

Aspects of THz FELs

A.F.G. van der Meer

FELIX facility FOM-Rijnhuizen, Nieuwegein / Radboud university, Nijmegen

- Radiation bandwidth
- Slippage effects
- Resonator issues
- THz FEL facilities

'transform limited' : no frequency / phase fluctuations of the carrier

 $\Delta . \delta \epsilon$ constant

For μ s pulses, sub-MHz bandwidth in principle possible

However:

- Start-up from noise
- During one roundtrip no communication between parts of the optical pulse that are further than N_u . λ apart
- Mode competition can be slow:

 $\Delta \omega / \omega \approx (t / \tau_c)^{1/2} / (2 \cdot N_u)$, with τ_c the cavity decay time

T.M. Antonsen et al. PRL 62 (1989) 1488

EA-FEL

Radiation bandwidth: EA-FEL single mode

FOM

Radiation bandwidth: injection locking UCSB

multiple spikes γ

 $\Gamma \cdot \gamma = O(1)$ $\Delta \cdot \delta = O(1)$

Radiation bandwidth: phase locking

Phase locking & single mode selection

Experimental result

Emerging facility: 'FLARE' in Nijmegen

e-beam: 10-15 MeV, 3 GHz, 10 μ s, 10 Hz wavelength range: 100 – 1500 μ m narrow-band mode

- Lethargy
- Efficiency enhancement
- Limit-cycles
- Bandwidth tuning

Slippage effects

FELIX macropulse shape at λ = 40 μ m

FOM

20

10

0

-3

-2 relative desynchronism $\Delta L I \lambda$

Slippage correction:

0.2

short pulse propagation

Slippage effects

FELIX macropulse shape at λ = 40 μ m

FOM

Slippage effects: bandwidth tunability

- bandwidth 0.4 6% [FWHM]
- near transform limited

Slippage effects: pulse length tunability

FELIX micro-pulse shape at $\lambda = 150$ mm for different cavity detunings

ОСС

Exponential leading edge has a time constant: where α are the cavity losses and ΔL is the cavity detuning from synchronism

out-coupling schemes:

- 'semi-transparent' mirrors
- beam splitter
- hole coupling
- edge coupling

Beam energy	[MeV]	11
Max. average current	[mA]	30
Max. µ-bunch rep rate	[MHz]	22.5
μ-bunch charge	[nC]	1.5
Wavelength	[µm]	120-240
Max. average output	[W]	500

Emerging facilities: BINP in Novosibirsk

Beam energy	[MeV]	20
Max. average current	[mA]	9
Max. μ-bunch rep rate	[MHz]	7.5
μ-bunch charge	[nC]	1.2
Wavelength	[μm]	40-80
Max. average output	[W]	500

Emerging facilities: BINP in Novosibirsk

Emerging facilities: 'ALICE' in Daresbury

Accelerator Energy (MeV)	25-27.5	A LANGE	
Bunch Charge (pC)	60-80	· · · ·	
Micropulse repetition rate (MHz)	16.25		
Macro pulse length (µs)†	≤85		
Number of micropulses/macropulse	≤1380		
Micropulse length (ps)	~1		
Macropulse repetition rate (Hz)	10		
Wavelength range demonstrated (µm)	5-9		
Micropulse energy (µJ)	~1		
Peak power (MW)	~1		
Average power within macropulse (W)	~10		
Average power (mW)	~10		
Polarisation (linear)	>95%		

FTICR-MS experiment

Existing facilities: 'FELBE' in Dresden

Undulator period [mm]	27.3
Number of periods	2 * 34
Undulator K	0,3 - 0,7
Undulator type [hybrid]	NdFeB
Wavelength [µm]	3-22
Max. power (out)	~ 25 W
Max. pulse energy [μJ]	~ 0,01-2
Pulse length	~ 1-10ps
Rep rate [MHz]	13
Modi: - cw	

- macro pulse >100µs, < 25 Hz
- Hz/KHz single pulse

Undulator period100 mmNumber of periods38Undulator K0.3 - 2.7Undulator typehybrid SmCo

Wavelength	า	18 - 250 μm	
Max. power	(out)	>10 W	
Max. pulse	energy	>0,01-2 μJ	
Pulse length	n ~ 1-25ps		
Rep rate	13	8 MHz	
Modi:	- CW		
	- macro	pulse >100µs, < 25 Hz	<i>.</i>

- Hz/KHz single pulse

FOM

Existing facilities: 'CLIO' in Paris

THE TWO COLOUR FREE- BLECTRON LASER

<u>CLI 0</u>

FOM

λ	0.25 – 14 μm
micro-pulse	1 ps, 75 MHz, CW
power (average!)	up to 10 kW
efficiency	up to 10%

Existing facilities: FEL-TUS in Tokyo

MIR-FEL: tuning range: $4.5 - 11 \,\mu$ m rep. rate: 2856 MHz (micro-pulse), 5 Hz (macro-pulse) pulse length, $\approx 2 \,p$ s (micro-pulse), $\approx 1 \,\mu$ s (macro-pulse) micro-pulse energy: up to 15 μ J/pulse macro-pulse energy: up to 50 mJ/pulse

30u FEL

FIR_FEL

