B. In contrast, the full QPM is not hampered by these shortcomings. It
would, therefore, be feasible to apply the QPM entropy density s from Eqs. (2.6)
and (2.7) as regular part, defining ssing = Asreg tanh[Sc] in future investigations.
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The small effect observed in Figure 5.6 for small µB can be understood by
the numerical smallness of ssing as exhibited in Figure 5.7. Thus, based on the
assumption of a small critical region [14, 43], CP effects turn out to be small for
small net baryon densities, in particular on averaged hydrodynamics. (Quark-
meson model based studies combined with the proper-time renormalization group
method [184] also point to CP effects concentrated on a fairly narrow region.) It
will be an issue of future investigations to study, in line with [189–191], the impact
of a CP supplemented EoS in hydrodynamic simulations for heavy-ion collision
experiments.

Nevertheless, for µB close to µE
B , baryon number susceptibility χB =
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Figure 5.6: Influence of the QCD CP on the pattern of isentropic
trajectories s/nB = 300, 45, 35 (from left to right). Solid curves
represent only the regular contributions as shown in Figure 3.13 for
s/nB = 300, 45 while dashed curves exhibit results for the QPM
with implemented CP.
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Figure 5.7: Scaled singular part of the entropy density ssing/T
3 as

a function of T/Tc for different µB = 210, 360, 450 MeV (solid,
dashed and dash-dotted curves, respectively). At CP, the slope of
ssing becomes infinite resulting in a divergence of the specific heat
cH . For µB > 360 MeV, ssing shows the significant discontinuity
across the phase transition line of first-order.
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Figure 5.8: Scaled singular contribution to the specific heat corre-
sponding to ssing exhibited in Figure 5.7. µB = 210, 360, 450
MeV for solid, dashed and dash-dotted curves, respectively. At CP,
cH,sing diverges while for µB > µE

B it develops a discontinuity at
T = Tc(µB) plus, strictly speaking, a contribution δ(T −Tc(µB))z,
where z is the height of the discontinuity in ssing .

(∂nB/∂µB)|T or specific heat cH = T (∂s/∂T )|µB
are strongly influenced by the

QCD critical point. At CP, cH diverges due to its singular part, as depicted in
Figure 5.8 while in the region of first-order phase transitions cH is characterized
by a discontinuity across the phase boundary. Strictly speaking, as a result of the
discontinuity in ssing, cH receives a contribution from a delta-distribution weighted
by the height of the discontinuity in ssing at Tc(µB).

In order to visualize the effects on χB , A is increased to A = 1 which does
not alter the qualitative behaviour of the observables. In the QPM with imple-
mented CP, the baryon number density nB as a function of µB shows the expected
continuous behaviour in the crossover regime and also for T > Tc as exhibited in
Figure 5.9. At CP, however, the slope becomes infinite turning into a disconti-
nuity of finite height across the first-order phase transition line. Correspondingly,
its derivative χB as measure for fluctuations in nB diverges at CP and develops
a discontinuity, like cH , across the phase transition line whereas χB remains fi-
nite for temperatures T > TE. This is illustrated in Figure 5.10. A suppression
of baryon number fluctuations when approaching Tc(µB) for constant T from the
confined phase (solid, dashed and dash-dotted curves in Figure 5.10) is evident
in the vicinity of CP, whereas this is not the case when considering temperatures
T > Tc(µB = 0) (dotted curve in Figure 5.10). Nonetheless, some influence of the
presence of CP is still observed for T = 176 MeV. This behaviour is caused by
the form of the singular contribution to nB (cf. Figure 5.9). Moreover, χB in the
confined phase is found to be approximately 1

3 of χB in the deconfined phase. This
is in line with investigations reported in [147], which identify quasiparticles with
the quantum numbers of quarks as predominant carriers of the baryonic charge in
the hot deconfined phase.

The isovector susceptibility χI , in contrast, is expected to remain finite when
approaching CP [141]. In this section, the behaviour of χB for constant tempera-
tures is examined. In [192] it was argued that a verified signal of CP would require
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a non-monotonic behaviour of χB along the phase boundary Tc(µB).
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Figure 5.9: Baryon number density nB as a function of µB for different
constant temperatures T = TE − 1.25 MeV, TE, TE + 1.25 MeV
and T = 176 MeV (dashed, solid, dash-dotted and dotted curves,
respectively). For T > TE, nB(µB) is continuously increasing,
however showing an increasing influence of CP’s presence by a
tiny slope depression when approaching TE. At T = TE, the
slope becomes infinite at µE

B, and for T < TE, nB(µB) exhibits
the discontinuous behaviour of a first-order phase transition when
crossing the phase boundary.
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Figure 5.10: Baryon number susceptibility χB as function of µB

(same line code as in Figure 5.9). The divergence of χB at µE
B

is clearly seen. For T = TE −1.25 MeV at µB = 0.41 GeV, χB ex-
hibits a discontinuity plus a contribution from a delta-distribution
weighted by the height of the discontinuity in nB. Note that in
order to maintain thermodynamic consistency, one is restricted in
the choice of parameters such that negative χB is avoided which, in
principle, would be possible due to the form of the singular baryon
density contribution.



6 Summary and Outlook

In this thesis, the equation of state of strongly interacting matter in the hot
deconfined phase at finite net baryon densities is examined within a phenomeno-
logical quasiparticle model. A detailed knowledge on the QCD equation of state
is of significant importance in various aspects of fundamental physics such as the
hydrodynamic description of heavy-ion collision experiments, the evolution of the
early universe or the properties of compact stellar objects like neutron stars. Due
to the complexity of QCD showing non-perturbative behaviour over a wide range of
temperatures and baryon densities, a direct evaluation of QCD thermodynamics is
impractical. The most rigorous approach based on first principles is the evaluation
of the QCD partition function and of related quantities on a discretized space-time
lattice. However, phenomenological approaches, simplifying the theory to a de-
scription of relevant contributions in thermodynamic equilibrium, allow for a more
pictorial view onto the nature of QCD matter at finite temperature and chemical
potential. For this purpose, the quasiparticle model developed for the description
of the thermodynamics of the hot deconfined phase is applied and its results are
confronted with available lattice QCD data which, first, have to be extrapolated
to thermodynamic and continuum limits for making a comparison meaningful.

In particular, QCD thermodynamics at nonzero net baryon density is consid-
ered, here. For this reason, the successful quasiparticle model is extended in a
thermodynamically consistent way into two directions: Imaginary chemical poten-
tial, where found results have to be analytically continued towards real chemical
potential, and two independent real chemical potentials, which have to be con-
sidered for accessing various susceptibilities. Both realms represent a huge and
sensitive testing ground for the applicability of the model to extrapolate the QCD
equation of state known from lattice QCD for zero or small baryon densities to
large nB . Specifically, Taylor series expansions of various bulk thermodynamic
quantities, baryon number, isovector and electric charge susceptibilities as well as
diagonal and off-diagonal susceptibilities are studied. In addition, isentropic evolu-
tionary paths and the equation of state along them, and pronounced structures in
the net quark number density as well as the phase diagram for imaginary chemical
potential are investigated. All these successful applications presented here show
that a reliable QCD equation of state is attainable in a consistent way via this
phenomenological approach.

The performed studies also aim at a systematic exploration of the dependence
of the underlying gauge field theory, QCD, on various entering parameters such
as the number of active quark flavours, the quark mass parameters or the value
of the deconfinement transition temperature. Specifically, the dependence of bulk
thermodynamics and of the equation of state on variations in these parameters is
investigated. In this respect, the applicability of the quasiparticle model to extrap-
olate available lattice QCD results for thermodynamic quantities to the chiral limit
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is successfully tested. In addition, the scaling behaviour of the QCD equation of
state with quark mass and the numerical value of Tc is examined. Whereas quark
mass effects in the equation of state turn out to play a role only for small energy
densities, changes in Tc can have some influence on the whole pattern. Moreover,
the equations of state for Nf = 2 and Nf = 2 + 1 show some small deviations
only in the phase transition region. Also, the extrapolation of bulk thermodynam-
ics to asymptotically large temperatures is investigated. All these considerations
demonstrate the predictive power of the model. As the quasiparticle model ac-
curately reproduces first-principle lattice QCD results, its consequently expected
connection with the theory of strong interactions, based on formal mathematical
simplifications of a more rigorous approach to QCD via the Φ-functional formalism,
is outlined.

The ultimate goal of these considerations is the construction of reliable QCD
equations of state applicable in hydrodynamic simulations of the expansion stage
of heavy-ion collisions, in particular at top RHIC energies. As a lattice QCD based
and via the QPM parametrized QCD equation of state, relevant at large energy
densities, is found not to naturally match with a realistic hadron resonance gas
equation of state, relevant at low energy densities, in the transition region, an in-
terpolation procedure between both regimes becomes mandatory. This results in
a whole family of equations of state, whose members deviate from each other only
in the deconfinement transition region. In this way, possible uncertainties in the
equation of state, arising in the transition region from uncertainties in, e. g., the
numerical value of Tc or the quark mass dependence, are taken into account. In
contrast, the equation of state in the region of large e is found to be rather robust.
Exemplarily, transverse momentum spectra and differential elliptic flow are studied
and the deduced v2 is successfully compared with experimental data for strange
baryons. Also, implications of variations in the transition region of the equation
of state are discussed. In addition, larger initial energy densities assumingly rel-
evant for LHC physics are considered, predicting substantially smaller differential
elliptic flow but stronger radial flow for (directly emitted) strange baryons at LHC
compared to RHIC. Finally, an equation of state based on most recent lattice QCD
findings is discussed which does not require any interpolation prescription in the
transition region.

Even though nonzero baryon-density effects are tiny in the midrapidity region
for RHIC conditions, and assumed to be even smaller for LHC, the successful
comparison of the quasiparticle model with lattice QCD results at finite nB opens
the avenue for providing a realistic QCD equation of state relevant for FAIR physics.
This will be a task for future investigations. An important milestone concerning this
issue, however, is already discussed within this work: One possibility of including
QCD critical point phenomena into the model is presented. Indeed, the impact of
the QCD critical point on the equation of state relevant for FAIR and on related
detectable phase transition signatures are lively debated. Within the approach
discussed in this thesis, critical point effects on the equation of state are found
to be small except for chemical potentials equal or larger than the critical value.
On the other hand, some susceptibilities start to develop pronounced structures in
the vicinity of the critical point and in the region of first-order phase transitions.
Thus, phenomena related to the critical point might lead to easily detectable signals
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at FAIR depending, however, on the position of CP in the QCD phase diagram
(supposed there is any critical point at all). In this respect, the impact of a critical
point supplemented equation of state on hydrodynamic simulation results has to
be examined in the future.

Immediate considerations to be performed in the near future concern predic-
tions for or a direct systematic explanation of experimental data from the ALICE
experiment at LHC. In particular, the hadrons’ azimuthal distribution of momenta
or transverse momentum spectra should be investigated. Interesting, also, is the
implementation of heavier charm or bottom quark degrees of freedom which provide
deeper insight into the process of hadronization or hierarchy phenomena. These
plans highlight the importance of the tide interrelation between theory and ex-
periment. In addition, a systematic extension of the employed ideal relativistic
hydrodynamic approach to a causal viscous relativistic hydrodynamic description
of heavy-ion collisions should be envisaged.





Appendix A QCD and QCD

Thermodynamics

A.1 Quantum chromodynamics

QCD is the accepted basic gauge field theory of strong interactions with quarks
and gluons as fundamental degrees of freedom. Whereas quarks carry fractional
electric and baryonic charges, the rather massive hadrons carry corresponding in-
teger charges and are thought to be particle excitations in which quarks and gluons
are confined. The classical Lagrange density underlying QCD reads [193]

LQCD = ψ̄ (iγαDα −m0)ψ − 1

4
Fαβ

a F a
αβ . (A.1)

Here, ψ denotes the quark fields with flavour and colour indices being suppressed,
ψ̄ = ψ†γ0 the Dirac adjoint quark fields, Fαβ is the field strength tensor defined as

Fαβ
a = ∂αAβ

a − ∂βAα
a + gfabcA

bαAcβ (A.2)

with gauge fields (gluons) Aα
a and m0 is, in principle, a diagonal quark mass ma-

trix.1 The part in the classical Lagrangian including only Fαβ
a F a

αβ is called Yang-
Mills Lagrangian [194]. The corresponding quantized theory is called pure gauge
theory. The gauge covariant derivative Dα which reads

Dα = ∂α − igAa
αTa (A.3)

acting on the colour-triplet (Nc = 3) quark fields ensures minimal coupling between
quarks and gluons with coupling strength g, where Ta denote the generators of the
local SU(3) gauge group in the fundamental representation forming a Lie algebra
via

[Ta, Tb] = ifabcT
c (A.4)

with totally antisymmetric structure constants fabc. Within this notation, the field
strength tensor can be reformulated via

−igFαβ
a T a =

[

Dα,Dβ
]

. (A.5)

The non-Abelian SU(3) gauge group character of Yang-Mills type underlying QCD
becomes evident in the terms cubic and quartic in the gauge fields Aα entering
Fαβ

a F a
αβ which represent self-interactions among the gluons carrying colour charge

themselves. This is unlike to QED, which is an Abelian gauge theory, because the
corresponding gauge bosons (photons) do not carry electromagnetic charge.

1While Greek indices α, β = 0, ..., 3 refer to the Minkowski space-time (spatial contributions
are denoted by roman indices i, j, k), indices a, b, c = 1...8 are adjoint colour indices taking the
eight coloured gauge bosons (gluons) realized in nature into account.
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The canonical quantization of the classical theory requires additional gauge
fixing contributions and furthermore a compensation of occuring unphysical degrees
of freedom by introducing Fadeev-Popov [195] ghost fields in Eq. (A.1). QCD is
a renormalizable gauge field theory and, thus, the strong coupling αs = g2/(4π)
depends on the relevant momentum scale Q. In fact, as Q→ ∞ (or the separation
distance between partons (quarks and gluons) vanishes) the strong coupling αs

becomes very small signalling asymptotic freedom [1,2] of quarks and gluons which
has been experimentally observed in deep inelastic scattering experiments. On the
other hand, as Q becomes small (or the separation distance between partons large),
αs becomes large resulting in the fact that only hadrons representing colour-singlet
composite objects can be observed in a detector.

A.2 QCD thermodynamics and the QCD phase diagram

The equilibrium thermodynamics of QCD can most straightforwardly be analyzed
when quantizing the classical Lagrangian in Eq. (A.1) via the path integral formal-
ism as the path integral is closely related to the thermodynamic grand canonical
partition function Z via [102,103]

Z =

∫

D
[

ψ, ψ̄,Aa
α

]

e−SE
QCD exp







1/T
∫

0

dτ

∫

d3xµψ†ψ






, (A.6)

describing ensembles in which the exchange of energy as well as of conserved charges
with the environment is allowed. Here, SE

QCD denotes the Euclidean action for QCD

and the dτd3x integration is performed in Euclidean space. In Euclidean space,
the time coordinate of Minkowski space is Wick rotated, t→ −iτ = −i(x4)E , such
that the Euclidean 4-vector is given by (xµ)E = (τ, ~x). The Euclidean action is

then defined as SE
QCD =

∫ 1/T
0 dτ

∫

d3xLE
QCD, where LE

QCD is obtained from LQCD

in Eq. (A.1) (supplemented by gauge fixing and ghost field contributions) by for-
mally replacing LQCD → −LE

QCD using the Euclidean space expressions instead

(cf. [103]). Furthermore, the term µψ†ψ in Eq. (A.6) takes a finite chemical po-
tential µ associated with a nonzero quark flavour net number density into account.
Here, one unique quark chemical potential attributed to the quark fields ψ is as-
sumed. In section 2.4, different and independent quark flavour chemical potentials
µf are considered. From Z as basic quantity, other thermodynamic quantities fol-
low from the thermodynamic consistency conditions defined in Eqs. (1.1) and (1.2).
In addition, thermodynamic stability conditions (cf. Eqs. (5.9) and (5.10)) have to
be fulfilled [188].

In chapter 1, a variety of different QCD matter phases in the phase diagram de-
pending on temperature and baryo-chemical potential has already been mentioned
(cf. also Figure 1.1). In addition, the nature of the transition between hadronic and
QGP phases and topological features in the phase diagram have been addressed.

The phase structures of QCD are related to the symmetry properties of QCD
such as chiral symmetry, colour symmetry or the Z3 centre symmetry and changes
in these symmetry patterns. Symmetry changes are reflected in the behaviour of an
order parameter. Depending on the region considered in thermodynamic parameter
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space, an order parameter is nonzero in the region where the symmetry is broken
(in this case, the system is not invariant under the symmetry transformation), and
vanishes when the symmetry becomes restored [187]. In QCD, changes in the local
SU(3) colour symmetry are related to the occurance of colour superconducting
phases, the Z3 centre symmetry is associated with the confinement/deconfinement
phase transition and the spontaneous breaking of chiral symmetry is related to the
generation of Goldstone bosons.

The Z3 centre symmetry is connected with the periodicity properties of quark
(gluon) fields which must be antiperiodic (periodic) in Euclidean time with period
1/T in the path integral formulation of Z in Eq. (A.6). The Z3 centre symme-
try is characterized by the fact that the path integral for Z is symmetric under
discrete rotations of multiples of 2π

3 [196]. In a pure SU(3) gauge theory, the Z3

centre symmetry is an exact symmetry. The corresponding order parameter is the
Polyakov loop defined by the trace Tr in colour space over the time-like Wilson line

Φ̂ = TrP exp






ig

1/T
∫

0

A4(τ, ~x) dτ






. (A.7)

Here, P denotes the path ordering of the exponential, and Φ̂ is sometimes normal-
ized by Nc.

Its thermal expectation value

〈Φ̂〉 = exp

(

−F
T

)

(A.8)

is connected to the free energy F of a static (infinitely heavy) test quark and
illustrates the confinement property of QCD serving as an order parameter for the
deconfinement transition. At low temperature T , colour is confined into hadrons
and, thus, the free energy of the test quark is infinite implying 〈Φ̂〉 = 0. Therefore,
the Z3 centre symmetry is not broken in the hadronic phase. At high T , in contrast,
colour is deconfined and accordingly F of the test quark is finite and thus 〈Φ̂〉 6= 0.
This implies, that the Z3 centre symmetry is spontaneously broken. In the presence
of dynamical quarks, the Z3 centre symmetry is explicitly broken but remains an
approximate symmetry of QCD implying that 〈Φ̂〉 is also nonzero (but small) in the
confined phase though, still, exhibits a drastic change from confined to deconfined
QCD matter. This holds true when considering the behaviour with T at finite but
not too large baryon density.

For vanishing individual quark masses mq entering m0, the classical Lagrangian
in Eq. (A.1) is chirally symmetric. This implies that in the chiral limit, i. e. for
mq = 0, left- and right-handed quark fields of flavour q do not mix in the Lagrange
density. However, in the quantized theory, the vacuum is not chirally symmetric.
Thus, also at low temperature T , chiral symmetry is spontaneously broken which is
connected to the existence of massless hadronic Goldstone bosons, whereas at high
T chiral symmetry becomes restored. The corresponding order parameter for chiral
symmetry restoration is the chiral condensate 〈ψ̄ψ〉 being related to the pressure
by [5]

〈ψ̄qψq〉 = − ∂p

∂mq

∣

∣

∣

∣

T,µ

. (A.9)
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〈ψ̄ψ〉 is nonzero in the hadronic phase in which chiral symmetry is spontaneously
broken (due to the strong interaction between quarks in the massive hadrons, con-
fined quarks obtain an effective mass which is much larger than the mass of the
corresponding current quarks) and 〈ψ̄ψ〉 = 0 in the chirally symmetric QGP phase.

In nature, however, quarks possess a finite mass such that chiral symmetry is
explicitly broken. For instance, up and down quarks possess current quark masses of
about mu,d ∼ 5−10 MeV. Thus, chiral symmetry is only approximately realized in
nature implying that the Goldstone bosons (pions) obtain a finite mass. As a result,
〈ψ̄ψ〉 is also nonzero in the QGP phase but, as in the case of the thermal expectation
value of the Polyakov loop, depicts a significant change from the hadronic phase to
the QGP.

The condensation of quark fields into colour Cooper pairs at low T and suffi-
ciently large nB is dominated by diquark correlations. Local SU(3) colour sym-
metry is spontaneously broken which is signalled by the behaviour of the diquark
condensate 〈ψψ〉 6= 0 serving as an order parameter. Depending on the colour-
flavour-spin structure of the order parameter, many different ordered quark matter
phases are possibly realized such as crystallized phases, colour superconducting
phases [197–199] as well as strange quark matter [200–203]. In the latter case,
chiral symmetry in the presence of strange quarks is broken by the colour-flavour
locking mechanism at large baryon densities [204]. The value of the associated
chemical potential is proportional to the scale of QCD, ΛQCD.

The occurrence of a scale in QCD, ΛQCD ∼ 200 MeV, is related to another sym-
metry breaking. In the chiral limit, the classical Lagrangian in Eq. (A.1) possesses
no dimensionful parameter and the theory is thus invariant under scale transfor-
mations of the fields (dilatational symmetry transformations). Finite, but small,
quark masses break this symmetry explicitly, but still, it is approximately realized.
By quantization of the theory, however, the symmetry is explicitly broken as the
dilatational current is not conserved for g 6= 0. The latter is related to the ex-
pectation value of the trace of the energy-momentum tensor which serves as order
parameter. The thermal contribution to this trace is related to standard thermody-
namic quantities at µ = 0, Θµ

µ(T ) = e−3p, while vacuum contributions are related
to quark and gluon condensates. A symmetry breaking by quantum effects is called
an anomaly. In the conformal limit, one finds e = 3p. QCD, however, shows large
deviations from Θµ

µ(T ) = 0 in the vicinity of Tc (cf. section 3.1.2) approaching zero
only asymptotically as e− 3p is controlled by the logarithmic running of the QCD
coupling [205] at large T .

The nature of the transitions between the different QCD phases - whether
they are of first-order, second-order or rather crossover type of transformations -
depends decisively on the number of active quark flavours Nf as well as the quark
mass values. Applying universality arguments when examining the mentioned QCD
symmetries, predictions on the order of the transitions can be made.

First, zero net baryon density is considered. In pure gauge theory, i. e. Nf = 0
(mu,d,s are infinite), the transition between hadronic phase and QGP phase is of
first-order [206]. This was confirmed in first-principle lattice QCD calculations
in [138,207]. Similarly, for Nf = 3 in the chiral limit, i. e. mu = md = ms = 0, the
transition is also of first-order [208]. Increasing the quark mass of the degenerate
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quarks, the transition will eventually become a crossover. Both regions, first-order
and crossover transformation, must therefore be separated by a second-order tran-
sition at a critical quark mass mc. Distinguishing between mu = md and ms, a
whole line of second-order transitions emerges separating crossover and first-order
transition regions which must end in a tricritical point (TCP), where three differ-
ent phases coexist, at mu = md = 0 and a critical value of the strange quark mass
parameter mc

s [209].

In the case Nf = 2 (ms → ∞) in the chiral limit, i. e. mu = md = 0, the
transition might be second-order [209] but could be of first-order as well. In lat-
tice QCD calculations [210, 211] for Nf = 2 with mu = md 6= 0, the transfor-
mation was found to be of crossover type. In [212, 213], it was shown that for
ms ∼ O(150 MeV) the critical mass is mc

s ≈ 1
2ms. Thus, in the physical case of

Nf = 2 + 1 with the quark masses realized in nature, the transformation between
hadronic phase and QGP phase should be a crossover [7, 212].

The actual value of the transition temperature, Tc, depends decisively on Nf

and the considered quark masses [6]. Tc is determined in first-principle lattice
QCD calculations by locating the onset of rapid changes in the order parameters
〈Φ̂〉 and 〈ψ̄ψ〉 with temperature. These rapid changes are signalled by pronounced
peak structures in the corresponding susceptibilities which represent second-order
derivatives of the thermodynamic potential. Astonishingly, the rapid changes in the
order parameters for both, deconfinement transition and chiral symmetry restora-
tion, seem to be located at the same pseudo-critical temperature [8].

The reported numerical values (cf. chapter 1) read Tc ≃ 170 MeV for Nf =
2 + 1, Tc ≃ 175 MeV for Nf = 2 and Tc = 271 MeV for pure gauge theory
in earlier calculations [6, 8, 9], while recently a larger Tc = 192 MeV for Nf =
2 + 1 was found in [10]. Nonetheless, the value of Tc for Nf = 2 + 1 is currently
lively debated [214, 215] as in [214] a different Tc = 151 MeV is stated. In fact,
in [214] even different values for the transition temperature of deconfinement phase
transition and chiral symmetry restoration are reported, as the found peak positions
for Polyakov loop associated susceptibility and chiral susceptibility read Tc = 176
MeV and Tc = 151 MeV, respectively. However, since the transformation is an
analytic crossover, different Tc for different observables are not unexpected.

Considering nonzero baryon density, the transition temperature decreases with
increasing µB [164, 182]. Even though at moderate nB the transformation is an
analytic crossover, rapid changes in thermodynamic quantities, such as s or e, or
peaks in suitable susceptibilities allow for a determination of the pseudo-critical
line. At large nB, the order of the transition between the hadronic world and
other ordered quark matter phases is less firm known. In fact, depending on the
examined model, the transition is of first-order in the MIT bag model, linear σ
models [216] and Random Matrix models [217,218], while it is of first- [216,219] or
of second-order [220] in the Nambu–Jona-Lasinio model depending on the choice
of parameters. (For an overview of results from various models cf. [14, 43] and
references therein.) However, it is presently accepted that in the case of Nf = 2+1
with physical quark masses the transition at large baryo-chemical potential is of
first-order, even though this conjecture is questioned [221,222] quite recently.

It is obvious that, when accepting a first-order phase transition for large nB



114 Appendix A QCD and QCD Thermodynamics

while the transition is a crossover type of transformation at small baryon density,
by continuity, the line of first-order phase transitions emerging at large µB and
sufficiently small T must end in a second-order phase transition point at a specific
TE and µE

B, the QCD critical point. This means, that for µB < µE
B there is no true

order parameter which prevents the analytic connectivity of hadronic and QGP
phases as the two different phases are not distinguishable by an exact symmetry.
Note that such a feature is common to liquids, including water.

At a second-order phase transition point, an order parameter becomes non-
analytic which is related to the divergence of the correlation length. The correla-
tion length of fluctuations is of the order of the characteristic microscopic length
scale, Λ−1

QCD. At CP, fluctuations in thermodynamic quantities should be sizeably
increased and, furthermore, the system becomes scale invariant. Thermodynamic
quantities are, then, described by critical exponents whose numerical values can be
evaluated from renormalization group methods. Critical exponents are unique for
a certain universality class where universality classes assemble different physical
systems with the same global symmetries and the same pattern of breaking and
restoring these symmetries. QCD, for instance, belongs to the universality class of
the 3-dimensional Ising model [14, 43, 218] as far as static critical phenomena are
concerned which is the same as for ferromagnetic systems [187]. This was verified
in first-principle lattice QCD calculations of the critical exponent for the volume
dependence of the Binder cumulant of the chiral condensate [124,223]. For a clas-
sification in dynamic universality classes cf. [224] and for a discussion of dynamical
critical properties of QCD cf. [225,226].

If in nature zero up and down quark masses would be realized, the QCD phase
diagram would look somewhat different [14,43]. At small baryon density the transi-
tion would be of second-order turning into a line of first-order transitions for larger
nB at a tricritical point belonging to the universality class of the Heisenberg O(4)
model in 3 dimensions [208]. The location of the TCP in the T - µB thermodynamic
parameter space depends on the strange quark mass ms.

For nonzero mu and md, however, the second-order phase transitions turn into
crossover type of transformations ending in a CP whose location decisively depends
on the explicit quark mass values [124,227], most notably on ms. Thus, depending
on the value of mu = md, a whole line of critical points exists in the T - µB

thermodynamic parameter space which eventually approaches the TCP for mu =
md → 0. As the location of the TCP, however, is strongly affected by ms, different
ms also influence the location of the critical point for given mu = md.

In lattice QCD calculations the QCD CP was found to be located at TE = 162
MeV and µE

B = 360 MeV [182] for approximately physical quark masses (cf. chap-
ter 5). Earlier calculations with three times larger light quark masses reported
TE = 160 MeV and a larger µE

B = 725 MeV [228]. Note that the results in [182]
miss a proper continuum limit extrapolation, whereas in [228] both, thermody-
namic and continuum limit extrapolations, are missing. Various other numerical
calculations [143, 229] as well as model predictions differ in the exact location of
the QCD critical point. (For an overview cf. [14] and references therein.)

The location of CP can be determined by the method of Lee-Yang zeros [230–
232], making use of the connection between thermodynamic singularities in the
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complex thermodynamic parameter space and zeros of the partition function Z. For
a system of finite volume, the number of zeros is finite, though, linearly increasing
with V . Varying T and µB and increasing V , eventually zeros approach the real
axis, indicating the presence of a phase transition. In the thermodynamic limit,
V → ∞, the conglomeration of zeros develops into a cut in the complex plane,
which eventually touches (crosses) the real axis, indicating a second- (first-) order
phase transition.

For finite isovector chemical potential, µI , i. e. for different up and down quark
flavour chemical potentials, the pseudo-critical line can split into two resulting in
two different critical points [233–235]. This result, though, depends on the strength
of the flavour mixing [236].

A.3 Access to the QCD equation of state

The equation of state of QCD matter can be obtained from systematic approaches
to QCD such as lattice QCD calculations, perturbative QCD or chiral perturbation
theory.

In lattice QCD calculations, a discretized version of the full QCD partition
function Z in Eq. (A.6) is evaluated by Monte-Carlo sampling methods [8]. Note
that the lattice realization of Z is not unique and depends on the employed reg-
ularization of the QCD action. Although this technique can be applied in the
non-perturbative regime, in principle, standard Monte-Carlo sampling is not pos-
sible for computing time-dependent quantities, such as reaction rates, or for ther-
modynamics at finite chemical potential. The latter problem, known as the sign
problem which is caused by the non-positive definite fermion determinant at fi-
nite µ, could be circumwent by various approaches, recently. Either from the
overlap improving multi-parameter reweighting technique [237], a multi-parameter
reweighting with Taylor expansion [164] or the method of imaginary chemical po-
tential [122, 123, 126, 238], the QCD EoS is known in some region of T and small
µ. (For an overview, cf. [163, 239].) Furthermore, lattice QCD calculations are
limited when considering quantities which are sensitive to small quark masses, like
the chiral condensate. In fact, decreasing the quark mass parameters dramatically
increases the computational effort. Apart from that, as QCD thermodynamics is
studied at finite extensions in space and time, profound thermodynamic and con-
tinuum limit extrapolations have to be performed [138,240]. A detailed discussion
of this problem is relegated to Appendix C.

Perturbative QCD is applicable for small couplings αs, i. e. for large temper-
atures and/or large chemical potentials, where non-perturbative aspects of QCD,
such as confinement, become negligible. However, perturbative expansions are
hampered by infrared divergencies in the magnetic sector of QCD which lead to
a breakdown of the loop expansion [241, 242]. In the case of the pressure p, this
happens at order O(g6). The maximum exactly attainable order O(g6 ln 1/g) was
computed for p in [243, 244] and for the quark number susceptibility in [245] for
some T and µ and zero quark masses. For arbitrary T and µ, the perturbative
expansion of p is known up to O(g4), for finite quark masses only up to O(g2). In
contrast, in the large Nf limit, it is known to arbitrary orders [246–249].
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Furthermore, the perturbative expansion exhibits only a slow convergence, be-
sides the fact, that g is not really small up to O(100Tc). Thus, and also be-
cause naive loop expansions are not equivalent to expansions in αs, resummation
techniques become necessary which reorganize the perturbative expansion and im-
prove convergence properties. Among these methods, screened perturbation the-
ory [250–252], hard thermal loop perturbation theory [253–257] and φ-derivable
approximation schemes [107–110, 116] have to be mentioned. (For an overview,
cf. [13,111,258] and references therein.) In these resummations, higher-order con-
tributions are already involved in lower orders of the expansion. Note, however,
that in none of these approaches the magnetic sector is properly included. Success
in describing lattice QCD results of thermodynamic quantities with resummation
techniques was achieved for temperatures T > 2Tc [109].

In contrast, chiral perturbation theory is applicable at low T and low µ, where
no resonance contributions start to affect the physics. An introductory overview
can be found in [259].

In the regions of the QCD phase diagram, where the above mentioned sys-
tematic approaches do not work, phenomenological models are used to extract the
properties of strongly interacting matter. The advantage of models is that their
region of applicability overlaps with the realms where first-principle approaches
are valid. This, by comparison, gives restrictions in the model parameters, such
that information gained by systematic approaches can be extrapolated into regions
where the latter cannot be applied. Here, hadron resonance gas model [132, 133],
Nambu–Jona-Lasinio models or quark-meson models and Polyakov loop extensions
thereof [152, 260, 261], quasiparticle models [77, 78, 80, 84–87, 262] and models in-
cluding quark bound states [263] have to be mentioned. Quasiparticle models can
be used above but also slightly below Tc by making phenomenologically a large
number of degrees of freedom very massive and, thus, thermodynamically inactive,
such that a few massive excitations suffice to reproduce lattice QCD thermody-
namics. This picture is not too distinct from regrouping several resonances in the
HRG into a few representative effective excitations. For a more extreme point of
view on quark-hadron duality, cf. [134].

Nonetheless, for the ultimate description of the very nature of the quark-gluon
plasma one has to know correlations and spectral functions, propagators and related
dispersion relations. Such information is still fairly scarce, but starts accumulating,
in particular in first-principle lattice QCD calculations [264–266].

Recently, another approach for considering QCD has become very popular mak-
ing use of the correspondence between strongly coupled gauge field theories and
weakly coupled gravity theories [267–269]. In the so called AdS/CFT duality for-
malism, however, no exact dual to QCD has been found, yet.
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In this Appendix, the flow equations for a system with one independent chem-
ical potential (Appendix B.1), with imaginary chemical potential (Appendix B.2)
and with two independent chemical potentials (Appendix B.3) are summarized. In
addition, in Appendix B.3 limitations of the approach presented in section 2.4 are
discussed. One possibility of circumventing these limitations by employing an alter-
native ansatz for the quasiparticle dispersion relations is outlined in Appendix B.4.

B.1 One independent chemical potential

Here, the flow equation for the plasma considered in section 2.1 with two light
degenerate quarks and one heavier quark (Nf = 2 + 1) with only one independent
quark chemical potential µu = µd = µq = µ and µs = 0 is explicitly noted. In
this case, ns = 0 and nu = nd with nq = nu + nd, since the mass symmetric case
mu = md ≡ mq is examined which results in ωu = ωd ≡ ωq(k,Mq(T, µ)) because
M2

u = M2
d ≡ M2

q . Furthermore, one defines dq = 2NcNq, where Nq = Nf denotes
the number of degenerate (light) quark flavours. In this way, systems involving two
or four degenerate quark flavours without an additional heavier quark flavour are
included in the following expressions by setting ds = 0, Nf = Nq and Nq to the
appropriate value.

The derivatives of M2
i (T, µ) entering Eqs. (2.9) and (2.10) in section 2.1 using

the expressions in Eqs. (2.14)-(2.17) with replaced g2 by G2(T, µ) read for l = u, d, s
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These expressions include the possibility of considering temperature dependent bare
quark masses ml(T ) = ξlT as employed in some lattice QCD calculations. (In the
mass symmetric case of two degenerate light quarks ξu = ξd = ξq.) If, in contrast,
constant bare quark masses are considered, the corresponding expressions given in
Eqs. (B.1)-(B.4) change with ξl = 0 while in the chiral limit, ξl = 0 and ml = 0
must be set. These conventions apply for the entire Appendix B.

For completeness, higher-order derivatives of M2
q (T, µ) with respect to the

chemical potentials (µq,µI) or (µu,µd) as needed in section 3.2 for higher-order
coefficients are summarized reading
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where the second derivative of G2 with respect to µq is given in Eq. (2.72),

∂2M2
q

∂µ2
u

∣

∣

∣

∣

∣

µu=µd=0

=
mq

M̃+,q

(

1

3π2
G2(T ) +

1

6
T 2 ∂

2G2

∂µ2
u

∣

∣

∣

∣

µu=µd=0

)

+
2

3π2
G2(T ) +

1

3
T 2 ∂

2G2

∂µ2
u

∣

∣

∣

∣

µu=µd=0

, (B.6)

where the second derivative of G2 with respect to µu is given in Eq. (2.73) and
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with

M̃+,q = M+,q(T, µq = 0, µI = 0) =

√

1

6
T 2G2(T ) (B.8)

and the fourth derivative of G2 with respect to µq is schematically summarized
in [90].

Now, the flow equation is specified. Starting from Maxwell’s relation in
Eq. (2.18), the explicit T and µ derivatives of s and nq vanish whereas the remaining
contributions stem from derivatives with respect to M2

i (T, µ). Using the expres-
sions found in Eqs. (B.1)-(B.4), one can arrange the occuring terms to account
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for different derivatives of the effective coupling. In this way, a partial differential
equation for G2(T, µ) is found viz
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which is of first-order and linear in the derivatives but non-linear in the effective
coupling itself. The coefficients of this flow equation read
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The appearing integrals are given by
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where Li = 2
3k

2 + 1
2M

2
i .

By introducing a curve parameter x, the flow equation in Eq. (B.9) can be
solved, because the effective coupling becomes a function of x through G2(x) =
G2(T (x), µ(x)). Thus, for the total derivative of G2 with respect to x one obtains
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Comparing this result with Eq. (B.9), the quasilinear partial differential equation
can be reduced to a system of three linear coupled ordinary differential equations,
which can easily be numerically integrated
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= −aT , (B.18)

dµ

dx
= −aµ , (B.19)

dG2

dx
= −b . (B.20)

The coefficients in Eqs. (B.10)-(B.12) obey the following properties: aT (T, µ →
0) = 0, aµ(T → 0, µ) = 0 and b(T, µ → 0) = 0 while aµ(T, µ → 0) 6= 0. This
means that the characteristic curves representing solutions to Eqs. (B.18)-(B.20)
end perpendicularly into temperature and chemical potential axes.

B.2 Imaginary chemical potential

In a similar way, by imposing Maxwell’s relation on the pressure but now for
imaginary chemical potential as defined in Eqs. (2.45)-(2.47), the flow equation for
imaginary chemical potential reads
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which is solved for G2(T, iµi) by the method of characteristics described in Ap-
pendix B.1. The coefficients aT , aµi

and b depending on T , µi and G2(T, iµi) read



B.2 Imaginary chemical potential 121

for the system with Nf = 4 degenerate quark flavours considered in section 2.3
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T 2 − µ2
i

π2

]

G2(T, iµi)
+

1

3






2
µi

π2
G2(T, iµi)I3 , (B.22)

aT = −
[

T 2 − µ2
i

π2

]







1

3
+mq

√

√

√

√

1

6
[

T 2 − µ2
i

π2

]

G2(T, iµi)






I1 , (B.23)

aµi
= − 1

12

(

[6 +Nf ]T 2 − 3Nf
µ2

i

π2

)

I2

−
[

T 2 − µ2
i

π2

]







1

3
+mq

√

√

√

√

1

6
[

T 2 − µ2
i

π2

]

G2(T, iµi)






I3 . (B.24)

As in Appendix B.1, possible temperature dependent bare quark masses are in-
cluded. Comparing Eqs. (B.22)-(B.24) with Eqs. (B.10)-(B.12), changes in signs in
front of explicitly chemical potential dependent terms become obvious, signalling
the influence of imaginary chemical potential on the flow equation. The entering
integral expressions are explicitly given by

I1 =
dq

2π2T

∞
∫

0

dk
k2

ωq

(

eωq/T sin(µi/T ) − e3ωq/T sin(µi/T )
)

[

e2ωq/T + 2eωq/T cos(µi/T ) + 1
]2 , (B.25)

I2 =
dg

π2T

∞
∫

0

dk
k2

ωg

1

[eωg/T − 1]

(

1 − Lg

ω2
g

{

1 +
ωg

T

eωg/T

[eωg/T − 1]

})

, (B.26)

I3 =
dq

2π2T

∞
∫

0

dk
k2

ωq

(

(

2eωq/T cos(µi/T ) + 2
)

[e2ωq/T + 2eωq/T cos(µi/T ) + 1]

{

1 − Lq

ω2
q

}

− Lq

ωqT

(

2e3ωq/T cos(µi/T ) + 4e2ωq/T + 2eωq/T cos(µi/T )
)

[

e2ωq/T + 2eωq/T cos(µi/T ) + 1
]2

+
µi

T

(

eωq/T sin(µi/T ) − e3ωq/T sin(µi/T )
)

[

e2ωq/T + 2eωq/T cos(µi/T ) + 1
]2

)

. (B.27)
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B.3 Two independent chemical potentials

The coefficients entering Eqs. (2.65)-(2.67) considering a system with Nf = 2 de-
generate quark flavours as in section 2.4 read

A1 = I3
1

12

(

[6 +Nf ]T 2 +
6

π2

[

µ2
q + µ2

I

]

)

+I4

(

T 2 +
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π2
[µq + µI ]

2

)(

1

3
+

1

6

mu

M+,u

)

+I5

(

T 2 +
1

π2
[µq − µI ]

2

)(

1

3
+

1

6

md

M+,d

)

, (B.28)

B1 = −I1

(

T 2 +
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π2
[µq + µI ]

2

)(

1

3
+

1

6
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(
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)(
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3
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6
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M+,d

)

, (B.29)
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1

3π2
[µq + µI ]G

2

(
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)
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1
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2

(

2 +
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)
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(
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3
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, (B.30)
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, (B.31)
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(

T 2 +
1

π2
[µq + µI ]

2

)(

1

3
+

1

6

mu

M+,u

)

−I2

(

T 2 +
1

π2
[µq − µI ]

2

)(

1

3
+

1

6

md

M+,d

)
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(
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(
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A3 = I1
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)(
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1

6

mu
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)
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B3 = I2

(

T 2 +
1

π2
[µq − µI ]

2

)(

1

3
+

1

6

md

M+,d

)

, (B.35)
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where

M+,u =

√

1

6

(

T 2 +
[µq + µI ]2

π2

)

G2(T, µq, µI) , (B.36)

M+,d =

√

1

6

(

T 2 +
[µq − µI ]2

π2

)

G2(T, µq, µI) , (B.37)

and the phase-space integrals Ik are given by

I1 =
du

2π2

∞
∫

0

dk
k2

2ωuT

(

e{ωu+µq+µI}/T

[e{ωu+µq+µI}/T + 1]2

− e{ωu−µq−µI}/T

[e{ωu−µq−µI}/T + 1]2

)

, (B.38)

I2 =
dd

2π2

∞
∫

0

dk
k2

2ωdT

(

e{ωd+µq−µI}/T

[e{ωd+µq−µI}/T + 1]2

− e{ωd−µq+µI}/T

[e{ωd−µq+µI}/T + 1]2

)

, (B.39)

I3 = − dg
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∞
∫

0

dk
k2

2T 2

eωg/T

[eωg/T − 1]2
, (B.40)

I4 = − du

2π2

∞
∫

0

dk
k2

2ωuT 2

({ωu + µq + µI}e{ωu+µq+µI}/T
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, (B.41)

I5 = − dd

2π2

∞
∫

0

dk
k2

2ωdT 2

({ωd + µq − µI}e{ωd+µq−µI}/T

[e{ωd+µq−µI}/T + 1]2

+[µq,I → −µq,I ]

)

. (B.42)

Again, the terms involving explicitly ξu and ξd comply with the lattice calculation
set-up of temperature dependent bare quark masses mi = ξiT with constant ξi.
In the case of constant quark mass parameters, ξu = ξd = 0 must be set in the
above expressions while in the chiral limit, in addition, mu = md = 0 have to be
considered.

The coefficients in Eqs. (2.68) and (2.69) read

A1 = A2 =
1

12
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(
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π2
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B1 = B2 = −I1
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u
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3
+

1

6

mu

M+,u

)

(B.44)
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and

C1 = I1

(
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1
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where µq and µI in the phase-space integrals Ik defined above have to be substituted
by µu = µq + µI and µd = µq − µI . The coefficients in Eqs. (2.72) and (2.73) read

N = T 2

(

I3
[6 +Nf ]

12
+ I4

{

1

3
+

1

6

mu

M+,u

}

+ I5

{

1

3
+

1

6

md
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})

, (B.47)

N1 =
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2π2

∞
∫
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T 2ωu
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eωu/T

(eωu/T + 1)2
− 2

e2ωu/T

(eωu/T + 1)3
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2π2
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T 2ωd
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eωd/T

(eωd/T + 1)2
− 2

e2ωd/T

(eωd/T + 1)3

)

, (B.49)

where I3,4,5, M+,u and M+,d as well as ωu,d have to be taken at µq = µI = 0 or,
equivalently, at µu = µd = 0.

From Eqs. (B.43)-(B.46) one first notes that C1,2 → 0, B1,2 → 0 whereas A1,2

remain nonzero in the limit µu = µd = 0 resulting in ∂G2

∂µu

∣

∣

∣

µu=µd=0
= 0 from either

Eq. (2.68) or Eq. (2.69) and consequently ∂G2

∂µd

∣

∣

∣

µu=µd=0
= 0. In the region of small

chemical potentials, µu,d ≪ πT , discussed in section 2.4, one finds M+,u = M+,d

and in the mass symmetric case, mu = md, consequently ωu = ωd. Thus, from
Eqs. (B.45) and (B.46) the equality C1 = C2 follows when

µu = µd
I1

I2
, (B.50)

µu = µd
I5

I4

I1

I2
. (B.51)

For small µu and µd, the phase-space integrals Ik can be formulated in terms of
Taylor series expansions in the quark chemical potentials, where I1,2 turn out to
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be odd functions in µu,d while I4,5 are even functions in µu,d reading
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∞
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and

I4 = − du
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∫
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I5 = − dd
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∞
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eωd/T + O
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. (B.55)

Thus, for small µu and µd one finds µuI2 = µdI1 and I4 = I5. As a result,
Eqs. (2.68) and (2.69) can be solved consistently for G2 and its first derivative with
respect to µu,d for small µu and µd.

Second-order susceptibility coefficients depend on G2 evaluated at µu,d = 0,

while fourth-order coefficients depend on G2 and ∂2G2

∂µ2
u,d

at µu,d = 0. In princi-

ple, higher order derivatives of the effective coupling with respect to the chemical
potentials, as necessary for higher order susceptibility coefficients, are obtained
by mathematical manipulations of the generalized system of flow equations. For
instance, the derivative ∂2G2

∂µ2
u

following from Eq. (2.68) reads
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∂µ2
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=
1
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1
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)

∂G2

∂T
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∂2G2

∂µu∂T
, (B.56)

while when considering Eq. (2.69), C1 in Eq. (B.56) has to be replaced by C2. In
general, an n-th order derivative of G2 with respect to the chemical potentials
incorporates derivatives up to and including the (n− 1)-st order derivative of C1 or
C2. Since
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∣

∣
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∣
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, (B.57)

∂2G2

∂µ2
u

∣

∣

∣

µu=µd=0
is uniquely determined from the generalized system of flow equations.
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But already fourth-order derivatives of G2 cannot be obtained reliably as
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u
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(B.58)

whereas
∂3C2

∂µ3
u

∣

∣

∣

∣

µu=µd=0

=
∂3C1

∂µ3
u

∣

∣

∣

∣
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+
6

π2T 2

∂C1
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∣

∣

∣
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µu=µd=0

. (B.59)

This implies that second- and fourth-order susceptibility coefficients and related

quantities are uniquely determined whereas ∂4G2

∂µ4
u

∣

∣

∣

µu=µd=0
entering sixth- and higher-

order susceptibility coefficients cannot.

B.4 Alternative approach

The origin of the limitations pointed out in section 2.4 and in Appendix B.3 is the
special ansatz for the effective quasiparticle masses in Eqs. (2.60) and (2.61) which
is motivated by the contact to 1-loop expressions for the self-energies [102,103]. The
pressure in Eqs. (2.57)-(2.59) as such should, in principle, allow for consistency in
all orders of powers of µu,d. Considering, instead, modified effective quasiparti-
cle masses via 2M2

+,l = 1
3T

2G2(T, µu, µd) and m2
∞ = 1

12 [6 + Nf ]T 2G2(T, µu, µd),

i. e. discarding the explicit µ2 terms in the original expressions, an uniquely solv-
able generalized system of flow equations is obtained. The coefficients in Eqs. (2.68)
and (2.69) become

A1 = A2 =
T 2

3

(

[6 +Nf ]

4
I3 + I4 + I5

)

, (B.60)

B1 = B2 = −T
2

3
I1 , (B.61)

C1 = C2 =
2

3
TG2I1 . (B.62)

(These expressions are correct for the chiral limit or for temperature independent
bare quark masses. For ml = ml(T ), the equalities hold in the mass symmetric case
mu = md.) In this way, G2 and all its derivatives can trustfully be obtained, im-
plying also a consistent determination of the susceptibility coefficients to arbitrary
order, which opens the avenue for future investigations.

With these modified quasiparticle dispersion relations, information obtained by
adjusting the QPM parameters to lattice QCD results on the temperature axis is
transported to nonzero µu and µd solely by the implicit dependence G2(T, µu, µd)
and the corresponding generalized system of flow equations. In section 3.2.6, it was
shown that this alternative ansatz is equally suitable for a proper description of
lattice QCD thermodynamics for imaginary chemical potential. The stationarity
property of the thermodynamic potential p causes a robustness against modifica-
tions in the employed quasiparticle dispersion relations. Concerning the suscepti-
bility coefficients, results for second-order coefficients found in section 3.2.3 remain
unchanged by modifying the dispersion relations when keeping the parametrization
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Figure B.1: Comparison of fourth-order susceptibility coefficients χ4,0

(upper curves) and χ2,2 (lower curves) evaluated with the quasi-
particle dispersion relations incorporating Eqs. (2.60) and (2.61)
(solid curves) and with the modified dispersion relations incor-
porating only an implicit µu and µd dependence via G2 (dashed
curves) leaving the parametrization of G2(T, µu = 0, µd = 0) es-
tablished in Figure 3.18 unchanged.

of G2(T, µu = 0, µd = 0) fixed. In contrast, for instance ∂2G2

∂µ2
u

∣

∣

∣

µu=µd=0
and thus

fourth-order coefficients alter according to Eqs. (B.60)-(B.62). This is illustrated
in Figure B.1. Note, however, that the modification of the quasiparticle dispersion
relations leaving G2(T, µu = 0, µd = 0) fixed results in a generic down shift of the
original results by less than 9%, i. e. the alternative ansatz, with only an implicit
µu and µd dependence via G2, provides an equally suitable description of lattice
QCD results for the susceptibility coefficients.





Appendix C Extrapolation of Lattice

QCD Data to

Thermodynamic and

Continuum Limits

While the quasiparticle model is formulated for a thermodynamic system in-
finite in space and time, lattice QCD simulations are performed on a discretized
space-time grid with finite extensions in spatial, Nσ, and temporal, Nτ , directions
and finite lattice spacing a 6= 0. This demands a proper extrapolation of lattice
QCD results to thermodynamic (Nσ → ∞) and continuum (Nτ → ∞, a → 0)
limits when aiming at a reasonable comparison of simulation results with phe-
nomenological models. As the temperature, though, is defined by T = 1/(Nτa), an
appropriate continuum extrapolation of lattice QCD results at finite T demands
an extrapolation to Nτ → ∞ at fixed T . Moreover, available lattice QCD data
obtained in different simulations deviate, in general, in their numeric set-ups, in-
cluding lattice sizes, flavour numbers, quark masses, employed actions etc. Thus,
in general, different simulations require different extrapolation procedures.

In particular, employing different lattice actions results in different cut-off ef-
fects on the data. While for improved actions thermodynamic bulk quantities stay
below their corresponding continuum ideal gas limits [131], simulations using stan-
dard actions overshoot the latter at larger temperatures exhibiting sizeable cut-off
effects [8]. In fact, discretization errors in thermodynamic bulk properties are most
significant at high temperatures [270]. For instance, leading-order cut-off effects in
the pressure evaluated at finite Nτ are given by [8]

p

T 4

∣

∣

∣

Nτ

=
p

T 4

∣

∣

∣

∞
+

c

N2
τ

+ O(N−4
τ ) , (C.1)

implying temperature dependent cut-off effects. Employing improved actions
strongly reduces lattice discretization errors at high temperatures as the influence
of the order O(N−2

τ ) correction decreases significantly (c→ 0) leaving as dominant
contribution O(N−4

τ ) corrections. Thus, simulations with small temporal extension
are already close to the continuum limit [270].

Detailed systematic studies of the cut-off dependence of lattice QCD results by
considering different Nτ and extrapolating to Nτ → ∞ exist for pure SU(3) gauge
theory using standard actions [138, 271] and improved actions [207, 272, 273]. In
these studies, the difference between continuum extrapolated results for the pres-
sure and results obtained at Nτ = 8 is below 3%. Moreover, the cut-off dependence
of an ideal gluon gas describes correctly the cut-off dependence of the complex,
interacting theory [131]. In this respect, the behaviour observed for the ideal, non-
interacting gas can be considered as guidance for analyzing the cut-off dependence
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of QCD thermodynamics [131].

Similar studies for systems including light quarks have not been performed, even
though discretization errors in pure SU(3) gauge theory and for systems including
light quarks seem to be of the same size [131]. This leaves, however, some freedom
for the applied continuum extrapolation procedure. In fact, different estimates for
a continuum extrapolation are conceivable. One possibility is to multiply available
lattice QCD data by a scaling factor given by the ratio of thermodynamic quantities
evaluated for Nτ → ∞ and for finite Nτ , but, in both cases for the massless,
non-interacting gas of quarks and gluons. This procedure explicitly assumes that
continuum extrapolations of simulations for QCD and for the Stefan-Boltzmann
gas of quarks and gluons are similar [131]. In general, however, such a scaling
factor could depend on temperature.

Nonetheless, as discretization errors are of the order O(N−n
τ ), a profound ex-

trapolation of lattice QCD results to the continuum limit must base on a sys-
tematic investigation of different Nτ at fixed T and an according extrapolation to
Nτ → ∞ [8, 138,270]. In the same way, lattice QCD data have to be extrapolated
to the thermodynamic limit by investigating large spatial extensions Nσ.
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[98] M. Bluhm and B. Kämpfer: Quasiparticle model of quark-gluon plasma
at imaginary chemical potential. Phys. Rev. D77, 034004 (2008).
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sure of hot QCD up to g**6 ln(1/g). Phys. Rev. D67, 105008 (2003).

[244] A. Vuorinen: The pressure of QCD at finite temperatures and chemical
potentials. Phys. Rev. D68, 054017 (2003).

[245] A. Vuorinen: Quark number susceptibilities of hot QCD up to g**6 ln(g).
Phys. Rev. D67, 074032 (2003).

[246] G. D. Moore: Pressure of hot QCD at large N(f). J. High Energy Physics
10, 055 (2002).

[247] A. Ipp, G. D. Moore and A. Rebhan: Comment on ’Pressure of hot QCD
at large N(f)’ with corrected exact result. J. High Energy Physics 1, 037
(2003).

[248] A. Ipp and A. Rebhan: Thermodynamics of large-N(f) QCD at finite chem-
ical potential. J. High Energy Physics 6, 032 (2003).

[249] A. Ipp, A. Rebhan and A. Vuorinen: Perturbative QCD at non-zero
chemical potential: Comparison with the large-N(f) limit and apparent con-
vergence. Phys. Rev. D69, 077901 (2004).

[250] F. Karsch, A. Patkos and P. Petreczky: Screened perturbation theory.
Phys. Lett. B401, 69 (1997).

[251] J. O. Andersen, E. Braaten and M. Strickland: Screened perturbation
theory to three loops. Phys. Rev. D63, 105008 (2001).

[252] J. O. Andersen and M. Strickland: Mass expansions of screened per-
turbation theory. Phys. Rev. D64, 105012 (2001).

[253] J. O. Andersen, E. Braaten and M. Strickland: Hard-thermal-loop
resummation of the free energy of a hot gluon plasma. Phys. Rev. Lett. 83,
2139 (1999).



146 Bibliography

[254] J. O. Andersen, E. Braaten and M. Strickland: Hard-thermal-loop
resummation of the thermodynamics of a hot gluon plasma. Phys. Rev. D61,
014017 (2000).

[255] J. O. Andersen, E. Braaten and M. Strickland: Hard-thermal-loop
resummation of the free energy of a hot quark-gluon plasma. Phys. Rev.
D61, 074016 (2000).

[256] J. O. Andersen, E. Braaten, E. Petitgirard and M. Strickland:
HTL perturbation theory to two loops. Phys. Rev. D66, 085016 (2002).

[257] J. O. Andersen, E. Petitgirard and M. Strickland: Two-loop HTL
thermodynamics with quarks. Phys. Rev. D70, 045001 (2004).

[258] J. O. Andersen and M. Strickland: Resummation in hot field theories.
Ann. Phys. 317, 281 (2005).

[259] S. Scherer: Introduction to chiral perturbation theory. Adv. Nucl. Phys.
27, 277 (2003).

[260] C. Ratti, M. A. Thaler and W. Weise: Phases of QCD: Lattice thermo-
dynamics and a field theoretical model. Phys. Rev. D73, 014019 (2006).

[261] B.-J. Schaefer, J. M. Pawlowski and J. Wambach: The phase structure
of the Polyakov–quark-meson model. Phys. Rev. D76, 074023 (2007).

[262] P. Levai and U. W. Heinz: Massive gluons and quarks and the equation
of state obtained from SU(3) lattice QCD. Phys. Rev. C57, 1879 (1998).

[263] E. V. Shuryak and I. Zahed: Towards a theory of binary bound states in
the quark gluon plasma. Phys. Rev. D70, 054507 (2004).

[264] G. Boyd, F. Karsch and S. Gupta: The quark propagator at finite tem-
perature. Nucl. Phys. B385, 481 (1992).

[265] P. Petreczky, F. Karsch, E. Laermann, S. Stickan and I. Wet-
zorke: Temporal quark and gluon propagators: Measuring the quasiparticle
masses. Nucl. Phys. Proc. Suppl. 106, 513 (2002).

[266] F. Karsch and M. Kitazawa: Spectral properties of quarks above Tc in
quenched lattice QCD. Phys. Lett. B658, 45 (2007).

[267] J. M. Maldacena: The large N limit of superconformal field theories and
supergravity. Adv. Theor. Math. Phys. 2, 231 (1998).

[268] S. S. Gubser, I. R. Klebanov and A. M. Polyakov: Gauge theory
correlators from non-critical string theory. Phys. Lett. B428, 105 (1998).

[269] E. Witten: Anti-de Sitter space, thermal phase transition, and confinement
in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998).

[270] F. Karsch: Recent lattice results on finite temperature and density QCD,
part I. Proc. Sci. CPOD2007, 026 (2007).



147

[271] G. Boyd et al.: Equation of state for the SU(3) gauge theory. Phys. Rev.
Lett. 75, 4169 (1995).

[272] A. Papa: SU(3) thermodynamics on small lattices. Nucl. Phys. B478, 335
(1996).

[273] B. Beinlich, F. Karsch, E. Laermann and A. Peikert: String tension
and thermodynamics with tree level and tadpole improved actions. Eur.
Phys. J. C6, 133 (1999).





Aknowledgements
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zu präsentieren. Ebenso dankbar bin ich für die Ermöglichung eines dreimonatigen
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