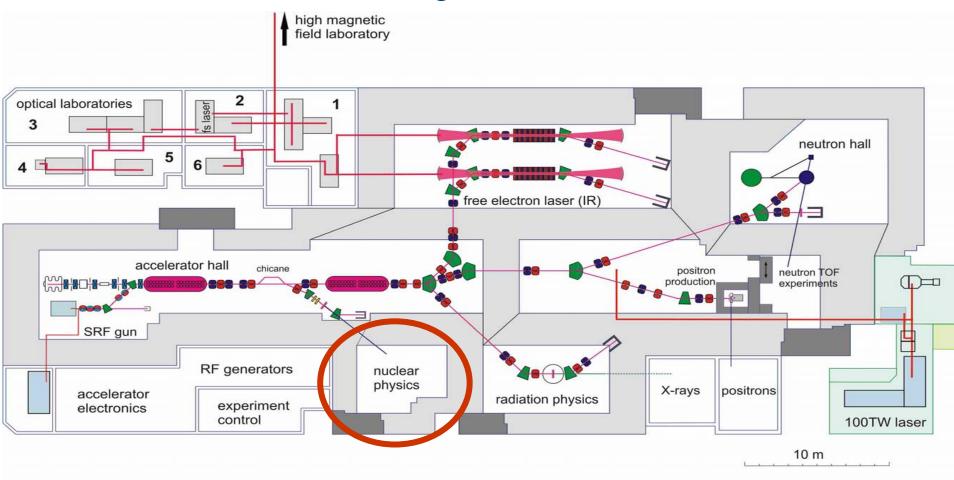
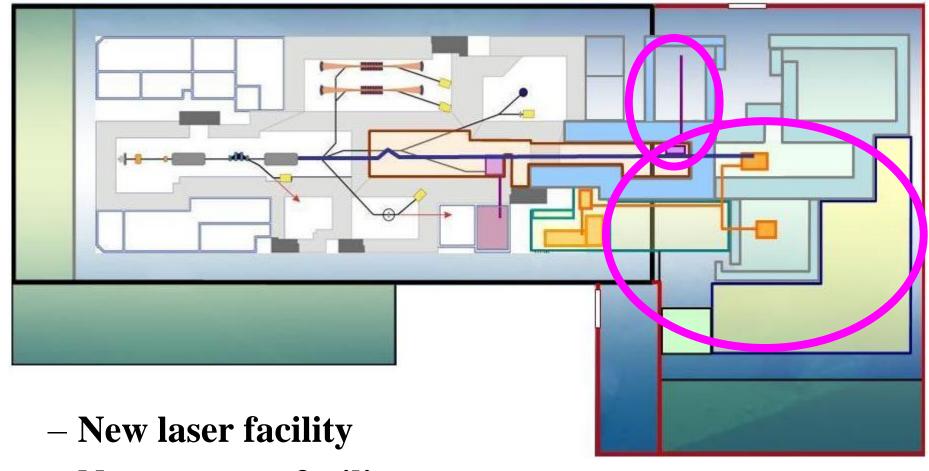
Investigation of dipole strength functions at the ELBE accelerator in Dresden

Ralph Massarczyk


content

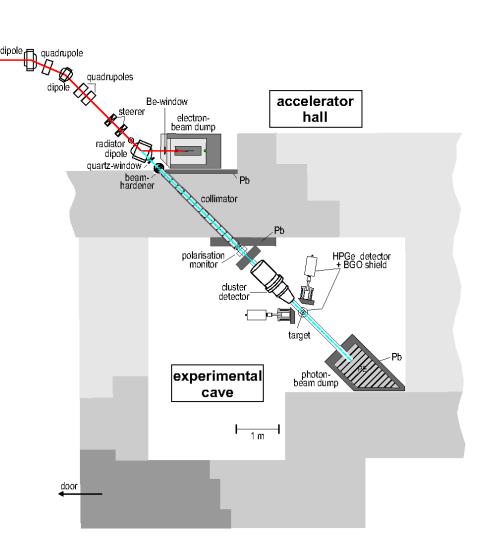
- Overview of the facility
- Experiment on ¹³⁶Ba
 - Data analysis
 - Geant4 simulations
- Experiments on ⁸⁶Kr
 - Comparison with other N = 50 nuclei

Bremsstrahlung at ELBE


Electron Linac for beams with high Brilliance and low Emittance

- 1: Diagnostic station, IR-imaging and biological IR experiment
- 2: Femtosecond laser, THz-spectroscopy, IR pump-probe experiment
- 3: Time-resolved semiconductor spectroscopy, THz-spectroscopy

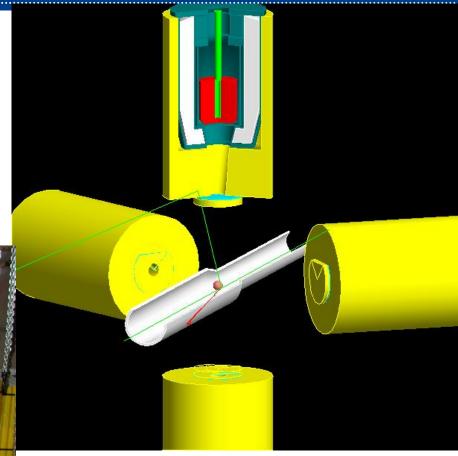
- 4: FTIR, biological IR experiment
- 5: Near-field and pump-probe IR experiment
- Radiochemistry and sum frequency generation experiment, photothermal deflection spectroscopy



- New neutron facility

Bremsstrahlung at ELBE

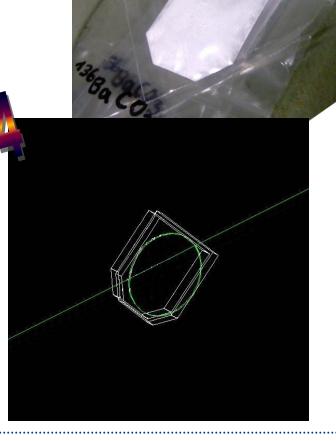
- Accelerator parameters:
 - Maximum electron energy:18 MeV
 - Maximum average current:1 mA
 - Operation in cw mode $f = 26 / 2^n MHz$
- Bremsstrahlung produced in
 2 12 µm Niobium foil
- through collimator on target beam spot ø 2 cm



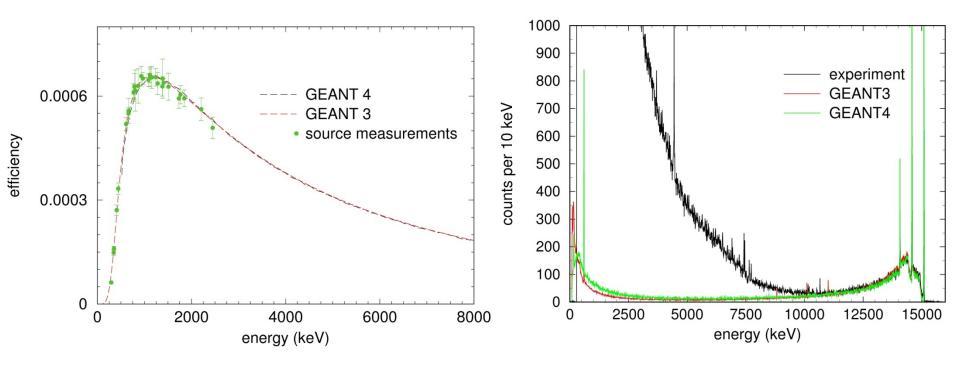
Bremsstrahlung at ELBE

亚

- Setup for nuclear resonance fluorescence:
 - 4 High purity Germanium detectors
 (at 90° and 127° to the beam)
 - Each with escape suppression by BGO shields

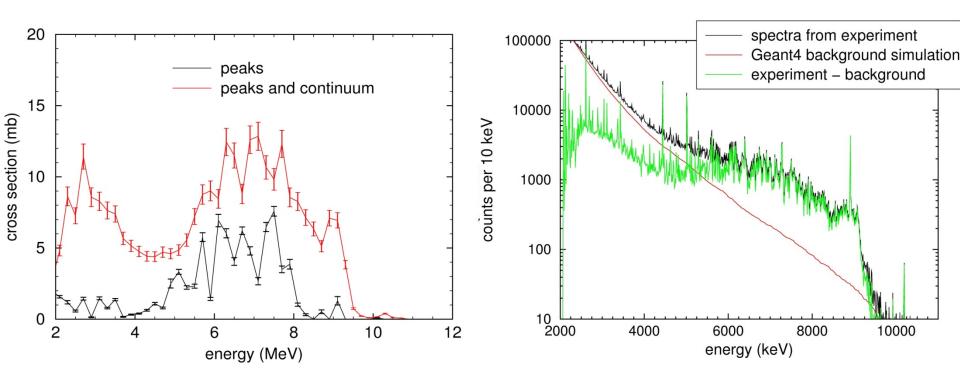

R. Schwengner et al., NIM A 555 (2005) 211

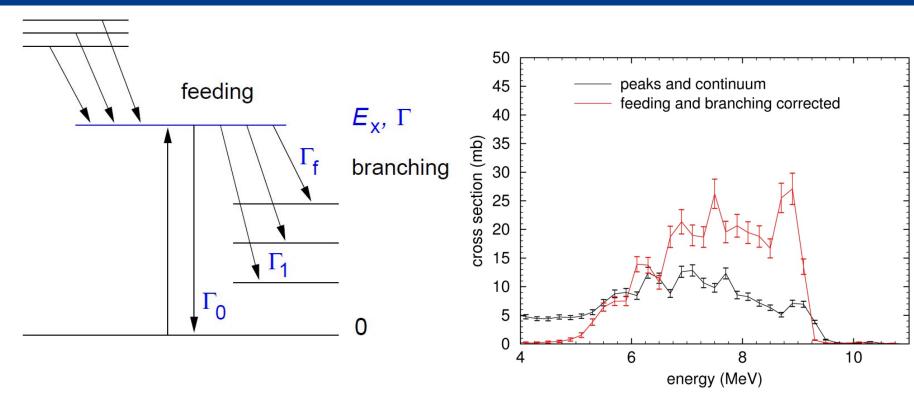
Experiment on ¹³⁶Ba

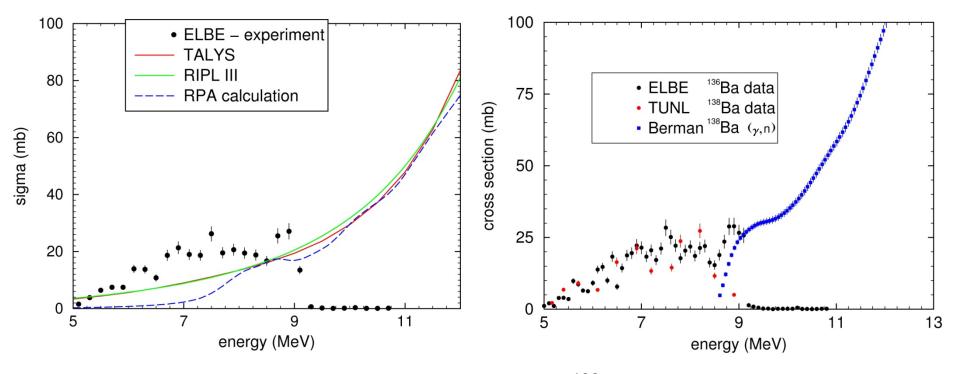


$$I_{\rm S} = \frac{n_{\rm cal}}{n_{\rm target}} \cdot \left(\frac{\Phi(\epsilon(E, \theta))V(\theta)I_{\rm S}}{A(\theta)}\right)^{\rm cal} \cdot \left(\frac{A(\theta)}{\Phi(\epsilon(E, \theta))V(\theta)}\right)^{\rm target}$$

- Calculation of integrated cross sections relative to known cross section in ¹¹B
- Angular correlation and number of melain
- Measured intensities
 - Subtraction of non-ductear scattered events
 Oriector for Detector response
- Detector efficiency for angle and energy
- Flux on target, energy dependent

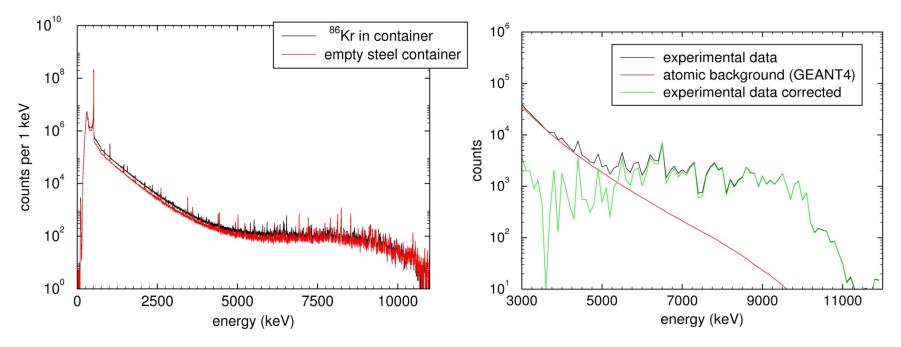



- Efficiency simulation up to the neutron-separation energy
- Simulation and correction for detector response
- GEANT3 simulations by G.Rusev (PhD thesis 2007 TU Dresden)
- GEANT3 and GEANT4 are consistent

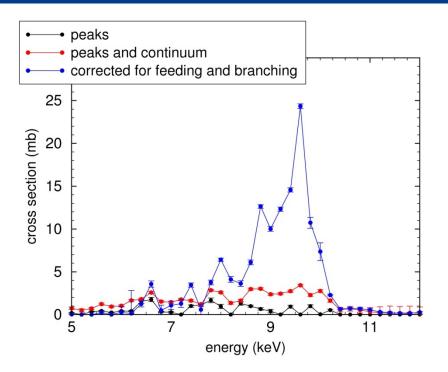

- Identification of dipole transitions by angular distributions
- Simulation of non-nuclear scattered events in GEANT4

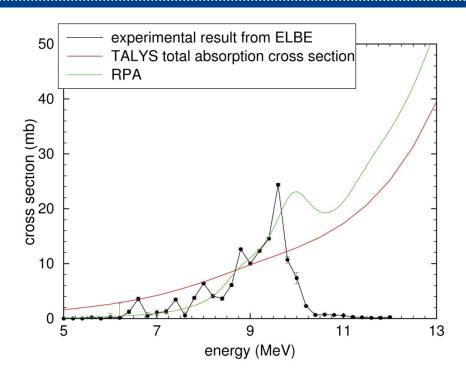
- Feeding and branching correction needed
- Analog to branching correction in (n, γ) experiments
- γ -ray cascades have to be simulated and applied to the measured spectra
- Subtraction of intensities of inelastic transitions
- Correction of the intensities of the ground-state transitions for their branching ratios

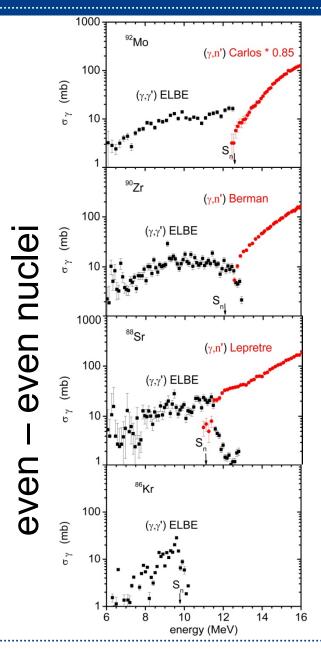
- Talys calculation 3 Lorentzian and M1
 (Junghans et al. PLB 670 (2008) 200) and (Heyde et al., ArXiv:1004.3429v2, April 2010)
- RPA calculation by F. Dönau

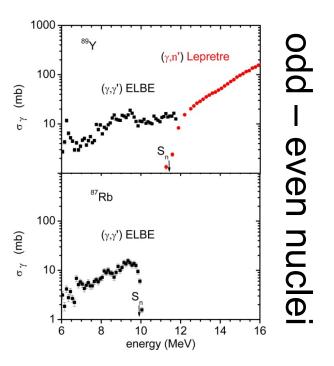

- ¹³⁸Ba (γ,γ') measurement at Hiγs (Tonchev et al. PRL 104, 072501 (2010))
- (γ,n) data from Berman (Berman et al. Phys. Rev. C2, 2318(1970))
- Additional strength relative to analytic extrapolations of the GDR between about 5 and 9 MeV

Experiments on 86Kr


Mo M	89Mo 2.11 M €: 100.00%	90Mo 5.56 H €: 100.00%	91Mo 15.49 I €: 100 0%	92Mo STABLE 14.84%	93Mo 4.0E+3 Y 100.00%	94Mo STABLE 9.25%	95Mo STABLE 15.92%	96Mo STABLE 16.68%	97Mo STABLE 9.55%	98Mo STABLE 24.13%
√b 5 М	88Nb 14.55 M	89Nb 2.03 H	90 Ль 14 50 Н	91Nb 6.8E+2 Y	2Nb 3.4 E+7 Y	93Nb STABLE	94Nb 2.03E+4 Y	95Nb 34.991 D	96Nb 23.35 H	97Nb 72.1 M
.00%	ε: 100.00%	e: 100.00%	e: 1 0.00%	e: 100.00%	e: 1 0.00% β 0.05%	100%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
Zr 5 H	87Zr 1.68 H	88Zr 83.4 D	9Zr 73.41 H	90Zr STABLE 51.45%	9 Zr ST BLE 11 2%	92Zr STABLE 17.15%	93Zr 1.53E+6 Y	94Zr STABLE 17.38%	95Zr 64.032 D	96Zr >3.9E+20 Y 2.80%
1.00%	e: 100.00%	€: 100.00%	€ 100.00%				β-: 100.00%		β-: 100.00%	2β-
Y BH	86Y 14.74 H	87Y 79.8 H	1 6.626 D	89Y STABLE 100%	90 7 64.0 3 H	91Y 58.51 D	92Y 3.54 H	93Y 10.18 H	94Y 18.7 M	95Y 10.3 M
1.00%	€: 100.00%	€: 100.00%	100.00%		β-: 10 00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
Sr .BLE i6%	85Sr 64.84 D	86Sr STABLE 9.86%	87Sr TABLE 7.00%	88Sr STABLE 82.58%	89 r 50.5 2 D	90Sr 28.90 Y	91Sr 9.63 H	92Sr 2.66 H	93Sr 7.423 M	94Sr 75.3 S
	€: 100.00%	0577	an.	070	β-: 10 .00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
₹b 2 D	84Rb 33.1 D	85Rb STABLE 72.17%	6Rb 18 642 D	87Rb 4.81E+10 Y 27.83%	88 kb 17.73 M	89Rb 15.15 M	90Rb 158 S	91Rb 58.4 S	92Rb 4.492 S	93Rb 5.84 S
.00%	ε: 96.20% β-: 3.80%	2.47	β-19.99% ε: 5 RE-3%	β-: 100.00%	β-: 00.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-h: 0.01%	β-: 100.00% β-n: 1.39%
Kr BLE 58%	83Kr STABLE 11.49%	84Kr STABLE 57.00%	8 Kr 391 8 D	86Kr STABLE 17.30%	6.3 M	88Kr 2.84 H	89Kr 3.15 M	90Kr 32.32 S	91Kr 8.57 S	92Kr 1.840 S
			β-: 100 00%		: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.03%
Br BLE 81%	82Br 35.282 H	83Br 2.40 H	84Br 31.80 M	85Br 2.90 M	86Br 55.1 S	87Br 55.65 S	88Br 16.29 S	89Br 4.40 S	90Br 1.91 S	91Br 0.541 S
	β-: 100.00%	β-: 100.00%	β-: 100.00%	100 3%	β-: 100.00%	β-: 100.00% β-n: 2.60%	β-: 100.00% β-n: 6.58%	β-: 100.00% β-n: 13.80%	β-: 100.00% β-n: 25.20%	β-: 100.00% β-n: 20.00%




- 86Kr complements a systematic study of stable isotones at the shell closure of neutron number N = 50
- high pressure gas target (70 bar)
- Second measurement with empty container necessary
- Analysis analog to ¹³⁶Ba



- About 34 % of dipole strength in peaks and 66 % in continuum
- Talys calculation 3 Lorentzian and M1
 (Junghans et al. PLB 670 (2008) 200) and (Heyde et al, ArXiv:1004.3429v2, April 2010)
- RPA calculation by F. Dönau

Enhanced strength especially pronounced in the N=50 closed-shell nuclei

Conclusions

- Study of dipole-strength distributions at high excitation energy and high level density via photon scattering.
- Simulations with GEANT4 allow us to deduce strength from continuum
- Simulations of statistical cascades: Estimate of intensities of inelastic transitions and correction of intensities of elastic transitions
- Combination with (γ,n) data gives information over the whole energy range from low excitation energy up to the giant dipole resonance.
- Observation of extra strength in the range from 6 to 12 MeV neither described in phenomenological approximations of dipole-strength functions nor in current microscopic models.

Thanks to all Collaborators

FZD, Institute of Radiation Physics:

D. Bemmerer, R. Beyer, E. Birgersson, F. Dönau, E. Grosse, R. Hannaske, A. Hartmann, A. Junghans, M. Kempe, T. Kögler, A. Matic, K.-D. Schilling, G. Schramm, R. Schwengner, A. Wagner

TUNL Durham:

G. Rusev, A. Tonchev