Systematic calculations of electric dipole responses with fully self-consistent Skyrme-RPA

Workshop on Gamma Strength and Level Density in Nuclear Physics and Nuclear Technology Dresden-Rossendorf, Aug. 30 to Sep. 3, 2010

INAKURA Tsunenori (RIKEN)

NAKATSUKASA Takashi (RIKEN) YABANA Kazuhiro (Tsukuba)

110000

Junimalina

Late and and Millings

<u>Electric dipole mode</u>

- Simplest collective vibration mode.
- Abundant experiment data in stable nuclei.
- Pygmy dipole resonance (PDR).

Preceding systematic calc.

- > Spherical nuclei only.
- ➤ Use localized wave functions.
- > Phenomenological treatment.

Systematic calculation of E1 mode

- Self-consistent calculation.
- Including deformed nuclei.
- Proper treatment of continuum states.

Pygmy Dipole Resonance (PDR)

Experiments

²⁶Ne: J. Gibelin et al., PRL101, 212503.
⁶⁸Ni: A. Bracco et al., Acta Phys. Pol. B38, 1229. O. Wieland et al. PRL 102, 092502.
^{130, 132}Sn: P. Adrich et al., PRL 95, 132501.
¹⁴⁰Ce: R.-D. Herzberg et al., PLB390, 49.
¹³⁸Ba: R.-D. Herzberg et al., PRC60, 051307.
¹³⁸Ba, ¹⁴⁰Ce, ¹⁴⁴Sm: A. Zilges et al., PLB542, 43.
²⁰⁸Pb: N. Ryezayeva et al., PRL 89, 272502.
^{204, 206-208}Pb: J. Enders et al., NPA724, 243.

- Appear around neutron threshold energy.
- Strong impact on r-process.
- Nature of PDR is not well-known.
 - Collective or single-particle?
 - Condition for its emergence?

Skyrme-RPA in 3D mesh

T. Inakura et al., PRC80, 044301.

• Fully self-consistent Skyrme-RPA

• Including time-odd, residual LS and Coulomb.

• 3D mesh representation

- suitable to describe unstable nuclei.
- applicable for deformed nuclei.
- treat particles escaping from nuclei in good approximation.
- RPA matrix: Dimension O(10⁶)
- No pairing correlation

Technically...

- Finite Amplitude Method ^O numerical estimation of residual interaction.
- Response calculation
 - at fixed complex energies.
 - suitable for the paralleled supercomputer.

Systematic calc. of E1 mode

GDR peak splitting by deformation

Mirror symmetry in GDR

Pygmy dipole resonance (PDR)

- Which nuclei have PDR?
- What is condition for its emergence?
- Is PDR collective?

Extraction of PDR distribution

PDR distribution

Nucleon excess dependence

PDR :correlate with other observables?

<u>Neutron δρ in ²⁰⁸Pb PDR</u>

E = 7.20 + 0.1 i MeV $R_{box} = 25 \text{ fm}$ $SkM^* \text{ interaction}$ $S_n = 8.1 \text{ MeV}$ Rrms = 5.6 fm

Proton δρ in ²⁰⁸Pb PDR

E = 7.20 + 0.1 i MeV $R_{box} = 25 \text{ fm}$ $SkM^* \text{ interaction}$ $S_n = 8.1 \text{ MeV}$ Rrms = 5.6 fm

PDR in ¹³²Sn

E = 8.2 + 0.5 i MeV $R_{\text{box}} = 25 \text{ fm}$ $SkM^* \text{ interaction}$ $S_n = 8.4 \text{ MeV}$ Rrms = 4.9 fm

PDR in ⁶⁸Ni

E = 8.6 + 0.5 i MeV $R_{\text{box}} = 25 \text{ fm}$ $SkM^* \text{ interaction}$ $S_n = 8.3 \text{ MeV}$ Rrms = 4.0 fm

<u>Summary</u>

- GDR mean energy follows the empirical law.
- Neutron shell structure have strong affection on GDR mean energy.
- GDR peak splitting is proportional to static quadrupole deformation.
- Good mirror symmetry in GDR is seen.

• PDR in light neutron-rich nuclei is mainly neutron emission mode from loosely-bound low-*l* orbit.

• Correlations with Rn-Rp, Sn, N-Z asymmetry are present, but not strong.

- PDR in ⁶⁸Ni, ¹³²Sn and ²⁰⁸Pb have collectivity.
 - Expressed by a superposition of excitations to loosely-bound states.
 - > Loosely-bound states are essential for spatial expanding of neutrons.
 - \triangleright Coherence of neutron $\delta \rho$ outside of nucleus.
 - Coulomb barrier prevents protons from spatial spreading.

Neutron single-particle levels

PDR in ⁶⁰Ca

E = 5.54 + 0.1 i MeV

 $R_{box} = 25 \text{ fm}$

Interaction Dependence

PDR in ¹²²Zr

Box size dependence

Comparison with (Q)RPA by Terasaki

J. Terasaki and J. Engel, PRC74, 044301.

Preceding studies

✓ Calculate mainly spherical Sn isotope.
✓ No detailed discussion on the nature of PDR.
✓ Use H.O. basis, not suitable for describing unstable nuclei.
✓ Violates self-consistency.

Relativistic (Q)RPA calc. by Paar, Vretenar et al. **Rela. QRPA calc.** J. Piekarewicz, PRC73, 044325 (2006)

PDR distributions

Extraction of PDR distribution by Lorentzian fitting

Comparison with Expt. data

Expt. data : http://cdfe.sinp.msu.ru/