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Abstract

The purpose of this thesis is to advance the understanding of strong-field QED processes
in short laser pulses. The processes of non-linear one-photon and two-photon Compton
scattering are studied, that is the scattering of photons in the interaction of relativistic
electrons with ultra-short high-intensity laser pulses. These investigations are done in view of
the present and next generation of ultra-high intensity optical lasers which are supposed to
achieve unprecedented intensities of the order of 1024 W/cm2 and beyond, with pulse lengths
in the order of some femtoseconds.

The ultra-high laser intensity requires a non-perturbative description of the interaction of
charged particles with the laser field to allow for multi-photon interactions, which is beyond
the usual perturbative expansion of QED organized in powers of the fine structure constant.
This is achieved in strong-field QED by employing the Furry picture and non-perturbative
solutions of the Dirac equation in the presence of a background laser field as initial and final
state wave functions, as well as the laser dressed Dirac-Volkov propagator.

The primary objective is a realistic description of scattering processes with regard to the
finite laser pulse duration beyond the common approximation of infinite plane waves, which
is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear
finite size effects are identified, which are a result of the interplay between the ultra-high
intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal
photon emission spectra are studied emphasizing the differences between pulsed and infinite
laser fields. The proper description of the finite temporal duration of the laser pulse leads
to a regularization of unphysical infinities (due to the infinite plane-wave description) of
the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of
two-photon Compton scattering. An enhancement of the two-photon process is found in
strong laser pulses as compared to the corresponding weak-field process in perturbative QED.





Kurzdarstellung

Der Zweck der vorliegenden Arbeit ist es das Verständnis von Starkfeld-QED Prozessen
in kurzen Laserpulsen zu erweitern. Dazu werden nichtlineare Einphotonen- und Zwei-
photonen-Comptonstreuprozesse untersucht, das heißt die Streuung von Photonen bei der
Wechselwirkung relativistischer Elektronen mit ultrakurzen intensiven Laserpulsen. Diese
Untersuchungen sind notwendig im Hinblick auf die gegenwärtige und nächste Generation
von optischen Hochintensitätslasern mit Pulslängen von einigen Femtosekunden, welche eine
Feldintensität von 1024 W/cm2 und höher anstreben.

Die ultrahohe Laserintensität erfordert eine nichtperturbative Beschreibung der Wech-
selwirkung geladener Teilchen mit dem Laserfeld um Mehrfachphotonenwechselwirkungen
korrekt zu berücksichtigen. Diese Prozesse gehen über eine perturbativen Entwicklung
nach Potenzen der Feinstrukturkonstanten hinaus. Solch eine Beschreibung wird durch
den Übergang in das Furry-Bild erreicht, in dem nichtperturbative Lösungen der Dirac
Gleichung in einem Hintergrundfeld als asymptotische Zustände, sowie der lasermodifizierte
Dirac-Volkov-Propagator verwendet werden.

Das primäre Ziel ist eine realistische Beschreibung von Streuprozessen in Bezug auf die
endliche zeitliche Pulsdauer im Gegensatz zur üblichen Näherung unendlich ausgedehnter
ebener Wellen. Diese Beschreibung wird durch die ultrakurzen Pulslängen moderner Hochin-
tensitätslaser notwendig. Nichtlineare Kurzpulseffekte, die sich aus einem Wechselspiel der
ultrahohen Intensität und der ultrakurzen Pulsdauer ergeben, werden identifiziert. Insbeson-
dere werden Frequenzspektren und azimuthale Photonemissionsspektren unteruscht, wobei
die Unterschiede zwischen gepulsten und unendlich ausgedehnten Laserfeldern hervorgehoben
werden. Die exakte Beschreibung der endlichen Pulsdauer regularisiert unphysikalische
Divergenzen des Dirac-Volkov-Propagators die durch unendlich ausgedehnte Laserfelder her-
vorgerufen werden. Dementsprechend werden auch die Divergenzen in den Spektren der
Zweiphotonen Comptonstreuung regularisiert, der ein Prozess zweiter Ordnung ist. Es ergibt
sich eine Verstärkung des Zweiphotonen Comptoneffekts in starken Laserpulsen im Vergleich
mit dem entsprechenden Prozess in schwachen Feldern in perturbativer QED.
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1
Chapter 1

Introduction

The electromagnetic force — besides the weak and strong nuclear interactions and
gravity — is one of the four known fundamental forces of nature. While the nuclear
forces are essential for a microscopic understanding of the properties of subatomic and

subnuclear particles and their interactions, as well as the existence of stable nuclei or their
radioactive decay, gravity is a dominant force on macroscopic scales. The electromagnetic force
is responsible for many phenomena on both macroscopic and microscopic scales, including
the electromotive force, chemical binding, different phases of matter, such as gases, liquids
and solids, and the whole spectrum of electromagnetic radiation from long-wavelength radio
waves to short-wavelength gamma rays, to name a few.1

The quantized theory of electromagnetic interactions, quantum electrodynamics (QED),
is one of the pillars of the modern standard model of particle physics [Hal84, Pes95, Nak10].
Within the standard model, QED is found as the unbroken part of the spontaneously broken
Glashow-Salam-Weinberg model of electro-weak interactions. QED is a precise theory with an
incredible agreement between theory and experiment. For example, for the electromagnetic
fine structure constant2 α the experimental and theoretical values3 are quoted as

α−1
exp = 137.035 999 037(91) , [Bou11] ,
α−1

th = 137.035 999 084(51) , [Han08] .

These numbers show the excellent agreement of theory and experiment on the level of 10
significant digits (for this particular quantity). This is a great success of perturbative QED.
Many experiments, in particular accelerator and spectroscopic experiments aim at pushing
forward the frontiers in the perturbative high-precision and high-energy domain. However, in
the presence of strong background fields, QED acquires novel non-perturbative features and
one enters a completely new and interesting field of physics: strong-field or high-intensity QED.
The strong-field regime of QED is a completely new area of physics with new phenomena

1 The electromagnetic spectrum is often subdivided into radio waves (1 m . . . 1 km wavelength), microwaves
(1 mm . . . 10 cm), infrared radiation (780 nm . . . 1 mm), visible light (380 nm . . . 780 nm), UV light (1 nm
. . . 380 nm), X-rays (10 pm . . . 1 nm) and gamma rays (< 1 pm).

2Taken at zero momentum transfer α ≡ α(Q2 = 0).
3 The theoretical determination of α is based on a four loop calculation of the anomalous magnetic moment

ae of the electron [Kin06, Aoy07] and a comparison with experimental values ath
e (α) = aexp

e . For the most
precise experimental determination of ae see [Han08]. Thus, QED (plus weak and strong corrections) predicts
a certain relation between the two dimensionless numbers α and ae which is confirmed experimentally.
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Figure 1.1: Visualization of the vacuum state without (|0〉E=0, left) and with (|0〉E , right)
an external electric field. An applied electric field leads to an alignment of
the virtual vacuum fluctuation dipoles.

to be tested, employing high-intensity lasers as versatile tools to achieve ultra-high field
strengths in the laboratory [Mar09].

Quantum Electrodynamics
QED as a renormalizable gauge theory is formulated in terms of charged fermionic matter
fields Ψ (electrons and positrons) with mass m, and a U(1) gauge field Aµ describing massless
gauge bosons (photons). The Lagrangian density defining the theory on the classical level is

L = Ψ̄(i /D−m)Ψ− 1
4FµνF

µν . (1.1)

The coupling between fermions and photons is realized in a gauge invariant manner via
the covariant derivative Dµ = ∂µ + ieAµ, where e denotes the conserved charge of the
fermion fields. The antisymmetric electromagnetic field strength tensor Fµν = 1

ie [Dµ,Dν ]
is the commutator of the covariant derivatives. The classical theory is invariant under
Lorentz transformations and local U(1) gauge transformations. The quantization of the
theory requires a gauge fixing, i.e. the selection of a representative from the gauge orbit.
This can be achieved by adding a gauge fixing term 1

2ξg (∂ ·A)2 to the Lagrangian (1.1). By
fixing the gauge one explicitly breaks the classical gauge symmetry in the quantum theory,
which is, however, replaced by the Becchi-Rouet-Stora-Tyutin (BRST) symmetry [Pes95].
When considering processes in strong electromagnetic fields it is often useful to separate the
electromagnetic field as F = Frad + F into a classical strong-field part F and a radiating
part Frad which is quantized. Quantization of the theory leads to a definition of a vacuum
state |0〉F as a state of minimum energy, which is free of real particles but contains virtual
quantum fluctuations. These vacuum fluctuations are always present, also in the absence
of an external field. They consist of virtual electron positron pairs forming virtual dipoles,
which are oriented statistically, see Figure 1.1. In the presence of a background field, e.g. a
static electric field E, these virtual dipoles are aligned in the direction of the field, leading
to an anisotropy in the vacuum polarization (Figure 1.1, right). The typical spatial size of
these vacuum fluctuations is given by the Compton wavelength4 λC = ~c

mc2 = 3.86× 10−13 m
which is the inherent length scale of QED. Based on that, one defines a critical field strength

4Here, the quantities ~ and c are written out explicitly. In general, the so-called natural units with ~ = c = 1
are employed.
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Figure 1.2: The pair production via the Schwinger mechanism in a strong electric field
can be imagined as the tunnelling of an electron from the negative energy
continuum to the positive continuum through the mass gap without energy.
This is the separation of the virtual vacuum fluctuations over a distance larger
than λC to produce pairs of real fermions.

(Sauter-Schwinger field strength) as Es = m2/e with the meaning that a particle under the
influence of an electric field of strength Es acquires the energy mc2 over a distance of its
Compton wavelength. The electric field strength has a value of Es = 1.32× 1018 V/m or
equivalently the magnetic field strength5 is Bs = 4.41× 109 T. The field intensity associated
to the critical field is Is = 2.32× 1029 W/cm2. If the field strength reaches the order of Es,
the field is strong enough to separate the virtual charge fluctuations leading to the production
of real particle-antiparticle pairs and an instability of the vacuum state which refers to the
electric field and virtual pairs only [Sau31, Sch51]. In the intuitive hole picture this means
that the positive and negative continua are deformed in such a way that particles from
the negative continuum can tunnel through the mass gap to the positive continuum (see
Figure 1.2).

The strength of an electromagnetic field can be characterized by the dimensionless scalar
and pseudoscalar invariants

F = e2

4m4FµνF
µν , G = e2

4m4Fµν
?Fµν , (1.2)

with the field strength tensor Fµν and its dual tensor ?Fµν = 1
2εµναβF

αβ. Electromagnetic
fields with F ,G ∼ 1 are called QED-strong fields; they are capable of producing pairs from
the vacuum via the above mentioned Sauter-Schwinger mechanism. This pair production
process is a non-perturbative effect and has features of a phase transition [Gre85]. The
particle production probability is related to the imaginary part of the vacuum persistence
amplitude 〈0in|0out〉. The leading order result in a constant electric field for the production
probability p is [Hei36, Sch51]

p = α2E2

π2 exp
{
−πEs

E

}
. (1.3)

Pair production is an electric effect; pure magnetic fields can not produce pairs since the
invariants obey the relations F < 0 and G = 0; for crossed fields F = G = 0.

5The critical magnetic field Bs means that the Landau levels of electrons have an energy distance equal to
their rest mass.



4 1 Introduction

Today it is believed that Bohr’s conjecture [Som78] — that the electric field with the
field strength Es can never be produced — holds true since at much lower field strengths,
corresponding to intensities of 1024 . . . 1025 W/cm2 � Is, a QED cascade will be triggered by
a single seed particle consuming most of the energy of the electric field [Bel08, Fed10, Sok10,
Elk11, Ner11].

Sources of strong fields

Sources of strong electromagnetic fields are:

1. Pulsars, i.e. rotating neutron stars that periodically emit electromagnetic radiation,
have surface magnetic fields of the order of 108 T, which is almost on the order of the
critical magnetic field Bs [Hew70, Har91, Käm75, Her79].

2. Magnetars are special pulsars which are driven by magnetic energy; they have magnetic
fields 100 . . . 1000 times stronger than usual pulsars on the order of 1011 T, which is
much larger than the critical field [Kou98, Mer08].

3. Heavy nuclei with large charge number Z have ultra-strong Coulomb fields in their
vicinity. For instance, the 1s state dives into the negative continuum for charge numbers
Zc ≈ 173. Since not a single stable nucleus with such a high charge number is known,
the critical charge number Zc was believed to be achievable in deep-inelastic heavy-ion
collisions, where the electron dynamics is much faster than the collision dynamics of
the nuclei allowing for the formation of quasi molecules with Z > Zc and possible pair
production [Gre85].

4. Optical lasers can provide strong electromagnetic wave fields. The present world
record is I = 2× 1022 W/cm2 [Yan08], which is, however, several orders of magnitude
below the critical intensity Is. Novel petawatt, multi-petawatt and even exawatt laser
facilities which could reach even higher intensities, exceeding 1025 W/cm2, are planned
for commission in the foreseeable future. These ultra-high intensity laser system are
seen today as the most promising tool for experimental studies of strong-field QED
in the laboratory. Most of the present and future high-intensity lasers are short pulse
lasers with pulse lengths of a few femtoseconds up to tens of femtoseconds.

5. X-ray free electron lasers (XFELs), i.e. coherent light sources with wavelengths in the
X-ray regime, are another possibility to produce strong electromagnetic fields. Although
the output power of free electron lasers does not exceed the GW level [Rin01] at the
present day, and is, therefore, several orders of magnitude lower than for optical lasers,
the short wavelength of the radiation allows for a much smaller diffraction limited focus
and, therefore, the possibility for higher peak fields. The optimistic “goal” for the
European XFEL was given as field strength of the order of 1017 V/m [Rin01].

Lasers

Since the first successful demonstration of the laser (light amplification by stimulated emission
or radiation) in 1960 [Mai60], exploiting the principle of stimulated emission of radiation
first described by Einstein [Ein17], it was in particular the development of chirped pulse
amplification (CPA) [Str85, Mou06] which allowed for a huge increase of the achievable laser
power. Nowadays, one has achieved peak powers of a petawatt,6 mostly by compressing

6The first petawatt laser was realized in 1999 at LLNL [Per99, Sau07].
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moderate amounts of energy of a few Joule to ultra-short pulse lengths of a few femtoseconds:
1 PW ≡ 1 J/1 fs.

As state of the art, focused laser intensities as high as 2× 1022 W/cm2 have been reported
[Yan08] using the HERCULES laser; that experiment was also the first demonstration of a
multi 100 TW laser operating at a high repetition rate of 0.1 Hz. Currently, various PW and
multi PW laser systems are in the state of planning and building. To mention a few: The
PFS project at the MPQ aims at building a PW laser with high repetition rate of 10 Hz by
decreasing the pulse energy to 5 J in 5 fs pulses. Also other PW laser projects are designed
for high repetition rates in the order 1 . . . 10 Hz such as PEnELOPE (30 J in 30 fs) at the
HZDR. The ELI project is a planned high-intensity laser facility, where a multiple laser
infrastructure is supposed to deliver the unprecedented peak power of 200 PW in pulses of
15 fs [Kor11]. This is the strong-field physics pillar of ELI, which will be complemented by
three more laser facilities belonging to ELI with peak powers of 10 to 20 PW. The ILE
APOLLON project, which is supposed to be the single-beamline prototype for ELI and other
future high intensity laser facilities, has the objective of creating a laser with the peak power
of 10 PW (150 J in 15 fs), which would allow to achieve a maximum intensity of 1024 W/cm2

[Kor11]. Further envisaged laser projects are XCELS and IZEST, both attempting to break
the exawatt (1018 W) frontier.

Somewhat contrary to these short pulse high-intensity laser facilities are laser projects
like NIF [NIF] and HiPER [HIP] envisaging to deliver a large amount of energy to a small
spatial volume over “long” times of a few picoseconds, permitting a few shots per day only.
In particular, NIF is designed for a total of 4 MJ energy in 192 beamlines with 20 kJ each
over 3 ps. A review on petawatt lasers with a comprehensive list of laser systems with output
power exceeding 100 TW can be found in the review [Kor11].

The driving force for the development of strong short pulse lasers are fascinating applica-
tions such as laser driven inertial fusion (HiPER, NIF) [Nak04, Atz09]; the acceleration of
electrons [Fau04, Fau06, Puk03], protons or ions [Sch06c, Heg06] to relativistic energies (see
also the review [Led10]); Thomson backscattering of optical laser light off relativistic electrons
from either a linac, a synchrotron or even in an all optical set-up using laser accelerated
electrons bunches to produce brilliant X-rays [Sch96, Sch06b, Har07]; other laser driven X-ray
sources [Bra09] such as tabletop XFELs [Grü07]; nuclear physics [Led03]; laboratory astro-
physics [Bul09]; strong-field QED studies [Mar06, DP12] and physics beyond the standard
model [Gie09].7

Dimensionless parameters of non-linearity for lasers
In many cases, in particular for electromagnetic field generated by lasers, both invariants
F and G [cf. Eq. (1.2)] vanish (since they represent plane electromagnetic waves) or almost
vanish (for focused laser beams [Hei11]). Field configurations for which both invariants
vanish are called null-fields. Null-fields are not capable to produce pairs via the Schwinger
mechanism; only in the presence of a thermal background pairs can be produced [Kin12].

For such fields one needs further physical quantities to form non-vanishing dimensionless
invariants, such as the momenta of probe particles propagating in these field configurations.
For a probe particle with momentum p one defines the quantum non-linearity parameter
[Rit85]

χ = e

m3

√
(Fµνpν)2 , (1.4)

7The topical complex of ultra-fast strong-field atomic and molecular physics including the phenomena of
high harmonic generation, above threshold ionization etc. is not discussed in this thesis. The interested reader
is referred to the reviews [Pop04, Mil06a, DP12, Koh12] for an overview on that topic.
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describing the importance of non-linear quantum effects for the propagation of the probe
particle in the field. For massive probe particles p2 = m2 > 0, the parameter χ is the value
of the electric field experienced by the particle in its rest frame (rf), i.e. χp = Erf/Es in
units of the Sauter-Schwinger field strength Es; it represents the work done by the field over
the Compton wavelength in the particle rest frame. This means that χ can be large for
ultra-relativistic particles, although the electric field in the laboratory frame is much weaker
than Es due to the Lorentz transformation of the transverse electric field Erf = eζElab, where
ζ is the rapidity of the probe particle. Probe photons with momentum k do not possess a rest
frame, due to k2 = 0. One can consider a frame where the probe photon is counterpropagating
the laser and the probe photon frequency ω′ equals the laser frequency ω; in that frame
χk = 2ω′m

E
Es

. The relevance of the parameters χp and χk is that they measure the non-linear
quantum effects for massive and massless probe particles, respectively. According to [Nar80]
the expansion parameter of perturbation theory in strong-field quantum electrodynamics
is αχ2/3 for χ � 1, not α itself. That means, for αχ2/3 ∼ 1 radiative corrections are of
the same magnitude as tree level results. Thus, the applicability of perturbation theory
is restricted to parameters obeying αχ2/3 � 1. Fourth-order and second-order radiative
corrections have comparable magnitude for αχ1/3 lnχ ∼ 1, thus, second-order results are
valid only for αχ1/3 lnχ� 1 [Rit72].

Another relevant quantity is the dimensionless amplitude of the laser vector potential

a0 ≡
eA0
m

(1.5)

with the electric field strength amplitude E0 = ωA0, where ω is again the laser frequency. The
definition of a0 can be made explicitly Lorentz and gauge invariant [Hei09b]. The parameter
a0 represents the work done by the field in one wavelength λ of the wave in units of the
electron mass

a0 = eE0λ

m
. (1.6)

From a classical point of view, if a0 ∼ 1 or larger, a charged particle with mass m and charge
e becomes relativistic within one cycle of the wave. This justifies the nomenclature of the
regime a0 ∼ 1 as relativistic optics [Mou06]. This means that for such fields the v ×B term
in the Lorentz force equation F = e(E + v ×B) becomes relevant. A different interpretation
of the quantity a0 in the quantum picture is achieved by rewriting

a0 = eE0λC
ω

, (1.7)

that is, a0 describes the number of laser photons with energy ω absorbed in one Compton
wavelength λC of the electron [Mac11]. Therefore, the parameter a0 also controls multi-photon
effects in the quantum picture, and the regime a0 ∼ 1 is referred to as multi-photon regime.
The parameter a0 is related to the inverse Keldysh parameter known from atomic physics
[Pop04]. One can relate a0 to the laser intensity I as

a2
0 = 7.309× 10−19I[W/cm2]λ2[µm] . (1.8)

Thus, the experiment [Yan08] with I = 2× 1022 W/cm2 achieved a value of a0 = 100. The
limit a0 →∞, refers to both the limit of infinite intensity at fixed frequency and the static
limit ω → 0 (λ→∞) at fixed intensity. For a0 � 1 the laser field can be approximated as a
constant crossed field in many cases. The regime a0 � 1 is referred to as “quasi-static” or
“tunnelling” regime.
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Calculation methods
A variety of calculation techniques have been developed and applied to solve problems in strong-
field QED. To name a few, there are the semi-classical operator technique [Băı68, Băı69],
Schwinger’s proper time method [Sch51, Dit00] and effective action approaches [Hei36,
Bur07], world line Monte Carlo and instanton methods [Gie05, Dun06], relativistic quantum
wavepacket dynamics [Moc09, SR00, Pea08, Ruf09], kinetic equations [Bla06, Bla09, Heb08,
Sok10, Elk11], particle in cell (PIC) simulations for plasma problems [Daw83, Puk03, Fon09],
and the semi-classical method of Reiss-Nikishov-Ritus, where exact solutions of the Dirac
equation in a given classical background field potential in combination with the Furry picture
are used. The latter method is comprehensively reviewed in [Rit85], where the focus is
on infinite plane waves and constant crossed fields. This method was first described in
[Sen52], but hardly recognized. It was later introduced by Reiss [Rei62] and Nikishov and
Ritus [Nik64b] (see [Rei05] for a historical overview). It is applied throughout this thesis to
processes in pulsed laser fields.

The results of the the Reiss-Nikishov-Ritus method are valid only for null-fields, where
all field-invariants vanish, in particular F = G = 0, which are highly symmetric field
configurations. In the general case, observables such as emission probabilities W will depend
on a0, χ and further invariants fi (including F and G), which can be constructed from the field
strength tensor, its dual tensor and the momenta of participating particles W = W (a0, χ, {fi}).
Under the conditions fi � 1 and fi � a2

0, χ
2 one expects that up to the lowest order in terms

of a series expansion [Rit85, Ber80, Her72]

W (a0, χ, {fi}) = W (a0, χ, {0}) +O({fi}) . (1.9)

Scattering processes with probe particles
The use of probe particles allows to be sensitive to vacuum polarization and other strong-field
effects far below the regime of QED-strong fields where the invariants F ,G ∼ 1. Furthermore,
also in null-fields, where both field invariants vanish, F = G = 0, strong-field QED effects
can be observed. For example, for low frequency probe photons with ω � m, non-linear
interactions among these degrees of freedom are mediated by anisotropies of the vacuum
polarization tensor Πµν [A] [Bec75], which can be calculated using the famous effective
Euler-Heisenberg Lagrangian [Hei36]

LEH = m4

360π2 (4F2 + 7G2) . (1.10)

In the presence of a strong background field Aµ, the vacuum acts as a polarized material
medium on probe photons, which acquire a modified light-cone condition with two different
indices of refraction n± for photon polarizations parallel and perpendicular to the background
field. This can lead to birefringence and dichroism effects in suitable scattering geometries
[Hei09b, Koc04], see Figure 1.3 (a). Small but measurable experimental signatures of these
processes are expected for intensities of the order of 1022 W/cm2 [Hei09b]. An experimental
verification of this process, termed “vacuum birefringence”, can be envisaged using a combina-
tion of a PW laser with the European XFEL X-ray beam. Besides the possibility to observe
modifications of the polarization state of a probe photon, a more direct approach to observe
the vacuum polarization based on a “matterless double slit” was proposed [Kin10b, Kin10a].
Since the probe photons couple to any charge fluctuations in the vacuum via the polarization
tensor, this can be used as a probe for exotic particles [Kar12], such as axions, axion-like
particles [Mai86] and minicharged particles [Gie09], as well as other theories beyond the
standard model, such as non-commutativity of spacetime [Ild10, Lan97] and hidden gauge
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Figure 1.3: Visualization of several strong-field processes. Left: probing the vacuum
polarization via (a) vacuum birefringence, (b) photon splitting or (c) Breit-
Wheeler type pair production. Right: Interaction of relativistic electrons
with strong laser pulses resulting in one-photon Compton scattering (d), and
two-photon Compton scattering (e), or trident pair production (f). Photons
are depicted as wavy arrows. Red and white circles stand for electrons and
positrons, respectively, and the laser pulse is depicted as red shaded area.

sectors [Ahl08]. Furthermore, the polarization tensor induces non-linear interactions among
the probe photons leading to photon splitting (γ → γγ) and photon merging (γγ → γ)
processes [Adl71, Akh02, DP07], see Figure 1.3 (b).

Just as the propagation of photons is modified by the existence of the vacuum polarization
Πµν [A], also the propagation of electrons is modified by strong background fields via the
mass operator Σ[A] [Sch51, Rit72, Rit85, Meu11]. The unitarity of quantum field theory
dictates that the imaginary parts of the photon polarization tensor Πµν and the electron
mass operator Σ be related to particle production probabilities via the optical theorem, also
known as Cutkosky rules (see Figure 1.4). For instance the imaginary part of the photon
polarization tensor leads to an imaginary refractive index, which means absorption. A photon
which is absorbed in this way emerges as electron positron pair. The probe photon provides
enough energy to separate the virtual vacuum fluctuations [see Figure 1.3 (c)].

In ultra-strong laser fields, charged particles experience violent accelerations, which allows
to reach regimes where the radiation reaction force becomes relevant [DP09, Har11b]. In the
recent years great progress has been achieved in a theoretical understanding of the radiation
reaction force [Spo00], providing both exact analytic and numeric solutions [DP08, Har11a].
Radiation reaction is also seen to be important for ion acceleration schemes at laser intensities
exceeding 5× 1022 W/cm2 [Zhi02, Tam11].

The pioneering studies of strong-field QED processes considered both strong-field pair
creation [Rei62] and the crossed process, electron photon scattering [Nik64b, Nik64a, Nik65,
Gol64, Nar65, Bro64, Kib65], also denoted as high-intensity Compton scattering, non-linear
Compton scattering or one-photon Compton scattering, which is related to the cut (one-loop)
mass operator (see Figure 1.4). Furthermore, the laser assisted pair creation process in
the field of a nucleus has been considered [Mit87, Mül03, Mil06b, Kuc07, Kam06]. Several
second-order processes which are related to two-loop self energies have been discussed,
including laser assisted Mott scattering [Szy97, Pan02a], laser assisted Møller scattering
[Ole67, Ros96, Pan04], laser assisted Compton scattering [Ole68, Bel77] and laser assisted
Bremsstrahlung [Löt07, Sch07] and two-photon Compton scattering [Mor75, Löt09b]. The
modification of weak interaction processes by strong laser fields has been considered, such
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Figure 1.4: The imaginary part of the (one-loop) electron mass operator Σ is related to the
total probability of non-linear Compton scattering via the Cutkosky-rule/the
optical theorem. Likewise, the imaginary part of the photon polarization
operator Πµν is related to the electron-positron pair production [Hei09a].

as muon decay in a laser field [Dic09] and neutrino production [Tit11]. For a further
overview of the literature on strong-field processes, the reader is referred to the reviews
[Rit85, McD86, Fer89, Lau03, Sal06, Mar06, Ehl09, DP12].

Of particular interest in this thesis are the photon emission processes when colliding an
ultrarelativistic electron — either from a synchrotron, a linac or from a laser acceleration
set-up — with a high-intensity short laser pulse, one-photon and two-photon Compton
scattering, where one or two photons are emitted in the interaction [see Figure 1.3 (d) and
(e)]. The focus will be on a realistic description of the finite temporal extent of the laser
pulse and on signatures thereof in the emission spectra.

A description of these processes in strong laser fields requires a non-perturbative treatment
of the latter, which is based on the Furry picture [Fur51] and one utilizes laser dressed Volkov
states [Vol35] as basis for the perturbative expansion of the S matrix. It turns out that the
parameter a0 is the effective coupling strength between the strong laser pulse and the charged
particles. In this picture, for instance the one-photon (two-photon) Compton scattering
process appears as the one-photon (two-photon) decay of these quasi-particle Volkov states.

One-photon Compton scattering

In view of the present and upcoming generation of high-intensity lasers, which are essentially
short pulse lasers, the finite temporal envelope will have to be considered in the theoretical
description of strong-field QED processes. The seminal works on non-linear one-photon
Compton scattering [Nik64b, Nik64a, Nik65, Nar65, Gol64] did not consider the case of finite
laser pulses; they considered either infinite plane waves or constant crossed fields which allow
for easier analytic results. Newer studies on intensity effects in infinite plane waves have
appeared, e.g. in [Kry94, Har09, Hei10b]. A complete description of non-linear Compton
scattering in infinite plane waves has been given with respect to the electron spin and photon
polarization properties in [Iva04]. (The same has also been achieved for the cross channel
process of pair production [Iva05].)

It is known that non-linear Compton scattering has as a classical limit the non-linear
Thomson scattering, which is attained in the limit %� 1, where

% = k · p
m2 (1.11)

with the electron momentum p and the laser four-vector k. The parameter % is a measure for
the electron recoil due to the momentum transfer in the photon emission process. The classical
limit of Thomson scattering corresponds to the recoil-free low energy limit of the quantum
description. The classical Thomson scattering as the one-photon emission in strong-laser
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fields has been described in infinite plane wave fields [Sar70], as well as in box-shaped pulses
[Esa93, Rid95] and in smooth laser pulses [Har96b, Gao04, Kra04, Kra05, Hei10b, Boc11c].
In particular for smooth laser pulses, serious modifications of the differential photon emission
spectra have been obtained in comparison with the case of infinite plane waves.

The first studies of finite pulse effects in the quantum theory of non-linear Compton
scattering and the cross channel process of pair production can be found in [Nar96b, Nar96a],
where the analysis was restricted to long laser pulses with ∆φ � 1. In view of the new
experimental possibilities with the new generation of short-pulse high-intensity lasers, the
discussion of non-linear Compton scattering in pulsed strong fields was quite active in
the last few years. Starting with [Boc09], several papers on that topic have appeared
[Mac10, Sei11b, Mac11, Sei11a, Boc11b, Kra12, Din12], focusing on different aspects of the
photon emission spectra, and also on the electron distributions [Boc12] after the electron-laser
interaction. Also the scattering of a high-intensity laser pulse off electron wavepackets was
discussed [Cor11b, Cor11a]. Furthermore, the cross channels of Compton scattering, which
are non-linear Breit-Wheeler pair production [Hei10a, Nou11, Tit12, Nou12], and one-photon
annihilation of a electron-positron-pair [Joh11, Ild11b] have been discussed in pulsed laser
fields. A discussion of strong-field effects in short laser pulses using the Wigner formalism
can be found in [Heb11b, Heb11a].

The spectrum of non-linear Compton scattering has been observed in several experiments
colliding laser and electron beams, such as low-intensity laser photons (a0 = 0.01) with
low-energy (∼ 1 keV) electrons from an electron gun [Eng83], a0 = 2 photons with plasma
electrons from a gas jet [Che98] and, more recently, sub-terawatt photons (a0 = 0.35) from
a CO2 laser with 60 MeV electrons from a linac at the BNL-ATF [Bab06]. Using linearly
polarized photons the latter two experiments [Che98, Bab06] have analysed the characteristic
azimuthal intensity distributions confirming quadrupole and sextupole patterns for the second
and third harmonics, respectively. Recently, the energy spectrum of the scattered radiation
has been measured in an all-optical set-up using laser accelerated electrons [Sch06b]. While
this “all-optical table-top” set-up is certainly attractive as it does not require a linac or a
synchrotron, the electron beam has a rather broad and random energy distribution which in
turn is inherited by the scattered photons. As a result, the γ spectrum recorded in [Sch06b]
is rather difficult to analyse theoretically.

Probably the best known experiment is SLAC E-144 probing strong-field QED using a
(by now moderately) intense laser beam in conjunction with high-energy electrons [Bam99].
Colliding a laser of intensity 1018 W/cm2 with the 46.6 GeV electron beam of the SLAC the
observation of the non-linear Compton scattering process has been reported in [Bul96], see
Figure 1.3 (d). Here, the absorption of several laser photons induces the production of a
high-energy (30 GeV) γ quantum which thus takes away a large fraction of the incoming
electron energy. This high-energy photon has then been used to produce electron-positron
pairs [Bur97] via collision with the laser, employing the multi-photon Breit-Wheeler reaction
[Bre34], see Figure 1.3 (c). Hence, using a high-energy setting with a large linac, SLAC
E-144 has produced “matter from light” for the first time [Bur97]. While the SLAC data
can be well described within this two-step model of pair creation [Bur97, Hu10], there is also
the possibility for a direct one-step process, which is termed trident-process [see Figure 1.3
(f)]. In this one-step process, which is a second-order strong-field process, the photon that
triggers the production of the pair is a virtual intermediate particle. In contrast to the case
of first-order strong-field processes discussed above, the literature on second-order processes
in pulsed laser fields is yet quite scarce.
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Two-photon Compton scattering

In the two-photon Compton process, an electron emits two-photons coherently. In the low
energy limit of the weak field process, the two photons share the energy of the incoming
photon ω = ω1 + ω2. In this sense, the process can be considered as the splitting of
a photon. The theoretical description of the two-photon Compton process (also termed
double Compton scattering) in the perturbative (weak-field) regime had been accomplished
first in [Hei34, Man52] and was verified experimentally soon afterwards [Bra56] and more
recently in [Sek88, San00] using 662 keV γ rays from a 137Cs radioactive source incident
on an aluminium foil scatterer. The double Compton effect was observed via coincidence
measurements in two detectors. The perturbative double Compton effect is expected to
become the main source of soft photons in astrophysical plasmas at low baryon density and
can be seen as a dominant mechanism for the thermalization of perturbations of the cosmic
microwave background [Lig81, Chl06]. While the one-photon Compton process has a classical
analogue in the limit %→ 0, this is not true for two-photon Compton scattering, which is a
pure quantum process. For low energy, %� 1, the cross section σ2 for two-photon Compton
scattering scales as σ2 ∼ α%2σ1, where σ1 is the one-photon cross section (see Figure 1.5).

The strong-field two-photon Compton process has been analysed in a constant crossed field
[Mor75] and in an infinite plane wave [Löt09b, Löt09a]. The related process of two-photon
synchrotron radiation in a strong magnetic field was also considered [Sok76]. It was found
that the two photons which are emitted in the two-photon Compton scattering process
have a certain degree of entanglement, such that this process could be used as a source for
high-energy entangled photons in the keV or MeV regime [Sch08, Löt09b].

Recently, experiments on two-photon emission by electrons in an intense laser field have
been proposed [Che99, Thi09]. The motivation of such experiments is seen in [Sch06a, Sch08]
in an attempt to verify the Unruh radiation [Unr84] which is related to the physical vacuum
experienced by accelerated observers in a flat space-time and manifests as the emission of
entangled photon pairs off accelerated charges. The Unruh radiation in turn is related to
Hawking radiation off a horizon in curved space-time [Unr76]. These issues concern the
concepts of quantum field theory, of vacua and of particles in non-inertial frames [Cri08]. The
relation between the two-photon Compton process and Unruh radiation has been analysed
further in [Sch09].

In second-order strong-field processes (e.g. [Löt09b, Löt07, Kra10, Hu10]), intermediate
particles can become real (i.e. go on their mass shell) due to the presence of the background
field. In infinite plane wave fields, the on-shell contributions diverge as Oleinik resonance
singularities [Ole67, Ole68, Ros96]. A regularization procedure is necessary in this case. One
possibility, which is used in several papers on second-order strong-field QED processes is the
inclusion of an imaginary mass contribution to propagator pole in order to screen the Oleinik
resonances [Ole67, Ole68]. This imaginary mass contribution is related to the imaginary part
of the electron self-energy Σ[A] in the case of two-photon Compton scattering, and via the
correspondence discussed in Figure 1.4 also to the total probability of one-photon Compton
scattering. The relation of the on- and off-shell processes, i.e. the relative importance of
the one-step and two-step processes, in the case of a photon propagator has been analysed
recently in [Hu10, Ild11a] for finite laser pulses. The two-photon emission probability is
infrared divergent if one of the two emitted photons is soft, ω1,2 → 0. The cancellation of
such divergences is ensured by the Bloch-Nordsieck theorem [Blo37]. An explicit calculation,
where the cancellation between the infrared divergence of double Compton scattering and
radiative corrections to one-photon Compton scattering is shown for the weak-field process
can be found in [Bro52]. Similar cancellations occur in the strong field process. Parts of
the electron mass operator Σ[A] are required for the cancellation of the infrared divergent
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Figure 1.5: The cross section of perturbative double Compton scattering (green dashed
curve and circles) in comparison with single-photon Compton scattering (red
solid curve) as a function of % = k · p/m2, which is a measure for the centre-of-
mass energy. The green circles and dashed curve correspond to a calculation
employing the formula for the perturbative double Compton cross section
from [Jau76]. The black diamonds and black solid curve correspond to data
taken from [Ram71]. The employed parameters include possible experimental
set-ups at ELBE/DRACO [Deb09], XFEL [XFE], PETRA III [PET] and
SPring-8 [SPR].

parts of the two-photon Compton emission probability (see Chapter 4 and, in particular,
Appendix E for some details on that topic).

Outline of the thesis
The structure of this thesis is as follows: In Chapter 2, the theory of strong field QED is
presented, starting with a discussion of the classical dynamics of charged particles in strong
electromagnetic fields. The relation of coherent photon states and classical background fields
is discussed and the transition to the Furry picture, where Volkov states, i.e. solutions of the
Dirac equation in the presence of a plane wave background field, are employed. The properties
of the Volkov wave functions, as well as of the laser dressed Dirac-Volkov propagator, in
pulsed plane wave laser fields are studied. A close relation between the classical trajectory
solutions and the Volkov wave functions is found.

Chapter 3 contains the discussion of one-photon Compton scattering in high-intensity
short laser pulses. After the calculation of a general expression for the S matrix and the
emission probability, using the methods provided in Chapter 2, the weak-field limit is concisely
discussed. (A detailed discussion of the weak-field limit and the limit of infinite plane waves
for one-photon Compton scattering is presented in Appendix C.) In a numerical study of the
emission probability the frequency spectra are exhibited. Different regimes for ultra-short
pulses and for longer pulses are identified, a bandwidth dominated regime and a ponderomotive
regime, respectively. In the ponderomotive regime, the emergence of sub-peaks is discussed,
as well as the transition between these two regimes. Azimuthal distributions are considered
for the case of single-cycle laser pules, where the polarization and carrier envelope phase
effects are studied.

The relation of non-linear Compton scattering to the classical limit of non-linear Thomson
scattering is emphasized. A scaling relation between the classical and quantum emission
probability are found, which is based on the longitudinal light-front kinematics and the
different phase spaces in the classical and quantum theory. Analytic approximations are
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presented employing a slowly varying envelope approximation and an expansion of the
one-photon Compton amplitude into a series of partial amplitudes which can be related to
the harmonics in infinite plane waves. Using a stationary phase analysis the emergence of
sub-peaks is set into relation with the accumulated phase shift of the Volkov wave functions
during the interaction with the laser. For a special pulse envelope, a completely analytic
result for the emission spectra is presented. In the case of ultra-high intensity a0 � 1, an
averaging method based on the stationary phase approximation is presented to calculate the
total emission probability in pulsed laser fields in comparison to results in constant crossed
fields.

In Chapter 4, the second-order QED process of two-photon Compton scattering is presented.
The S matrix for the process end the emission probability are calculated in the strong-field
regime. The weak-field limit of the S matrix is obtained and it is shown that it coincides
with the previous result from perturbative QED. A detailed discussion of the on- and off-shell
contributions to the emission probability is given with a factorization of the on-shell part into
two successive one-photon Compton S matrix elements. It is shown by an explicit calculation
that in the the on-shell contributions, which are finite in a pulsed laser field, develop Oleinik
resonance singularities in the limit of an infinite plane wave. Numerical results for differential
spectra are presented, the inclusive two-photon spectrum calculated and compared to the
emission probability of one-photon Compton scattering. For a box-shaped pulse, an analytic
expression for the pulse-length dependence of the on-shell and off-shell parts of the emission
probability is given.

A summary of the main results and an outlook is given in Chapter 5.
In Appendix A, general relations are collected concerning the conversion of units, con-

ventions for the Minkowski metric, light-front coordinates, Dirac matrices, collections of
important integrals and details of the description of the vector potential that describes the
laser pulse. The basic field theoretic relations in the Furry picture are presented in Ap-
pendix A including the commutation relations of particle creation and annihilation operators,
the eigenmode decomposition of the field operators and the calculation of S matrix elements
from the general perturbative expansion of the scattering operator Ŝ[A] in the Furry picture.
In Appendix B, the Furry picture in the path integral approach is discussed. A derivation
of the Volkov matrix functions is presented together with a new and easy proof of their
orthogonality and completeness relations. As stated above, in Appendix C the weak-field
and monochromatic limit of the one-photon Compton scattering are discussed. Additionally,
some remarks on the relation between long laser pulses and infinite plane waves can be
found there. The gauge invariance of the one-photon and two-photon matrix elements is
proven in Appendix D, which serves as a definition for numerically divergent parts of the
corresponding matrix elements. Appendix E is devoted to the discussion of the infrared
divergence of the two-photon matrix element, where the cancellation of the infrared divergent
parts with radiative corrections of one-photon Compton scattering is shown explicitly. In
the final Appendix F, the issues of realistic conditions, such as spatial focusing of the laser
and finite electron distributions are considered for one-photon Compton scattering. The
robustness of the sub-peaks in the frequency spectra is tested.

Parts of the work presented in this thesis have been published in [Hei10b, Sei11b, Sei11c,
Sei11a, Sei12, Nou12], see also the listing on page I at the end of this thesis.
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Chapter 2

The theory of strong-field QED

In this chapter, the theory of quantum electrodynamics (QED) in strong external fields is
presented. Before discussing the quantized theory, it is instructive to inspect the classical
theory first. Therefore, the classical dynamics of charged particles in strong background

fields is briefly reviewed. Many concepts, such as the quasi-momentum, can be introduced
much clearer in the realm of classical electrodynamics. Thereafter, the relation between
classical background fields and coherent quantum states for laser pulses of arbitrary spectral
content is established. Strong-field QED is formulated in the Furry picture, where the
interaction of electrons and positrons with the background wave field is taken into account
exactly and non-perturbatively. Volkov wave functions are utilized as one-particle basis for
the mode expansion of the electron field operators. The properties of these wave functions and
the corresponding Green’s function are discussed in the last part of this chapter, emphasizing
the differences between pulsed plane wave (PPW) and infinite plane wave (IPW) laser fields.
A close connection between the momentum space properties of Volkov states in PPW and
the classical trajectory solutions is found.

2.1 The classical theory

In the classical theory of electrodynamics, without the radiation reaction force1, the dynamics
of point-like charged particles in a given external field configuration, described by the field
strength tensor Fµν = ∂µAν − ∂νAµ, is governed by the Lorentz force equation [Jac83]

duµ

dτ
= e

m
Fµνuν , (2.1)

where e (m) is the charge (mass) of the particle and uµ = dxµ/dτ denotes the four-velocity of
the particle, where τ is the proper time. In general this is a non-linear differential equation
as the field strength has to be taken along the trajectory to be solved for Fµν = Fµν(x(τ)).
The equations of motion (2.1) follow from the relativistic Lagrangian [Sch68]

L = muµuµ + eAµuµ (2.2)

1 Radiation reaction is not discussed in this thesis. The interested reader is referred to the recent papers
[Spo00, DP08, Har11a] and the review [DP12] for a survey on the topic.
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by means of the variational principle with Euler-Lagrange equations

∂L

∂xµ
− d

dτ

{
∂L

∂uµ
−
(
∂L

∂uν
uν − L

)
uµ

}
= 0 . (2.3)

This form of the Euler-Lagrange equations implements already the normalization of the
four-velocity, uµuµ = 1. Equation (2.3) can be derived by adding the constraint to (2.2) via a
Lagrangian multiplier λ, L→ L+ λ(τ)(uµuµ − 1) and solving for λ. If the external field Fµν
or the potential Aµ depends only on one Lorentz-invariant phase φ = k ·x, as for a transverse
plane wave field, the equation of motion (2.1) possesses an analytic solution [Har02, Mey71]
due to the existence of an additional constant of motion κ = dφ/dτ . The quantity κ, which
is referred to as light-cone variable in [Har02], is the longitudinal velocity, i.e. the projection
of uµ onto the laser four-momentum, κ = kµuµ = k ·u = const. The time evolution of the
light-cone variable

dκ

dτ
= e

m

[
(k · k)(u ·A′)− (∂ ·A)(k ·u)

]
= 0 (2.4)

proves that it is a constant of motion, indeed. The first term vanishes because k · k = 0, and
the second term is zero due to the Lorenz gauge ∂ ·A = k ·A′ = 0; the prime denotes the
derivative with respect to the laser phase φ. Throughout this thesis, the real transverse plane
wave field

Aµ(φ) = A0 g(φ) Re
[
εµ+ exp

{
−i(φ+ φ̂)

}]
(2.5)

will be utilized, where g(φ) describes the pulse envelope, εµ+ is a complex transverse polarization
vector and φ̂ denotes the carrier envelope phase. A detailed description of the laser vector
potential is provided in Appendix A.3. As a consequence of the constancy of the light-cone
variable κ the proper time τ can be replaced by the laser phase φ = κτ = k ·u0τ in the
equations of motion, where uµ0 = uµ(τ0) denotes the initial value of the velocity at the initial
proper time τ0. Thus, Eq. (2.1) becomes fully integrable,

duµ

dφ
= e

mκ
Fµν(φ)uν(φ) . (2.6)

The solution for the particle velocity reads

uµ(τ) = uµ0 − a
µ + a ·u0

κ
kµ − a · a

2κ kµ , (2.7)

where a dimensionless vector potential aµ = eAµ/m was defined. Another integration over
proper time yields the particle’s orbit

xµ(τ) = xµ(τ0) + uµ0 (τ − τ0)−
τ∫

τ0

dτ ′aµ + kµ

2κ

τ∫
τ0

dτ ′(2a ·u0 − a · a) . (2.8)

These are the exact solutions for particle orbits in a plane wave field with arbitrary spectral
composition, as the one defined in Eq. (A.24). The fields are such that there is no net
acceleration, i.e. uµ(τ →∞) = uµ(τ → −∞).

Alternatively, one could solve the relativistic Hamilton-Jacobi equation, which is a non-
linear differential equation [Ebe69, Bag90, Löt08]

(∂µS + eAµ)(∂µS + eAµ) = m2 , (2.9)
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for the Hamilton-Jacobi action

Sp(x) = −p0 ·x−
1

2p0 · k

φ∫
dφ′[2ep0 ·A− e2A ·A] , (2.10)

with initial momentum p0 = mu0. The particle’s canonical momentum Pµ = muµ + eAµ

is the negative gradient of the Hamilton-Jacobi action Pµ = −∂µS [Bag90]. Evaluating the
kinetic momentum pµ = muµ = −∂µS − eAµ with (2.10) gives the same result as (2.7). The
physical significance of the Hamilton-Jacobi action is the fact that it also appears below as
the phase of the quantum states.

Having found the particle orbits in a plane wave field, a concise discussion of this solution
is necessary. Of particular interest is the average motion of the charged particle, by averaging
the velocity u over the laser phase

〈uµ〉 = uµ0 − 〈a
µ〉+ 〈a〉 ·u0

κ
kµ − 〈a · a〉2κ kµ . (2.11)

For periodic fields Aµ, in particular in the limit of infinite monochromatic plane waves, one
would average over one period of the phase with 〈aµ〉 = 0 and 〈uµ〉 = uµ0 −

〈a · a〉
2κ kµ, which

defines the average longitudinal momentum qµ = m〈uµ〉 named quasi-momentum. The square
of this quasi-momentum gives rise to an effective, intensity dependent mass2

m2
? = q · q = m2〈u〉 · 〈u〉 = m2(1− 〈a · a〉) . (2.12)

For the special choice of the vector potential (2.5) which is used throughout this thesis, for
g → 1 the average of a · a is independent of the polarization state of the background field and
one has the unique effective mass m2

? = m2(1 + a2
0/2). This effective mass can be attributed

to the relativistic mass increase due to the transverse quiver-motion [McD86]. In pulsed
laser fields, there are two time scales where one is given by the carrier frequency ω and the
other one is related to the length ∆φ of the pulse envelope g. A particular possibility for the
definition of the averaging procedure for long pulses ∆φ� 1 would include a separation of
fast (carrier wave) and slow (envelope) time scales, averaging over the fast time scales only
[Nar96b]. Then, the quasi-momentum and effective mass depend on the phase via the square
of the envelope function

qµ(φ) = pµ + kµ
ma2

0
2κ g2(φ) , m2

?(φ) = m2
(

1 + a2
0

2 g
2(φ)

)
. (2.13)

This separation of scales is inadequate for single cycle laser pulses where the pulse length is
∆φ = O(1). For generally pulsed, non-periodic fields, where 〈aµ〉 6= 0, one can define

M2 = m2(1 + 〈a〉 · 〈a〉 − 〈a · a〉) = m2(1−∆a2) , (2.14)

with the variance of the laser field ∆a2. However, the definition of the average is not unique.
A certain possibility is to use floating averages [Bro64, Kib75, Har12]

〈a〉(φ, φ′) ≡ 1
φ′ − φ

φ′∫
φ

dφ′′a(φ′′) , (2.15)

2Note that u ·u = 1, as is required by the normalization of the relativistic velocity. Thus, averaging
〈u ·u〉 = 1 would not give rise to an effective mass.
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Figure 2.1: The effective mass M2(φ, φ′) as a function of φ and φ′. The normalized value
(M2 −m2)/a2

0 is plotted for the pulse length ∆φ = π (∆φ = 3π) in the left
(right) panel for a Gaussian shape function g(φ) = exp−{ φ2

2∆φ2 } (see also
Appendix A.3).

which does not allow for such a simple interpretation of M(φ, φ′) as an effective mass since it
depends on two phase variables. The quantity M was used in [Bro64, Kib75] in the discussion
of the electron Green’s function in a strong laser field (cf. Section 2.9). In Figure 2.1, contour
plots of the normalized effective mass (M2−m2)/a2

0 are shown as a function of the two phase
variables φ and φ′, evidencing the strong dependence of the effective mass M2(φ, φ′) on the
averaging interval. For an infinite interval |φ′ − φ| → ∞ the effective mass approaches the
free mass M2 → m2. The appearance of the variance ∆a2 instead of 〈a2〉 in the definition
of M2 ensures that M2 → m2 for the interval length |φ′ − φ| → 0. Thus, for ultra-short
pulses the effective mass is expected to play no role. The usual definition of the average in
periodic fields is reobtained from the expression (2.15) by specifying the averaging interval as
|φ′ − φ| = 2π. The existence and experimental detection of the mass shift is still a debated
subject. For a recent discussion in the literature see [Har12].

When considering a monochromatic plane-wave field (i.e. g = 1) which is periodic in φ,
the solutions for the particle orbits can be specified further on. Going to the co-moving
inertial frame where 〈uµ〉 = 0, the spatial components of the quasi-momentum vanish,
qµ = (m?, 0, 0, 0). In that frame the dynamics in linearly and circularly polarized waves
can be easily seen to have very different characteristics. For circularly polarized waves, the
electron moves in a circle in the plane spanned by the two polarization vectors εi of the laser.
Since A ·A = 〈A ·A〉, there is no longitudinal velocity component in that inertial system,
i.e. u‖ = n ·u = 0 with n = k/ω. The motion resembles that of a micro-scale synchrotron.

On the other hand, for linear laser polarization, the motion is in a plane spanned by the
polarization vector and the longitudinal beam direction of the laser, forming a Lissajous
curve with frequency ratio 1 : 2, usually termed “figure-8 motion” [Sar70]. The longitudinal
component of the velocity, u‖ ∝ A ·A − 〈A ·A〉 ∝ cos 2φ, has twice the frequency of the
transverse motion and vanishes on average 〈u‖〉 = 0. In this situation, the motion resembles
the trajectory in an undulator. In fact, the radiation produced has similar properties as
undulator radiation such that the notion “optical undulator” is often used in the literature
when referring to the radiation process in laser fields [Deb10]. In a pulsed laser field, the
co-moving frame is not an inertial frame; it is accelerated and therefore inadequate for
describing the dynamics in a Poincaré invariant formalism.
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2.2 Coherent photon states and classical fields
The usual formulation of quantum electrodynamics where the complete electromagnetic
field, including the laser pulse, is described as a Fock space state of individual photons is
inadequate for the description of strong-field QED [Nev76]. In the interaction of strong laser
pulses with charged particles, one has to deal with a huge amount of photons present in the
laser pulse. A proper quantum mechanical treatment based on usual perturbation theory,
organized solely in powers of the fine structure constant α, would require a tremendously
large number of diagrams to be taken into account, describing the absorption and re-emission
of laser photons, and resummations of certain classes of diagrams [Fri64, Ebe66]. Such a
formulation of the theory where the laser is described by a set of photons is inappropriate, as
one has to incorporate the coherence of the laser field [Nev76]. For example, a laser pulse
with a total energy of 1 J and a wavelength of λ = 800 nm consists of 4 × 1018 individual
photons; a laser strength of a0 = 1 corresponds to a photon density of 1014 photons/µm3.

Coherent states are useful as idealizations of the quantum state of a laser beam in
scattering theory [Ebe69]. The treatment of the laser field as coherent state instead of a
quantized multi-photon Fock space state is appropriate as long as the number of photons
which is scattered out of the coherent part is much smaller than the number of photons
present in the laser pulse, i.e. the depletion of the laser pulse is negligible.

Coherent states were first recognized as eigenstates of the quantum harmonic oscillator
[Sch26] and later used for the description of laser fields in quantum optics [Gla63b, Gla63a,
Man95]. They are quantum states that posses the minimum uncertainty and therefore behave
as classical as possible, in particular, the field strength operators of the electromagnetic field
do have non-vanishing expectation values in coherent states. A single-mode coherent state
|vk,λ〉 is defined as an eigenstate of the annihilation operator âk,λ of a certain mode of the
photon field with (three-)momentum quantum number k and polarization quantum number λ

âk,λ|vk,λ〉 = vk,λ|vk,λ〉 . (2.16)

In analogy with (2.16), multi-mode coherent states |C〉 describing an electromagnetic field
are defined as eigenstates of the positive-frequency part of the field operator Âµ(x),

Â(+)
µ (x)|C〉 = Cµ(x)|C〉 , (2.17)

with complex eigenvalue Cµ(x) [Fra65, Kib65]. The positive-frequency part of the field
operator

Â(+)
µ (x) =

∑
λ

∫
d3k

(2π)32k0 e
−ik ·xεµ,λ(k) âk,λ (2.18)

is a superposition of the annihilation operators âk,λ with the commutation relations of photon
creation and annihilation operators

[âk,λ, â†k′,λ′ ] = −(2π)32k0gλλ
′
δ3(k − k′) . (2.19)

The complete field operator is a sum of positive and negative frequency parts Âµ(x) =
Â

(+)
µ (x)+Â

(−)
µ (x) with Â

(−)
µ (x) = [Â(+)

µ (x)]† [see also Appendix A.6, in particular Eq. (A.83)].
The coherent state |C〉 can be generated as a displaced vacuum state |C〉 = D̂|0〉 with the
unitary displacement operator

D̂ = exp
{∑

λ

∫
d3k

(2π)32k0

[
Cλ(k)â†k,λ − C

∗
λ(k)âk,λ

]}
, (2.20)
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which fulfils D̂(−Cλ) = D̂†(Cλ). The unitarity of D̂ can be shown by employing the Baker-
Campbell-Hausdorff relation. Using the unitarity of D̂ one easily shows that the coherent
states are normalized as 〈C|C〉 = 〈0|0〉 = 1. The quantities Cλ(k) define the momentum
and polarization distribution of photons in the coherent state and are related to the Fourier
transform of the eigenvalue Cµ(x). The commutation relations of the photon creation and
annihilation operators with the displacement operator read

[âk,λ, D̂] = Cλ(k) D̂ , (2.21)

[â†k,λ, D̂] = C∗λ(k) D̂ , (2.22)

[Â(+)
µ (x), D̂] =

∑
λ

∫
d3k

(2π)32k0 e
−ik ·xεµ,λ(k)Cλ(k) D̂ ≡ Cµ(x) D̂ . (2.23)

The unitary displacement operator D̂ “shifts” the photon field operator according to

D̂†Â(+)
µ D̂ = Â(+)

µ + Cµ(x) , (2.24)
D̂†Â(−)

µ D̂ = Â(−)
µ + C∗µ(x) , (2.25)

such that the expectation value of the photon field operator Âµ in a coherent state is

〈C|Âµ(x)|C〉 = Cµ(x) + C∗µ(x) ≡ Aµ(x) , (2.26)

thus yielding the real classical background field configuration Aµ(x). That is, there exists a
certain correspondence between coherent states |C〉 and classical background fields [Kib68].
Both approaches are equivalent if radiative corrections are neglected [Gla63b, Kib65, Ole68].
To make contact with the usual description of the laser field (A.24) used in this thesis, one
identifies

Cµ(x) = A0
2 g(k ·x)εµ+e−i(k ·x+φ̂) . (2.27)

Thereby, each coherent |C〉 state corresponds uniquely to a classical solution of the wave
equation �Aµ = 0 where the vector potential Aµ fulfils the Lorenz gauge condition ∂µAµ = 0;
it is the quantum state which most closely approximates this classical field [Kib65]. In order
to describe scattering processes in a background field, a slight generalization of coherent
states is required, where the displacement operator D̂ acts on a N -photon Fock space state

|N〉 = |{nk,λ}〉 =
∏
k,λ

(â†kλ)nk,λ√
nk,λ!

|0〉 , (2.28)

instead of the Fock vacuum |0〉. These states |N ;C〉 = D̂|N〉 are termed “semi-coherent”
states in [Fra91] with the expectation values

〈N ;C|Âµ(x)|N ;C〉
〈N |N〉

= Aµ(x) , (2.29)

〈N ;C|n̂k,λ|N ;C〉
〈N |N〉

= |Cλ(k)|2 + nk,λ (2.30)

and the photon number operator n̂k,λ = â†k,λâk,λ. Thus, in semi-coherent states, there exists
a part of the electromagnetic field which can be described using the classical potential Aµ(x),
or the Fourier transforms Cλ(k). Moreover, a number of N photons is excited over this
classical background with occupation numbers nk,λ in Fock space [Fra91]. For a scattering
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matrix element consisting of coherent parts C describing the laser pulse and Fock space parts
for the excitations above the background field in the initial (i) and final (f) states one may
note the relations [Kib65, Fra65]

〈 f ;C|Ŝ| i ;C〉 ≡ 〈 f ;C|Ŝ[Ψ̂, Ψ̂, Â]| i ;C〉 = 〈 f |Ŝ[Ψ̂, Ψ̂, Â +A]| i 〉 ≡ 〈 f |Ŝ[A]| i 〉 , (2.31)

where Ŝ[A] denotes the scattering operator in the presence of the background field [Kib65,
Mit75, Har09] which is specified in the next subsection.

2.3 Strong-field QED in the Furry picture

The Lagrangian for a system of electrons/positrons (Ψ̄, Ψ) and the electromagnetic field,
decomposed into the radiation field Aµ and an external background field Aµ, reads

L = Ψ̄(i/∂ −m)Ψ− 1
4F

µνFµν −
1

2ξg
(∂ ·A)2 − eΨ̄(/A + /A)Ψ (2.32)

with the electromagnetic field strength tensor Fµν = ∂µAν − ∂νAµ of the radiation field
and gauge fixing parameter ξg.3 Note that there is no dynamical kinetic term involving the
external background field Aµ. The external field Aµ is a solution of Maxwell’s equations
without the current of the quantized charged particles. Thus, there is no back-reaction of the
currents of the theory on the dynamics of the background field.

The Furry picture [Fur51], is a special case of the interaction picture describing the
time-evolution of a quantum system. In the Furry picture, a certain part of the interaction,
related to the background field is considered to be part of the “free” fermionic Lagrangian,
such that the single-particle states related to Ψ̄ and Ψ are to be considered as solutions of
the Dirac equation in the background field, see (2.40) below. The prototypical example for
the Furry picture is the interaction of an electron in a Coulomb field, where bound electron
states have to be treated properly.4

Absorbing the interaction with the background field into the fermionic Lagrangian, the
reorganized fermionic (f), gauge field (g) and interaction (int) Lagrangians read

Lf = Ψ̄(i/∂ − e /A−m)Ψ , (2.33)

Lg = −1
4FµνF

µν − 1
2ξg

(∂µAµ)2 , (2.34)

Lint = −eΨ̄/AΨ . (2.35)

This means, the interaction of the electrons and positrons with the background field is
treated completely non-perturbatively. The interaction of the charged particles with the
radiation field Aµ can be described within perturbation theory. The perturbative series for
the scattering operator Ŝ in the Furry picture is obtained in the form [Mit75]

Ŝ[A] = T exp
{
−i
∫
d4xHint(x)

}
= T exp

{
−ie

∫
d4x : ˆ̄Ψ(F )(x)γµÂµ(x)Ψ̂(F )(x) :

}
. (2.36)

3Further on, the Feynman-’t Hooft gauge with ξg = 1 will be used.
4Therefore, the Furry picture is also also called “bound interaction picture”
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The subscript (F ) specifies the electron operators in the Furry picture. The symbol T is the
time ordering operation and : · · · : denotes normal ordering of the enclosed operators. The
eigenmode decomposition of the electron field operator in the Furry picture reads [MP09]

Ψ̂(F )(x) =
∑
α

Ψ(+)
α (x)ĉα + Ψ(−)

α d̂†α , (2.37)

where Ψ(±)
α (x) denote the positive and negative energy single-particle wave functions, which

are discussed in the next section for the case of Volkov wave functions in plane wave
background fields. The operators ĉα (d̂†α) annihilate (create) an electron (positron) in the
one-particle state α. The fermionic anti-commutation relations for these operators can be
found in Appendix A.6, where important relations concerning the formulation of quantum
field theory in the Furry picture are presented. Since the background field Aµ depends
explicitly on the laser phase φ = k+x

+, which is a light-like coordinate, it seems necessary
to work in light-front QED, or null-plane QED, where the initial conditions for the solution
of the single particle wave equations are specified on a null-plane [Nev71b], and also the
(anti-)commutation relations of the field operators are defined on light-like hypersurfaces
which have a light-like normal vector. In the light-front formulation of the theory, one has to
use the S operator in light-front QED [Nev76]

Ŝ = X+ exp
{
−i
∫
dx+ : P int

+ (x+) :
}

(2.38)

instead of (2.36). This particular S operator transforms the in states at x+ = −∞ to out
states at x+ = +∞, where P int

+ denotes the interaction part of the x+ translation operator,
which serves as a Hamiltonian in this case [Nev76]. For details on the subject, the reader is
referred to [Kog70, Nev71a, Nev76]. The ambiguity of choosing the time evolution parameter
in a relativistic theory is related to a reparametrization invariance of the classical action,
which is generated by the mass shell constraint p2 = m2 (or u2 = 1). One needs to single out
a specific parametrization, i.e. to choose a specific time parameter. A distinct choice of the
time variable (e.g. t or x+) defines the corresponding Hamiltonian, which is the generator of
time translations and specifies a corresponding surface of constant “time” where the initial
conditions for the solution of the equations of motion can be specified and the “equal-time”
commutators are formulated [Hei01].

The equivalence of the usual instant form of field theory, quantized on spacelike surfaces
t = const, and light-front field theory, quantized on null-planes φ = const and x+ = const,
was shown in [Cha73a, Cha73b, Yan73a, Yan73b] by proving the equivalence of the two
perturbative series [Hei07]

T exp
{
−i
∫
dt : Hint(t) :

}
= X+ exp

{
−i
∫
dx+ : P int

+ (x+) :
}
. (2.39)

Another proof of the equivalence of light-front and the instant formulation of QED is due to
[Roh73, TE74]. The crucial point in this formulation of light-front field theory is related to
the definition of the basic commutation relations on light-fronts, {Ψ(x), Ψ̄(x′)}x′+=x+ , instead
of defining equal time commutators {Ψ(x), Ψ̄(x′)}t′=t in the instant form field theory. This
refers to boundary conditions and initial values for the solution of the equations of motion
which are given on a light-front hypersurface in the case of light-front field theory instead of
a space like hypersurface.

An alternative approach to light-front field theory [Cha69, Hei07] is used throughout
this thesis: One uses the instant form of the commutation relations for the field operators
{Ψ(x), Ψ̄(x′)}t′=t, based on the adiabatic decoupling of the laser pulse and the fermions
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at infinite past and future and consequently the representation of the S operator (2.36).5
The light-front structure is introduced automatically. Spacetime integrations are performed
in light-front coordinates where the coordinate φ is singled out by the dependence of the
background field Aµ(φ) on the latter. The light-front structure of the theory becomes manifest
in expression involving the electron propagator, i.e. starting in second order perturbation
theory.

The Feynman rules for strong-field QED in the Furry picture, based on a perturbative
expansion of the S operator in (2.36), i.e. the Dyson series (A.93), can be summarized as
follows [Mit75]:

1. S matrix elements are calculated in coordinate space.

2. External incoming or outgoing fermions are translated into the laser dressed Volkov
wave function Ψ(x) or Ψ̄(x), see Section 2.4.

3. An internal fermion line corresponds to the Dirac-Volkov propagator G(x, y|A), cf. Sec-
tion 2.9.

4. Internal and external photon lines are translated into the free photon propagator and the
free photon wave functions, respectively, just as in ordinary QED without background
fields.

5. Each fermion-fermion-photon vertex corresponds to a factor of −ieγµ and an integration
over spacetime d4x.

6. Symmetry factors for identical particles etc. are the same as in usual QED.

2.4 Volkov states

The single-particle wave functions Ψα(x) in the electromagnetic background field Aµ are
solutions of the Dirac equation

(i/∂ − e /A(x)−m)Ψα(x) = 0 (2.40)

following from the Lagrangian Lf in Eq. (2.33). For background fields in the form of plane
waves Aµ(φ), as in Eq. (A.24), closed solutions of (2.40) can be found, named Volkov wave
functions [Vol35]. The one-particle Volkov states are classified by the quantum numbers of
momentum p and spin r.6 The Volkov wave functions have a representation as

Ψp,r(x) = Ep(x)up,r , (2.41)

where up,r is the free Dirac spinor for (on-shell) momentum p which fulfils (/p−m)up,r = 0
and Ep are 4× 4 matrices to be specified below. Throughout this thesis, the normalization
ūp,rup,r′ = 2mδrr′ is utilized for spinors (see Appendix A.5 for further details). The wave
functions (2.41) represent the positive energy solutions Ψp,r ≡ Ψ(+)

p,r of (2.40). The negative
energy solutions are obtained from (2.41) via the transformation p → −p, i.e. Ψ(−)

p (x) ≡

5In fact, the description of the laser as a finite, pulsed field provides these conditions: At t → ±∞ the
background field vanishes for any finite spatial position |x| <∞.

6Non-Volkov solutions for a charge in a plane wave have been found [Bag05], where the transverse quantum
numbers p⊥ are different from the Volkov states.
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Ψ−p(x), where the notation for negative energy spinors is as usual u−p ≡ vp. The Volkov
matrices Ep(x) carry the information on the laser-electron interaction. They are given by7

Ep(x) = Γp(φ) exp{iSp(x)} , (2.42)

Γp(φ) = 1 + e

2k · p
/k /A(φ) . (2.43)

The phase is the classical Hamilton Jacobi action [see Eq. (2.10)]

Sp(x) = −p ·x− 1
2k · p

φ∫
0

dφ′
[
2ep ·A(φ′)− e2A2(φ′)

]
≡ −p ·x− fp(φ) , (2.44)

defining the non-linear part fp(φ). In the limit of vanishing laser field, Aµ → 0, the
Volkov matrices correspond to plane waves Ep(x) → e−ip ·x. The adjoint wave function
Ψ̄p,r = ūp,rĒp(x) involves the Dirac-adjoint matrix Ēp(x) = γ0E†p(x)γ0, which is also the
inverse matrix Ep(x)Ēp(x) = Ēp(x)Ep(x) = 1. For later use, the following abbreviations are
defined

dp = ma0
4k · p , (2.45)

αp,i = ma0
εi · p
k · p

, for i ∈ {1, 2,+,−} , (2.46)

βp = m2a2
0

4k · p = ma0dp , (2.47)

such that

fp(φ) = Re

αp,− φ∫
0

dφ′g(φ′)ei(φ′+φ̂)

+ βp

φ∫
0

dφ′g2(φ′)
[
1 + cos 2ξ cos 2(φ′ + φ̂)

]
.

(2.48)

These parameters are of the order dp ∼ a0/ω?, αp,i ∼ a0m/ω? and βp ∼ a2
0m/ω?, where

ω? = k · p/m denotes the laser frequency boosted to the electron rest frame. In particular,
αp,i and βp can be very large also for small a0 as the laser frequency is in general much
smaller than the electron rest mass when considering lasers in the optical regime ω ∼ 1 eV.
Only for high-energy electrons with energies E ∼ 50 GeV colliding almost head-on with the
laser pulse, the boosted frequency becomes ω? ∼ m.

The scalar product for the fermion wave functions is defined in a Lorentz covariant manner
as [Bag90]

(Ψ1,Ψ2) =
∫
σ

dσµΨ̄1(x)γµΨ2(x) , (2.49)

where σ is an arbitrary hypersurface in Minkowski space and dσµ is the infinitesimal normal
vector thereupon. The hypersurface can be expressed with general curvilinear coordinates
ξµ(x), where ξ0 = const, defines the hypersurface and ξ1, ξ2, ξ3 parametrize σ. Employing this
notation, one has dσµ = ∂ξ0(x)

∂xµ

√
−gd3ξ, where g denotes the determinant of the metric tensor

7For spin-0 and spin-1 particles, the corresponding Volkov wave functions are known [Bro83, Bro84]. The
difference is in the function Γp(φ), which is e.g. Γp = 1 for spin-0 particles. Furthermore, the generalization of
spin-1/2 Volkov states to background wave fields with general tensor structure (e.g. pseudoscalar, tensor etc.)
has been accomplished [Shi91a, Shi91b].
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= +

Figure 2.2: Diagrammatic representation of the Lippmann-Schwinger equation for the
Volkov state (double line). The red dashed lines denote the external laser
field and the black solid lines depict free electrons/positrons.

in the coordinates ξµ. The scalar product between Volkov states is evaluated most conveniently
by using a light-front hypersurface defined by the laser four-vector nµ = kµ/ω with the only
non-vanishing component n− = 2, i.e. on a plane of constant phase φ ∝ ξ0 = n ·x, yielding

(Ψ1,Ψ2) = 1
2

∫
d2x⊥dx−Ψ̄1(x)/nΨ2(x) . (2.50)

Thus,

(Ψp,r,Ψp′,r′) = 1
2

∫
d2x⊥dx− ūp,r(1 + dp /A/k)/n(1 + dp′/k /A)up′,r′ ei(Sp′ (x)−Sp(x)) (2.51)

= 1
2

∫
d2x⊥dx

− ūp,r/nup′,r′ exp
{
i(p′+ − p+)x−2 − i(p

′
⊥ − p⊥) ·x⊥

}
× exp

{
i(p′− − p−)x+

2 + ifp(φ)− ifp′(φ)
}

(2.52)

= (2π)3 2p+ δ3(p′ − p)δrr′ = (2π)3 2p0 δ3(p′ − p)δrr′ . (2.53)

The equality in (2.53) holds since for on-shell momenta p′ and p one has8 2p0δ3(p− p′) =
2p+δ3(p − p′). When considering off-shell momenta p2 6= m2 instead, the Volkov matrix
functions Ep have the properties of orthogonality (2.54) and completeness (2.55) in the form
[Mit75, Löt08]∫

d4xĒp(x)Ep′(x) = (2π)4δ4(p− p′) , (2.54)∫
d4pEp(x)Ēp(x′) = (2π)4δ4(x− x′) . (2.55)

A proof of the orthogonality can be found in [Rit85, Zak05], and the completeness was
rigorously proven only recently in [Löt08]. A new simple and elegant proof of the above
equalities is presented in Appendix B.3 employing the analytical light-front properties of the
Volkov matrix functions Ep(x).

2.5 Lippmann-Schwinger equation
The Dirac equation in the external field (2.40) can be reformulated as an integral equation in
the form of a Lippmann-Schwinger equation as

Ψp(x) = ψp(x) +
∫
d4y G0(x− y)Σ0(y)Ψp(y) , (2.56)

8This can be shown by considering δ(p+− p′+) = δ(p0− p′0 + p3− p′3) = δ(p3− p′3 +
√

(p3)2 + p2
⊥ +m2)−√

(p′3)2 + p′2
⊥ +m2) = p0

p+ δ(p3 − p′3).
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= + + + · · ·

Figure 2.3: Perturbative expansion of the Volkov states (double line) in powers of the
coupling to the background field (red dashed line) and free electron states
(black solid lines).

where ψp(x) and G0(x− y) are the free wave function and Green’s function in the absence
of a background field as solutions of the homogeneous and inhomogeneous field-free Dirac-
equations,

(i/∂ −m)ψp(x) = 0 and (i/∂ −m)G0(x− y) = δ(x− y) , (2.57)

respectively; Σ0(y) = e /A(y) denotes the (irreducible) self-energy part of the interaction with
the background vector potential, which is by definition the only contribution since the classical
background field Aµ is incapable of forming loops.9 The Lippmann-Schwinger equation (2.56),
which is visualized diagrammatically in Figure 2.2, represents a proper starting point for a
perturbative expansion of the Volkov states via an iterative solution of the former equation,
which is depicted diagrammatically in Figure 2.3. The Nth order term is given by

Ψ(N)
p = ψp +G0Σ0ψp +G0Σ0G0Σ0ψp + . . . =

N∑
n=0

(
G0Σ0

)n
ψp , (2.58)

using a symbolic notation, where(
G0Σ0

)n
ψp ≡

∫
d4y1 · · · d4ynG0(x− y1)Σ0(y1) · · ·G0(yn−1 − yn)Σ0(yn)ψp(yn) . (2.59)

Since the background field vector potential Aµ(φ) in (A.24) is a real quantity, it contains
the amplitudes for the absorption (e−iφ) and emission (eiφ) of laser photons via Aµ(φ) =
A0ε

µ
+g(φ)e−i(φ+φ̂)/2 + c.c. where c.c. denotes the complex conjugate of the former expression.

Consequently, the red dashed lines in Figures 2.2 and 2.3 represent both the absorption and
emission of laser photons. The Nth order term Ψ(N) contains N powers of the interaction
with the background field Σ0 (times a free propagator G0) and is therefore of the order
(eA0/m)N = aN0 . Thus, the perturbative expansion of the Volkov state in Figure 2.3 via the
iterative solution of the Lippmann-Schwinger equation is an expansion in powers of a0. This
means that such a perturbative series is meaningful only in the limit of a0 � 1. The full
non-perturbative Volkov solution Ψp(x) has to be employed for a0 of the order of unity or
larger. The probability for the absorption or emission of a single photon from the laser field
is comparable to the probability for the absorption or emission of many laser photons for
a0 > 1.

2.6 Properties of Volkov states in finite laser pulses
In order to characterize the Volkov wave function, it is sufficient to consider the Volkov matrix
function Ep(x), instead of Ψp, as it contains all the information on the interaction with the

9That means, radiative quantum corrections, i.e. the mass operator Σ of the electron, are not included in
(2.56).
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Figure 2.4: Contour plot of the scalar projection S[Ep(x)] in position space in the z – t
plane. The laser pulse with hyperbolic secant profile g(φ) = cosh−1 φ/∆φ is
located between the two black dotted lines. The white dotted line depicts the
propagation of the centre of the laser pulse along the light-cone with φ = 0.
Left (right) panel: Circularly (linearly) polarized laser pulse with a0 = 1.5
and ∆φ = 20.

laser field. Since Ep(x) is a 4× 4 matrix it is reasonable to study the different projections
onto the basis elements of the Clifford algebra (see Appendix A.5 for the definitions), of
which only the scalar and anti-symmetric tensor projections are non-zero

S[Ep] = 1
4trEp(x) = exp{iSp(x)} , (2.60)

T µν [Ep] = 1
4trσµνEp(x) = ie

2k · p(Aµkν −Aνkµ) exp{iSp(x)} . (2.61)

The real part of the scalar projection S[Ep] is exhibited in Figure 2.4 in the frame where the
electron is initially at rest. In that frame, the free electron wave function outside the laser
pulse behaves as ∝ exp{−ip ·x} = exp{−imt}. The scalar projection is essentially equivalent
to probing the state Ψp,r with ūp,r and an average over the spins r

1
2
∑
r

ūp,rΨp,r(x) = 1
2
∑
r

ūp,rEp(x)up,r(x) = mS[Ep(x)] . (2.62)

The effect of the laser pulse is a local deformation of the electron wave fronts which can
be considered as the build-up of an effective, time dependent quasi-momentum qµ(φ) =
pµ + g2(φ)βpkµ, which takes its maximum at the centre of the laser pulse φ = 0, depicted
as white dotted line in Figure 2.4, where it coincides with the usual definition of the quasi-
momentum in infinite plane waves.10 Thus, inside the laser pulse, especially for φ = 0, the fully
dressed electron wave function behaves as ∝ exp{−iq ·x} = exp{−i(m+ βpω?)t+ iβpω?z},
i.e. the electron wavelength changes and the wave fronts become tilted in the t – z plane.
Both effects are proportional to the ponderomotive potential Up ∝ ma2

0 ∝ βp. In Figure 2.4,
the situation is such that an electron with an energy of 50 GeV propagates head-on through
a strong laser pulse with a0 = 1.5 and a pulse length ∆φ = 20. The frequency of the laser is
ω = 1.55 eV which gives in the electron rest frame ω? = 300 keV ∼ m.

10Here, ∆φ � 1 is assumed to allow for a separation of fast and slow time scales as discussed above in
Eq. (2.13).
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Figure 2.5: Normalized contour plot of the tensor projection T 13 − iT 23. The same
parameters as in Figure 2.4 are used.

By a closer inspection one sees that the plane waves in the remote future, when the laser
pulse has passed, and the remote past, before the laser pulse arrives, differ by a finite phase
shift ∆fp = fp(∞) − fp(−∞), such that Ψfuture ∼ Ψpaste

−i∆p . For longer pulses ∆φ � 1
the dominant source of this phase shift is the ponderomotive term in the non-linear phase,
∝ βpg2(φ) ,which is also responsible for the build-up of the quasi-momentum. For ultra-short
pulses there are also contributions to the phase shift coming from the oscillating terms as
〈A〉 6= 0 and the line integral

∫∞
−∞ dxµA

µ 6= 0 can be of the same order of magnitude as the
ponderomotive integral in that case. The phase shift ∆fp turns out to be responsible for the
appearance of substructures in the spectra of strong-field QED processes in short laser pulses.

The antisymmetric tensor projections T µν allow for a further characterization of the
Volkov wave function. These tensor projections are non-zero only in regions where the laser
pulse is present. They mix contributions with different spin orientation and are therefore
proportional to a combination of ūp,↑Ψp,↓(x) and ūp,↓Ψp,↑(x), i.e. the spin-up wave function
contains contributions with spin-down and vice versa. From the structure of the Pauli
interaction term σµνFµν with the field strength tensor Fµν , one can infer that T 01 (T 02)
corresponds to the interaction of the electron with the x (y) component of the electric field, and
T 13 (T 23) corresponds to the y (x) component of the magnetic field. From this correspondence
and by inspecting (A.24) it is easy to understand why some projections are zero for linear
polarization while they are non-zero for circular polarization. As an example, the tensor
projection T 13 − iT 23 is shown in Figure 2.5.

2.7 Construction of Volkov wave packets

Wave packets can be constructed from Volkov wave functions using light-front coordinates.
To demonstrate the close connection between these wave packets and the classical trajectories
of a charged particle in the same background field it suffices to study the scalar part of the
Volkov wave function, which is indeed identical to the Volkov wave function of a point-like,
spinless charged boson. According to [Nev71a] scalar wave packets are constructed as

Φ(x) =
∫

d3p
(2π)3 2p+h(p1, p2, p+)S[Ep(x)] (2.63)
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Figure 2.6: Contour plot of a normalized scalar Volkov wave packet in the t – z plane.
For comparison, the classical trajectory is depicted as solid black curve. The
laser pulse propagates between the two black dotted lines. For parameters
see the text.

with the Lorentz-invariant integration measure d3p/(2π)32p+ and the mass shell condition
p− = (p2

⊥ + m2)/p+. Since the dynamics in the transverse variables is trivial, it suf-
fices to construct a one-dimensional wave packet by means of the momentum distribution
h(p1, p2, p+) = (2π)3δ(p1)δ(p2)h+(p+), which leads to

Φ(x) =
∫
dp+

2p+h+(p+)S[Ep(x)] , (2.64)

where h+ is taken as Gaussian distribution h+ ∝ e−p
2
z/2D2 with pz = (p2

+ −m2)/2p+, p⊥ = 0
and Gaussian width D = 0.05m. This construction provides a localized wave packet in the t –
z plane with a minimum Gaussian size at t = z = 0. The normalized wave packet is exhibited
in Figure 2.6 in the t – z plane. The laser pulse parameters are the same as for Figures 2.4
and 2.5. For comparison, the trajectory for a classical particle in a hyperbolic secant laser
pulse, projected to the t – z plane is given parametrically by

t(φ) = 1
ω?

[
φ+ a2

0
4 ∆φ tanh φ

∆φ

]
, z(φ) = − 1

ω?

a2
0

4 ∆φ tanh φ

∆φ (2.65)

for initial conditions z(0) = t(0) = 0. The centre of the wave packet follows the classical
trajectory, which shows the close correspondence between the classical trajectory solutions
and the Volkov wave functions. Note that ω?[t(φ) + z(φ)] = φ consistently holds for the
classical trajectory.

2.8 Momentum space properties
The Fourier transformation of the Volkov matrix Ep(x) is defined by

Ẽp(p′) =
∫
d4xe−ip

′ ·xEp(x) . (2.66)
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Employing the explicit form of Ep(x) given in (2.42), it can be shown that the Fourier
transform Ẽp(p′) has the following representation

Ẽp(p′) = (2π)4
∫
ds

2πδ(p
′ − p− sk)Ep(s) . (2.67)

Transforming Eq. (2.67) back to position space, the Volkov matrix Ep(x) can be written as a
superposition of plane waves

Ep(x) =
∫
ds

2π exp{−i(p+ sk) ·x}Ep(s) (2.68)

with the reduced Volkov matrices

Ep(s) = K0(s) + dp/k
[
/ε−K−(s) + /ε+K+(s)

]
. (2.69)

The functions Kn(s) are the occupation numbers of the different modes contributing to the
Volkov wave function. They are given by{

K0(s)
K±(s)

}
=
∫
dφ

{
1

g(φ)e∓i(φ+φ̂)

}
exp{isφ− ifp(φ)} . (2.70)

The variable s parametrizes the amount of longitudinal momentum which is exchanged
between the electron and the background field. Upon evaluating the integral in (2.67) the
value of s is related to p and p′ as s = (p′− − p−)/k−. It can be interpreted as a continuous
analogue to the number of exchanged laser photons [Ild11a]. For a spin-1

2 -particle, the
function K0(s) represents the scalar part (which is also relevant for spin-0 Klein-Gordon
particles), and K±1(s) correspond to the spin dynamics in the background field which can be
related to the tensor projection T µν [Ep].

Some caution is needed for the function K0, which is an infinite integral over a pure phase
as it contains no pulse shape function in the pre-exponential and is therefore numerically
non-convergent. Analytically, K0(s)→ 2πδ(s) holds if the background field is switched off
Aµ → 0, such that Ep(x)→ e−ip ·x. Using a suitable regularization [Boc09, Sei11b] a delta
distribution can be separated off the integral, corresponding to the free electron motion
outside of the laser pulse

K0(s) = 2πδ(s) + 1
s

∫
dφ

dfp
dφ

exp{isφ− ifp(φ)} ≡ 2πδ(s) + K R
0 (s) , (2.71)

with a now finite integral due to the derivative of fp appearing in the pre-exponential. This
makes apparent that this divergence is associated to the interaction with s = 0 laser photons,
i.e. zero energy exchange with the laser beam. Using this rewritten version of K0 in the
Fourier representation of the Volkov matrix functions Ep, one sees that

Ep(x) = e−ip ·x +
∫
ds

2πe
−i(p+sk) ·xERp (s) , (2.72)

where the first part stemming from the integration of the delta distribution produces indeed
a free plane electron wave. For the regularized reduced Volkov matrix ERp (s) it is understood
that K0(s)→ K R

0 (s) in the definition in Eq. (2.69).
In the limit of IPW background fields, i.e. for g → 1, the Floquet theorem [Flo83] applies

to the Volkov wave functions: Given a differential equation with periodic external source
with period 2π, the solution has the form

Ψp(φ) = e−iq ·xΦ(φ) , (2.73)
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Figure 2.7: In an IPW background field, the Volkov wave function is given by a superposi-
tion of discrete Zel’dovich levels (left figure). Strong-field QED processes can
be interpreted as transitions between Zel’dovich levels (right figure) [Löt08].

where Φ(φ+2π) = Φ(φ) is periodic with the same period as the source. The quasi-momentum
qµ = pµ + βpk

µ appears here in the spirit of the Floquet theorem. The Fourier-zero mode,
i.e. the non-periodic part of the non-linear phase fp, has been absorbed into the definition of
the quasi-momentum q to arrive at (2.73). In the IPW limit, the momentum distribution
functions (2.70) degenerate to a delta comb

Kn(s) g→1−−−→
∞∑

`=−∞
δ(s− `− βp)Kn(`, s) (2.74)

with support at discrete momentum values qµ+`kµ, where ` ∈ N. The coefficients Kn(`, s) are
related to generalized Bessel functions (see e.g. [Löt08, Löt09c]). The Volkov wave function
in an infinite plane wave appears as an infinite sum over discrete levels

Ep(x) =
∞∑

`=−∞
e−i(q+`k) ·xE IPW

p (`) (2.75)

with momentum q+ `k which are called Zel’dovich levels [Zel67], see Figure 2.7. Furthermore,
the level structure furnishes an easy interpretation of strong-field phenomena such as the
appearance of harmonics or resonant singularities in second-order strong-field scattering
processes (such as two-photon Compton scattering dealt within Chapter 4). Modifications of
this level structure due to radiative corrections have been calculated in [Bec76].

There is a major difference between an IPW and a PPW: The sum over the Zel’dovich
levels ` in Eq. (2.75) for an IPW is replaced by an integral in a PPW, i.e. in a pulsed
field, the amount of energy absorbed from the laser field is not an integer multiple of the
central laser frequency ω, as for an IPW, but can take any value as does the numbers of
photons s exchanged with the laser field. Furthermore, the quasi-momentum qµ which is
present for infinite plane waves does not play any role for pulsed laser fields. The build-up
of quasi-momentum is intrinsically related to the absorption of the Fourier-zero mode of
the non-linear phase fp into a redefinition of momentum, as discussed in Section 2.1 for the
equivalent in the classical theory.

The momentum space structure of the Volkov state in a PPW laser field is exhibited
in Figure 2.8, where the modulus of the function K+(s) is exhibited for different pulse
shapes. In certain cases the structure of the functions Kn(s) resembles broadened Zel’dovich
levels. Two mechanisms for the broadening of the levels appear: (1) short lasers have a
bandwidth ∝ 1/∆φ, where ∆φ is the pulse length parameter, due to Fourier’s theorem and
(2) a ponderomotive broadening happens, where a non-constant amplitude of the laser field
leads to a broadening of the levels. The ponderomotive broadening is a combined non-linear
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Figure 2.8: The momentum mode occupation number K+(s) of a Volkov state in a PPW
as a function of the photon number s for a box-shaped pulse (left panel) and
a Gaussian envelope (right panel). The structure of K+(s) for a PPW can be
interpreted as a broadening of Zel’dovich levels. The parameters are a0 = 1,
mγ = 50 GeV and θ = 2/γ.
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Figure 2.9: The energy along the classical trajectory of an electron in a short laser pulse
as a function of the laser phase φ (left panel) is compared to the momentum
mode occupation numbers K+(s) of the Volkov state in the same pulse (right
panel). The circularly polarized laser pulse has a Gaussian envelope with
pulse length ∆φ = 5, a0 = 1 and propagates along the negative z axis. The
asymptotic energy of the electron is p0 = 100m and the angle between the
electrons initial momentum and the z axis is θ = 1/γ. The right panel
corresponds to Figure 2.8 but with interchanged axes.

short-pulse effect. The width ∆s of a broadened Zel’dovich level due to the ponderomotive
broadening effect (2) is βp. Individual levels can be resolved as long as the combined effect of
(1) and (2) is smaller than the level spacing, i.e. for |1/∆φ|+ |βp| < 1. In most cases, however,
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the parameter βp will be larger than unity such that the individual levels overlap, forming a
continuous distribution with irregular peak structure. In Figure 2.8, the parameters are tuned
to special values so that the individual broadened levels can be resolved. In the left panel of
Figure 2.8, the pulse has a box-shaped envelope g(φ) = u(φ) [see Eq. (A.34) in Appendix A.3]
with constant amplitude and ∆φ = 30 such that there is no ponderomotive broadening in
this case. The small side peaks are due to the non-smoothness of the pulse envelope. The
width of the main peaks is ∆s ∝ 1/∆φ ≈ 1/30, indicated by grey shaded areas.11 In the
right panel of Figure 2.8, a Gaussian envelope g(φ) = exp{−φ2/2∆φ2} with the same pule
length ∆φ = 30 was used. In addition to the broadening due to the frequency bandwidth in
a pulse, the ponderomotive broadening is relevant here with parameters adjusted such that
βp = 0.42 and the total width of the levels is ∆s ' 0.45. The broadened Zel’dovich levels are
indicated as grey shaded areas in both panels of Figure 2.8.

The momentum mode occupation numbers Kn(s) of a Volkov state describing the electron
propagation in a laser pulse have a close relation to the properties of the classical trajectory
of an electron in the same laser pulse. It is known that the lowest and highest possible
values of the energy E along the classical trajectory determine the lowest and highest possible
values of s beyond which the functions Kn(s) drop to zero exponentially fast [Löt08, Löt09c].
The relation between photon number s and energy E is given by E = p0 + sω, where
p0 = mγ denotes the asymptotic energy, i.e. the initial value for E(φ) outside of the laser
pulse, p0 = E(−∞). The energy along a classical trajectory is exhibited in the left panel of
Figure 2.9 and compared to the Volkov state occupation numbers K+(s) in the right panel.
The minimum and maximum energy along the trajectory are indicated by red solid lines. It
is found that in a smooth laser pulse, also the local minima and maxima of the energy E(φ)
that appear during the course of the pulse lead to pronounced structures in the Volkov state
occupation numbers, e.g. in K+(s). These local extremal points are depicted by red dashed
lines in Figure 2.9.

This result concludes the study of the Volkov wave functions, which will be used in the
following chapters as initial and final state wave functions to calculate S matrix elements for
non-linear one-photon and two-photon Compton scattering in intense and short laser pulses.

2.9 The laser-dressed Green’s function
Similar to the Lippmann-Schwinger equation (2.56) for the Volkov states, there exists a
Dyson-Schwinger equation for the laser dressed electron propagator

G(x, y|A) = G0(x− y) +
∫
d4zG0(x− z)e /A(z)G(z, x|A) , (2.76)

where Aµ is the plane wave laser background field and G0 is the free electron propagator.
The solution G(x, y|A), which includes the interaction with the laser field non-perturbatively
to all orders, is called Dirac-Volkov propagator. Several different representations of G(x, y|A)
propagator are known, see e.g. [Ebe66, Bro64, Kib75, Băı75, Băı76, Mit75, Rit85]. For the
calculation of tree level amplitudes the representation [Rit85]

G(x, x′|A) =
∫

d4P

(2π)4EP (x)G0(P )ĒP (x′) . (2.77)

with the Volkov matrix functions Ep is most suitable and will be used throughout this thesis.
The limit of a vanishing laser field, Aµ → 0, gives the correct free electron propagator in

11Note that in a box-shaped pulse the main peaks are located at positions corresponding to the quasi-
momentum q.
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coordinate representation as the Fourier transformation

G0(x− x′) =
∫

d4P

(2π)4G0(P )e−iP · (x−x′) (2.78)

due to the weak-field limit of the Volkov matrix functions Ep(x)→ e−ip ·x.
The properties of the propagator (2.77) are determined to a large extent by the plane-wave

background field. Since the background field depends only on the light-front variable φ, one
singles out the corresponding light-front integrals when calculating the Fourier transform
of (2.77) or S matrix elements where one has to integrate over d4x at each vertex (see
Chapter 4 for the application to two-photon Compton scattering). The Fourier transform of
the propagator is defined by12

G(p, p′|A) =
∫

d4P

(2π)4d
4xd4x′eip ·xEP (x)G0(P )ĒP (x′)e−ip′ ·x′ . (2.79)

Using the spectral representation of the Volkov matrices, which explicitly emphasizes the
dependence on the light-front coordinate φ,

Ep(x) =
∫
dsdφ

2π e−i(p+sk) ·x+isφΩp(φ) , (2.80)

Ωp(φ) =
(

1 + e

2k · p
/k /A(φ)

)
e−ifp(φ) . (2.81)

one arrives at the intermediate result13

G(p, p′|A) = (2π)2
∫
dsds′dφdφ′δ4(p′ − p− s′k)eis(φ−φ′)e−is′φ′

× Ωp(φ)G0(p− sk)Ω̄p(φ′) (2.82)

= (2π)2
∫
dsds′dφdφ′δ4(p′ − p− s′k)eis(φ−φ′)e−is′φ′

×
Ωp(φ)[/p− s/k +m]Ω̄p(φ′)

(p− sk)2 −m2 + i0+ , (2.83)

where only light-front integrals remain and all trivial transverse integrations have been carried
out. Thus, the plane-wave background singles out the light-front momentum integrals over the
propagator momentum instead of the usual time component in the instant time formulation
of field theory. The integral over s′ is trivial due to the δ distribution, but the integral over
s has to be taken carefully. Since k is a light-like momentum with k2 = 0, the propagator
denominator is linear in s:

1
(p− sk)2 −m2 + i0+ = − 1

2k · p
1

s− s0 − i0+
s

= − 1
k−p+

1
s− s0 − i0+

s
(2.84)

with the definitions of the pole position s0 = (p2 − m2)/(2k · p) and the infinitesimal
0+
s = sign(k · p)0+. The position of the single first-order propagator pole s = s0 + i0+

s

in the complex s plane depends on the sign of k · p = p+k−/2.14 The two possibilities corre-
spond to the propagation of particles (for p+ > 0) and antiparticles (for p+ < 0), which are

12Note the sign convention for p′ and p corresponding to incoming and outgoing momenta, respectively.
13It can be shown easily by a direct calculation that Ωp−sk(φ) = Ωp(φ) since Ωp depends only on the

components p+ and p⊥.
14Note that k− = 2ω > 0 is the only non-vanishing component of the light-like laser four-momentum k with

k2 = k+k− − k2
⊥ = 0.
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Figure 2.10: Contour integration over the pole structure of the Dirac Volkov propagator,
introducing an ordering in the laser phase.

both described by the same propagator pole. This is different as compared to the usual instant
time formalism where propagators possess two distinct poles which describe the propagation
of particles and antiparticles on the positive and negative mass shells p0 = ±

√
p2 +m2. Here,

the two contributions from particles and antiparticles from the same propagator pole are
separated by a divergence at p+ = 0 in the prefactor of the s integral [Hei07]. Taking into
account also the s dependence numerator of (2.83) one sees that, in contrast to the the instant
time formulation, the integrand does not go to zero as s→∞. Before performing the pole
integration one has to transform the integrand according to

/p− s/k +m

s− s0 − i0+
s

= /p− s0/k +m

s− s0 − i0+
s
− /k , (2.85)

giving rise to the decomposition of the propagator G = GT + GZ. The last term is the
instantaneous zero-mode propagator

GZ(p, p′|A) = (2π)3 1
2k · p

∫
ds′δ4(p′ − p− s′k)

∫
dφe−is

′φΩp(φ)/kΩ̄p(φ) . (2.86)

The integration over s in the first term of (2.85) is done by employing the residue theorem
after closing the contour in the appropriate upper or lower half of the complex s plane,
depending on the sign of φ′ − φ, such that the contribution from the arc at infinity vanishes
(see Figure 2.10). The result reads∫

ds
eis(φ−φ

′)

s− s0 − i0+
s

= 2πi
[
Θ(k · p)Θ(φ− φ′)−Θ(−k · p)Θ(φ′ − φ)

]
ei(s0+i0+

s )(φ−φ′) .

(2.87)

The contour integration introduced a light-front time ordering in the variables φ and φ′,
depending on the sign of p+. Thus, modes with p+ < 0 are propagated backwards in time.
The time ordered part of the propagator reads

GT(p, p′|A) = −(2π)3 i

2k · p

∫
ds′δ4(p′ − p− s′k)

×
∫
dΦe−is′φ′ei(s0+i0+

s )(φ−φ′)Ωp(φ)(/p − s0/k + m)Ω̄p(φ′) (2.88)



36 2 The theory of strong-field QED

with the integration measure dΦ = dφdφ′[Θ(k · p)Θ(φ− φ′)−Θ(−k · p)Θ(φ′ − φ)].
It is instructive to extract the free field limit of these expressions. In the limit Aµ → 0,

one has Ωp → 1, thus

G0,Z(p, p′) =(2π)4δ4(p′ − p)
/k

2k · p , (2.89)

G0,T(p, p′) =(2π)4δ4(p′ − p) /p− s0/k +m

p2 −m2 + i0+ . (2.90)

The combined result is

G0(p, p′) = (2π)4δ(p− p′) /p+m

p2 −m2 + i0+ , (2.91)

which is the correct free electron propagator.
To calculate the Dirac-Volkov propagator in an IPW laser field, g → 1, in momentum

space (2.79), one utilizes the periodicity of the oscillating parts of the non-linear phase
exponential, which allows to write the Volkov matrix functions Ep(x) as a discrete sum (2.75).
Hence, with the quasi-momentum Q = P + βPk,

GIPW(p, p′|A) =
∞∑

n,`=−∞

∫
d4xd4y

d4P

(2π)4 e
i(p−Q−`k) ·xe−i(p′−Q−nk) ·x′

× E IPW
P (`)G0(P )Ē IPW

P (n) . (2.92)

The spacetime and momentum integrations provide the momentum conservation delta distri-
bution and fix the propagator momentum P = q− `k. As result, the Dirac-Volkov propagator
in an IPW laser field reads

G(p, p′|A) = (2π)4
∞∑

n,`=−∞
δ4(p− p′ − nk)

E IPW
p (`)(/p− `/k − βp/k +m)Ē IPW

p (n− `)
(q − `k)2 −m2

? + i0+

(2.93)

with q = p+ βpk. Note the equality (p− `k − βpk)2 −m2 = (p− `k + βpk)2 −m2
?.

In an IPW laser field, the Dirac-Volkov propagator has an infinite series of poles in the
complex q− plane below (above) the real axis for p+ > 0 (p+ < 0), with the pole positions
given by (q − `k)2 −m2

?, which yields the dispersion relations q− = (p2
⊥ +m2

?)/p+ + `k− for
the various values of ` ∈ N. In contrast, in a PPW laser field there is always only a single
pole at the free particle dispersion relation, p− = (p2

⊥ +m2)/p+. The pole structure of the
Fourier transformed propagator is strongly related to the Zel’dovich quasi-levels [Bec76]. The
poles lead to the appearance of Oleinik resonance singularities in second-order strong-field
processes. In the case of a finite PPW, instead of poles the Dirac-Volkov propagator has a
resonance behaviour in the vicinity of the IPW poles.
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Chapter 3

One-photon Compton scattering

The physical situation which is described here is the collision of a relativistic electron with
a strong and short laser pulse. The electron e with momentum p interacts with the
photons in the laser pulse and emits a single photon γ with momentum k′ in the reaction

e(p) + laser→ e(p′) + laser + γ(k′) , (3.1)

where in line with the assumption of a strong laser pulse described as a background field, the
laser pulse is considered to be the same in the initial and final state. The strength of the
laser pulse is characterized by the invariant laser strength parameter a0. Strong laser fields
imply that a0 is of the order of unity or larger. In this regime, the interaction is inherently
a multi-photon process, i.e. the electron interacts with many photons of the laser pulse
simultaneously. The interaction of the electrons with the laser is treated exactly on the tree
level and non-perturbatively by adopting the Furry picture and working with Volkov states
which were discussed in Chapter 2. In the language of dressed electrons, the one-photon
Compton process is the decay of a laser dressed electron state eV as

eV (p)→ eV (p′) + γ(k′) . (3.2)

The Feynman diagram corresponding to this reaction is exhibited in Figure 3.1, where the
Volkov electron states are depicted as double lines. In the literature, this process is also
denoted as non-linear Compton scattering, high-intensity Compton scattering (HICS) or
multi-photon Compton scattering. In this thesis, the notion one-photon Compton scattering
will be the preferred wording to make the contrast to the two-photon Compton process, where
two photons are emitted simultaneously. The two-photon Compton process is discussed in
Chapter 4.

3.1 Introductory remarks
Present day high-intensity lasers are mostly short pulse lasers with pulse lengths of a few
femtoseconds or tens of femtoseconds. For optical lasers with a wavelength of λ = 800 nm,
i.e. a laser frequency of ω = 1.55 eV, this corresponds to a dimensionless pulse length on the
order of ∆φ = 1 . . . 50. Presently, values of a0 up to a0 = 100 [Yan08] can be achieved in
an experiment by a suitable focusing of the laser. With the prospect of the upcoming laser
facilities, such as ELI, one can expect that the achievable peak value of a0 will increase in
the near future.
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p p′

k′

Figure 3.1: The Feynman diagram for non-linear one-photon Compton scattering. In
strong-field QED, the one-photon Compton scattering appears as the decay of
a laser dressed Volkov electron state (straight double lines) with momentum p
into another laser dressed electron with momentum p′ while emitting a photon
(wavy line) with momentum k′. This process is of first order in perturbation
theory (above the interaction with the background field).

The transition to the classical Thomson limit is obtained when the parameter %, as defined
in Eq. (1.11), which is the laser frequency measured in the rest frame of the electron in units
of the electron mass m, is much smaller than unity. Hence, quantum effects scale with the
parameter % in the case of a0 � 1. In the opposite case of a0 � 1, non-linear quantum effects
have been shown to scale with the parameter [Rit85]

χp = e

m3

√
(Fµνpν)2 . (3.3)

Non-linear, strong-field quantum effects are supposed to become important as χp ∼ 1
approaches unity. These three parameters are related as χp = a0% [Hei10b].

Thus, the non-linear quantum effects where χp ∼ 1 can be reached in various ways. Either
a multi-GeV electron beam with % ∼ 1 is brought into collision with an optical high-intensity
laser with a0 ∼ 1. This scenario was exploited in the SLAC E-144 experiment, where % = 0.82,
a0 = 0.45 such that χp = 0.37 [Bam99].1 The FACET project [FAC] at SLAC envisages
investigations with electron beams with energies of 20 GeV, where the non-linear quantum
regime χp ∼ 1 could be achieved with a value of a0 ∼ 4. Nowadays, various lasers are available
with a0 � 1, such that the non-linear quantum regime χp ∼ 1 can be achieved already with
much lower electron energies. For instance, with 1 GeV laser accelerated electrons [Lee06] it
is possible to reach the non-linear quantum regime with a value of a0 ∼ 100 [Yan08]. However,
not only the regime χp ∼ 1 is interesting, but also χp � 1 and a0 & 1 provides interesting
physics, considering the impact of short pulse effects on the non-linear Compton spectra. The
operation of high-power lasers with high repetition rate allows for a paradigm shift in the
strong-field experiments: It becomes possible to perform high-precision and high-statistics
experiments with this new generation of lasers in combination with suitable electron sources,
which could either be classical electron accelerators or laser accelerated electrons. Higher
precision can be achieved by employing a weaker focusing such that the spatial volume where
the intensity reaches the non-linear regime is very large. In such a set-up, the field invariants
related to field gradients are much smaller and the validity of the assumption of null-fields,
i.e. the vanishing of all field invariants will be a much better description for these experiments
according to (1.9).

3.2 Calculation of the matrix element
The interaction of a laser dressed electron with photon modes different from the laser field are
treated by perturbative S matrix expansion. In particular for one-photon emission, the Born

1The values presented here differ by the values given in the reference by a factor of
√

2 which is related to
the fact that in [Bam99] averaged values are employed while peak values are used in this thesis.
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approximation of the matrix element is depicted in Figure 3.1. Within the Furry picture,
this process describes the decay of a quasi-particle Volkov electron. The scattering nature
of the process is highlighted when the quasi-particle states are expanded in powers of the
background field and free electron states (see Appendix C.1). Using the Feynman rules of
strong-field QED in the Furry picture from Section 2.3 (cf. also [Mit75]), the S matrix element
for this process is given by

S = 〈p′r′;k′λ′|Ŝ[A]|pr〉 = −ie
∫
d4x Ψ̄p′,r′(x)eik′ ·x/ε′∗(λ′)Ψp,r(x) , (3.4)

where electron spin (r, r′) and photon polarization indices (λ′) are suppressed from now on.
The integral expression on the right hand side can also be deduced from the matrix element
S = 〈p′r′;k′, λ′|Ŝ[A]|pr〉 via the reduction method presented in Appendix A.7. Since the
Volkov states have a privileged dependence on the laser phase φ via the background field
Aµ(φ), the spatial integrations are conveniently performed in light-front coordinates with
d4x = dφ dx−d2x⊥/k− yielding with the representation (2.42) of the Volkov wave functions

S = −ie
∫
d4x ūp′Γ̄p′(φ)/ε′∗Γp(φ)up exp{iSp(φ)− iSp′(φ) + ik′ ·x} (3.5)

= −ie 1
k−

∫
dφd2x⊥dx− ūp′Γ̄p′(φ)/ε′∗Γp(φ)up exp{i(k′ + p′ − p) ·x− if(φ)} (3.6)

with the non-linear phase exponent f = fp − fp′ which reads

f(φ) = Re

α− φ∫
0

dφ′g(φ′)ei(φ′+φ̂)

+ β cos 2ξ
φ∫

0

dφ′g2(φ′) cos 2(φ′ + φ̂)

+ β

φ∫
0

dφ′g2(φ′) , (3.7)

having defined the coefficients

αi = αp,i − αp′,i = ma0

(
εi · p
k · p

− εi · p′

k · p′
)
, i ∈ {1, 2,+,−} , (3.8)

β = βp − βp′ = m2a2
0

4

( 1
k · p
− 1
k · p′

)
. (3.9)

In a situation, where ultrarelativistic electrons are scattered off a counterpropagating laser
pulse, these parameters are of the order of αi ∼ a0 and β ∼ a2

0. The first line in (3.7)
collects all oscillating parts of the non-linear phase exponent, which will be denoted as f̃
in the following, and the second line is denoted as ponderomotive part with the definition
βG2 = β

∫
dφg2(φ) for later use. The ponderomotive part depends only on the time scale of

the pulse envelope, which is given by the pulse length parameter ∆φ; it does neither depend
on the polarization of the carrier wave ξ nor on the carrier envelope phase φ̂, as does the
oscillating part f̃(φ). For the precise definitions of ξ and φ̂ see Appendix A.3. The first term
in the first line of (3.7) can be evaluated as

Re

α− φ∫
0

dφ′g(φ′)ei(φ′+φ̂)


= α1 cos ξ

φ∫
0

dφ′g(φ′) cos(φ′ + φ̂) + α2 sin ξ
φ∫

0

dφ′g(φ′) sin(φ′ + φ̂) . (3.10)
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Picking up the idea of the phase shift of the Volkov wave functions when going from φ = −∞
to φ =∞ from Chapter 2, one sees that the non-linear Compton matrix element accumulates
a phase shift ∆f = f(∞)−f(−∞) = ∆fp−∆fp′ , which is the difference of the phase shifts of
the incoming and outgoing electron wave functions, where possible large contributions of ∆fp
and ∆fp′ may cancel. The same happens for the parameters αi and β, where the possibly large
contributions from the Volkov wave functions αi,p, αi,p′ ∼ a0m/ω? and βp, βp′ ∼ a2

0m/ω?
cancel to yield the order of magnitude estimate αi ∼ a0s and β ∼ a2

0s (for the definition of s
see below). The dependence of the S matrix in Eq. (3.6) on the spatial coordinates x1, x2

and x− is trivial and the corresponding integrations can be done immediately, yielding delta
distributions which represent the conservation of the p⊥ and p+ components of momentum
via ∫

dx−d2x⊥ei
x−
2 (p′++k′+−p+)e−ix

⊥ · (p′⊥+k′⊥−p⊥)

= 2(2π)3δ2(p⊥ − p′⊥ − k′⊥)δ(p+ − p′+ − k′+)
≡ 2(2π)3δ3(p− p′ − k′) , (3.11)

where p ≡ (p+,p) is an abbreviation for the three transverse momentum components with
respect to the laser four-vector kµ. The remaining integration over the laser phase φ in

S = −ie(2π)3δ3(p− p′ − k′) 2
k−

∫
dφ exp{isφ− if(φ)}

{
T0

+g(φ) ei(φ+φ̂)T− + g(φ) e−i(φ+φ̂)T+ + g2(φ)
[
1 + cos 2ξ cos 2(φ+ φ̂)

]
T2
}

(3.12)

can not be done analytically in general due to the non-linearities in the exponent. To arrive
at (3.12), the electron current factors Tn have been introduced:

T0 = ūp′/ε
′∗up , (3.13)

T± = ūp′
(
dp′/ε±/k/ε

′∗ + dp/ε
′∗/k/ε±

)
up , (3.14)

T2 = 4(k · ε′∗)dpdp′ ūp′/kup , (3.15)

with dp = ma0/(4 k · p) and dp′ = ma0/(4 k · p′). Without the non-linear φ dependence in
f(φ), Eq. (3.12) would contain the Fourier transforms of the pulse envelope g and g2 where
the conjugate variable to the phase φ is s defined by

s ≡ k′− + p′− − p−

k−
= k′ · p
k · p′

. (3.16)

The last equality shows that s is a Lorentz invariant quantity. It might be interpreted
as a continuous number of absorbed photons from the laser pulse, as advocated e.g. in
[Sei11b, Ild11a]. The reasoning is based on the fact that the energy-momentum conservation
can be written compactly in the suggestive form

p+ sk = p′ + k′. (3.17)

Alongside this interpretation in terms of photons, s is the value of exchanged momentum
between the electron current and the background laser field Aµ in units of the central laser
momentum k. Since the frequency ω′ of the emitted photon has to be positive, also s has
to be positive. The condition ω′ = 0 would imply s = 0, i.e. the physical phase space is
restricted to s > 0 or ω′ > 0. The relation between ω′ and s is

ω′(s) = sk · p
(p+ sk) ·n′ , (3.18)
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where k′ = ω′n′ with n′ = (1, cosϕ sin θ, sinϕ sin θ, cos θ). This means, either s or ω′ can be
considered as independent variable, fixing the other one as ω′ = ω′(s) or s = s(ω′). In either
way the number of degrees of freedom of the final state phase space is three, often chosen to
be the two angles θ, ϕ defining the direction of n′ and either ω′ or s. In this thesis, ω′ will be
considered as the independent variable whenever possible since it is directly observable, while
s is not. With the additional definitions of the phase integrals

A0(s)
A±(s)
A2(s)

 =
∞∫
−∞

dφ exp{isφ− if(φ)}


1

g(φ)e∓i(φ+φ̂)

g2(φ)
[
1 + cos 2ξ cos 2(φ+ φ̂)

]
 , (3.19)

the S matrix element can be written as

S = −ie(2π)3 2
k−

δ3(k′ + p′ − p)M (s) (3.20)

with the amplitude

M (s) = T0A0(s) + T+A+(s) + T−A−(s) + T2A2(s) . (3.21)

What was accomplished by now is that the complete dependence on the laser pulse has
been included into the phase integrals An(s) which have been separated from the electron
current terms Tn. The integrands of the phase integrals are scalar functions. All Dirac matrix
structures have been extracted from the integrals. The evaluation of the phase integrals An(s)
is the challenging part of the calculation of strong-field processes. While for IPW there do
exist expansions of these integrals in terms of (generalized) Bessel functions (see Eq. (C.18)
in Appendix C.2), the situation is not so clear for general PPW. In this thesis, several
complementary methods are presented for the evaluation of these integrals, including a direct
numerical integration (Section 3.4), expansions into harmonics similar to IPW (Section 3.9)
picking up ideas of [Nar96b], completely analytic evaluations in terms of sums of special
functions for certain pulse envelopes (Section 3.11), and an approximative evaluation for
a0 � 1 using a stationary phase approximation (Section 3.12).

The representation (3.20) furnishes a proper starting point for such analytical, approxima-
tive or numerical calculations. The integrals A+,−,2(s) are numerically convergent due to the
presence of the pulse envelope function in the pre-exponential. The integral A0(s), however, is
an infinite integral over a pure phase and diverges. Hence, it must be regularized. A possible
method has been proposed in [Boc09], where one multiplies the integrand with a convergence
factor e−ε|φ|, ε > 0, and performs an integration by parts. The result, corresponding to
adiabatically switching on and off the external field, is

A0(s) = 2πδ(s) + 1
s

∞∫
−∞

dφ
df

dφ
exp{isφ− if(φ)}. (3.22)

The divergence has been extracted as a delta distribution yielding a divergence at ω′ = 0. As
for the Volkov wave function, the contribution ∝ δ(s) is related to the free motion outside
the laser pulse. The condition s = 0 means interaction with zero laser photons, i.e. no energy
exchange but is excluded from the physical phase space as discussed above. The second part
of (3.22) containing the derivative of f is convergent. It can be shown that the derivative
df/dφ vanishes as s → 0 such that s−1df/dφ < ∞ in that limit. A different, physically
motivated procedure to find a regularized version of A0(s) is to rely on gauge invariance,
as proposed in [Ild11b]. Performing a gauge transformation ε′µ → ε′µ + Λk′µ of the matrix
element M (s) with an arbitrary gauge parameter Λ, one finds the matrix element M (s) to
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be gauge invariant if and only if the different phase integrals An(s) fulfil the relation (the
details of the calculation can be found in Appendix D.1)

sA0(s) = 1
2α+A+(s) + 1

2α−A−(s) + βA2(s) . (3.23)

Upon evaluating the derivative df/dφ in the integral in (3.22), it can be shown that (3.22) is
equivalent to (3.23) as the singular term does not appear there, since sδ(s) = 0. Both results
coincide on the physical phase space for s > 0. The regularized version (3.23) of A0 will be
used in the subsequent numeric calculations. Using the Fourier representation of the Volkov
states (2.69), one can find additional representations of the phase integrals An by

A0 = K ∗
0 ?K0 ,

A± = K ∗
0 ?K± = K ∗

∓ ?K0 ,

A2 = K ∗
± ?K± + 1

2 cos 2ξ(K ∗
∓ ?K±) , (3.24)

with Kn(s) from (2.70) and the convolution integral

K ∗
n ?Km ≡

∫
d`

2πK ∗
n (`)Km(`+ s) . (3.25)

This representation of the phase integrals furnishes an interpretation of the Compton amplitude
as the overlap of incoming and outgoing Volkov wave functions in momentum space, which
can be considered as the generalization of the transitions between Zel’dovich quasi-levels
[Zel67] to the case of pulsed laser fields.

It is instructive to consider the limit of weak laser fields, for which a0 � 1. To obtain the
weak-field limit of the S matrix element one has to expand the amplitude M (s) into a series
in powers of a0, keeping only the leading terms of order a0. Counting the powers of a0 in the
different terms of M ,

M = A+(s)
[
T+ + α+

2s T0

]
+ A−(s)

[
T− + α−

2s T0

]
+ A2(s)

[
T2 + β

s
T0

]
, (3.26)

one recognizes that s,T0 ∝ a0
0, αi,T± ∝ a0 and β,T2 ∝ a2

0, thus, the terms ∝ A2(s) do not
contribute in the weak-field limit. Furthermore, the expression in the brackets are of order a1

0
such that in the lowest non-vanishing order the integrals A± need to be expanded up to the
order a0

0, yielding

A±(s) a0→0→ e∓iφ̂
∞∫
−∞

dφg(φ)ei(s∓1)φ ≡ e∓iφ̂Ã (s∓ 1) , (3.27)

the (shifted) Fourier transform of the pulse envelope. The weak-field approximation of the
non-linear Compton amplitude reads

M (s) = Ã (s− 1)
[
T+ + α+

2s T0

]
e−iφ̂ . (3.28)

The term associated to Ã (s+ 1) is maximal for s = −1 and corresponds to the emission of
one photon into the laser mode alongside the emission of the photon k′ without the absorption
of photons from the laser. This term does not contribute to the S matrix for weak laser fields.

A more systematic discussion of the weak-field limit is presented in Appendix C.1, where
the Lippmann-Schwinger equation (2.56) is used to find the general expansion of the Volkov
states in powers of a0. Higher order terms are discussed, and it is shown there, that
the weak-field limit of the non-linear one-photon Compton S matrix coincides with the
usual perturbative S matrix for Compton scattering which is presented in many textbooks,
e.g. [Itz80] under the notion of Klein-Nishina formula.
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3.3 Emission probability, energy spectrum and cross section
In the standard formalism, scattering experiments are thought of as constant streams of
particles interacting. When calculating emission probabilities, one has to square the S matrix
which contains a divergent factor corresponding to the square of the energy momentum
conservation and which is interpreted as the volume of spacetime V T as2

[(2π)4δ4(Pi − Pf )]2 = (2π)8δ4(Pi − Pf )δ4(0)→ (2π)4V Tδ(Pi − Pf ) . (3.29)

On the purpose of rendering this quantity finite, usually the differential rate dẆ ∝ |S|2/T ,
being the reaction probability per unit time, is considered.

When considering finite laser pulses, the interaction is happening only within a finite
(light-front) time interval. Thus, the (differential) reaction probability is a finite number and
there is no need for the definition of a rate. On the formal level, the square of the S matrix
gives the expression

|S|2 = (2π)3e2δ3(p′ + k′ − p) (2π)3δ3(0)
( 2
k−

)2
|M (s)|2 , (3.30)

with the light-front delta distribution δ3(0). Thus, one defines the differential emission
probability of photons per incoming electron and per laser pulse, also termed as photon yield,
by

dW = 1
2p+ |S|

2dΠ . (3.31)

The Lorentz invariant phase space element of the final particle states is given by

dΠ = d3p′
(2π)32p′+

d3k′

(2π)32ω′ . (3.32)

For the electron with momentum p′ in the exit channel, the on-shell light-front phase space
element has been used for convenience since it integrates the light-front delta distribution
easily. In (3.31) the prefactor 1/2p+ has to be used instead of the canonical 1/2p0 [Itz80] to
cancel all factors of volume from the final expression for the emission probability to obtain a
Lorentz invariant expression for the emission probability since (2π)3δ3(0) = V p0/p+ [Rit85].
The factor p0/p+ varies between 1 for γ = 1 and 1/2 for γ → ∞. In [Mac09] it is argued
that the factor p0/p+ is needed to compensate for an overestimation of the interaction time
if the usual normalization is employed. This, however, is just a reformulation of the above
statement of Lorentz invariance. The differential emission probability is given by

d2W (r, r′, λ′)
dω′dΩ = e2ω′

64π3k · pk · p′
|M (s; r, r′, λ′)|2 , (3.33)

noting the electron spin and photon polarization indices explicitly now. Averaging over the
spin of the incoming electron and summing over the spin of the outgoing electron and the
polarization of the outgoing photon yields

d2W

dω′dΩ = 1
2

∑
r,r′=↑,↓

∑
λ′

d2W (r, r′, λ′)
dω′dΩ . (3.34)

2Note that the spatial quantization volume V is in general set to unity and noted explicitly only here.
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Here, the emission probability is differential in the emitted photon energy ω′. Going over to
the dimensionless variable s as defined in (3.16) and by noting that the differential transforms
as

dω′ = ω′

s

k · p′

k · p
ds , (3.35)

one may cast the emission probability into the form depending on s explicitly

d2W

dsdΩ = e2ω′(s)
64π3(k · p)2s

|M (s)|2 , (3.36)

and similar for the spin and polarization averaged probability.
The differential energy spectrum dI, i.e. the emitted energy per solid angle and frequency

interval, is related to the emission probability by

dI

dω′dΩ = ω′
dW

dω′dΩ = e2ω′2

64π3k · pk · p′
|M (s)|2 . (3.37)

To arrive at an invariant cross section, one has to divide Eq. (3.34) by the normalized
integrated flux of photons N⊥ (cf. Appendix A.3 for the exact definition) in the laser pulse,

d2σ

dω′dΩ = 1
N⊥

d2W

dω′dΩ . (3.38)

The quantity N⊥ can be related to an invariant effective phase interval ∆φeff , which is defined
in (A.44), as

N⊥ = a2
0m

2

2e2 ∆φeff , (3.39)

showing that N⊥ has the correct physical dimension of an inverse area. In general, the
effective phase interval ∆φeff(g, g′, ξ, φ̂), depends on the envelope g, its derivative g′, the laser
polarization ξ and the carrier envelope phase φ̂. For long pulses with ∆φ� 1, a suitable and
fairly accurate approximation is (See also the discussion in Appendix A.3 and Figure A.1
therein; for practical purposes ∆φ ≥ 5 is sufficient.)

∆φeff =
∞∫
−∞

dφg(φ)2 . (3.40)

Thus, the carrier envelope phase and polarization dependence of ∆φeff reveals itself only in
the limit of very short pulses. If the effective pulse length can be approximated by (3.40), then
∆φeff = ν2[g]∆φ, where ν2[g] is a pulse shape dependent quantity. Explicit values for ν2[g] for
various pulse shapes used in this thesis are summarized in Table A.1 in Appendix A.3. The
definition of the cross section (3.38) corresponds to a normalization on the same amount of
energy in the laser pulse per unit transverse area. Using this definition, the total cross section
is independent of both the pulse shape function g and the pulse length ∆φ supposed the
condition ∆φ� 1 is fulfilled.3 This has been checked numerically for a0 � 1 by a comparison
of

dσ

dΩ =
∫
dω′

d2σ

dω′dΩ (3.41)

3A different definition of the cross section without this property has been employed in [Boc09].
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Figure 3.2: The total cross section for Compton scattering normalized to the Thomson
cross section σT . Red curve: Klein-Nishina cross section. Symbols: numer-
ically calculated cross section in a pulsed laser field with a0 = 0.001 (blue
stars: ∆φ = 20 for a hyperbolic secant pulse; green circles: ∆φ = 30 for a
Gaussian pulse; black diamonds: ∆φ = 100 for a Gaussian pulse).

with the differential Klein-Nishina cross section [Ber80], or

σ =
∫
dΩ dσ

dΩ (3.42)

with the total Klein-Nishina cross section. In particular, in the low energy limit the total
Thomson cross section σT = 665.25 mb is obtained accurately, as exhibited in Figure 3.2 for
different pulse shapes and pulse lengths.

3.4 Systematic numerical study of non-linear short pulse effects
After these formal developments, the focus will now turn to physics issues. As mentioned in
the introductory remarks of this chapter, the experimental situation to be addressed is the
collision of an ultrarelativistic electron with a counterpropagating laser pulse. (By a suitable
Lorentz transformation this special kinematic situation of head-on collisions can be achieved.)
The electron is characterized by the four-momentum pµ with the energy p0 = mγ and the
relativistic Lorentz factor γ. Alternatively, the electron energy can be formulated in terms of
the rapidity ζ with γ = cosh ζ. Ultrarelativistic electrons have γ, ζ � 1. To determine the
photon emission probability explicitly, one has to evaluate the phase integrals An(s) defined
in Eq. (3.19). One particular strategy involves a direct numerical integration of the An(s),
where an adaptive Simpson integration method is used. Explicit representations of the Dirac
spinors up and ūp′ [for details see Eqs. (A.75) and (A.76] in Appendix A.5) as well as of all
four-vectors are implemented numerically for the Dirac current factors Tn. The polarization
vectors for the outgoing photon are taken as ε′µ(1) = (0, cos θ cosϕ, cos θ sinϕ,− sin θ) and
ε′µ(2) = (0,− sinϕ, cosϕ, 0). The momentum four-vector of the outgoing photon is k′ = ω′n′

with the frequency ω′ and n′µ = (1,n′) with the unit vector n′ = (sin θ cosϕ, sin θ sinϕ, cos θ).
Thus, the transversality condition k′ · ε′(1,2) = 0 is implemented explicitly. The laser four-vector
is kµ = ωn with nµ = (1, 0, 0,−1).

Frequency spectra
In Figure 3.3, the differential emission probability, averaged/summed over the electron spin
and the outgoing photon polarization, is exhibited for laser amplitudes a0 = 1 and a0 = 2
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and pulse duration ∆φ = 20 and ∆φ = 50 for a circularly polarized laser pulse with ξ = π/4
and carrier envelope phase φ̂ = 0 as blue curves. The pulse envelope is taken as a hyperbolic
secant, g(φ) = cosh−1 φ/∆φ. The pulse lengths correspond to Teff = 17 fs (Teff = 42 fs) for
∆φ = 20 (∆φ = 50) and a laser frequency of ω = 1.55 eV. The electron collides head-on
with the laser pulse, and the emitted photon is considered to be emitted on-axis, i.e. in
the backscattering direction θ = 0. The primary electron energy is 40 MeV, which can be
achieved with the superconducting electron linear accelerator ELBE at the HZDR [ELB].
Thus, the situation considered here corresponds to a set-up experimentally accessible at
the HZDR using electrons from ELBE in combination with one of the high intensity lasers
(DRACO [Deb09], PEnELOPE [PEN]).

In addition to the emission probability in a pulsed laser field, which is depicted in Figure 3.3
as blue curves, the full vertical red lines denote the intensity dependent non-linear Compton
edges for the case of an IPW laser field,

ω′1(a0) ≈ ω′1(0)
1 + a2

0
2

(3.43)

[cf. Eqs. (C.25] and (C.28)), while vertical grey dotted lines represent the respective linear
Compton edges in the weak field limit of an IPW at ω′ = ω′1(0) = 38 keV for the given
parameters. The linear weak-field Compton edge ω′1(0) equals the Doppler up-shifted laser
frequency, where the up-shift factor for the backscattering head-on geometry is exactly
e2ζ ' 25000 for the kinematics considered here. The factor of 1 + a2

0/2 in the denominator of
(3.43) is the intensity-dependent red-shift of the Compton edge.

The emission probability in the pulsed laser field covers the whole range between the two
Compton edges. In this interval, the emission probability is not constant or has a single peak,
but instead one observes a number of NS−P sub-peaks within the first harmonic signal. The
origin of these sub-peaks is the non-linear ∆φ-dependent modulation of the phase exponentials
in the integrands of the quantities An(s), see (3.19). Radiation generated at different times
during the course of the pulse, and therefore at different effective laser intensities a2

0g
2(φ),

interferes thus generating the pattern of sub-peaks seen in Figure 3.3. The appearance of
these sub-peaks is a non-linear short pulse effect. A combination of the finite bandwidth in a
laser pulse due to the Fourier transform of the pulse envelope g and the intensity modulation
a2

0g
2(φ) leads to the emergence of the sub-peaks. The sub-peaks do disappear in strong

infinite plane waves.
It has been known for a while that temporal modulations strongly affect the emission

probabilities of non-linear Thomson scattering, with the main effect being the additional
oscillatory substructures [Har96b, Kra04, Gao04]. Only very recently, a proper quantum
mechanical description of this effect for non-linear Compton scattering has been given
[Boc09, Sei11b]. The number NS−P of subsidiary peaks within the first harmonic scales
linearly with the pulse duration ∆φ and the intensity a2

0 according to the empirical formula,
valid for the hyperbolic secant pulse [Hei10b],

NS−P = 0.16 a2
0 ∆φ . (3.44)

The same scaling of the number of sub-peaks NS−P ∝ a2
0 ∆φ was obtained in [Har10] for the

low-energy limit of non-linear Thomson scattering. Reversing the arguments leading to (3.44)
suggests the interesting possibility to actually determine the intensity of a laser pulse by
counting the number of sub-peaks within the first harmonic if the pulse duration is known.

Further below, in Section 3.10, a general formula for the number of sub-peaks will be
derived using a stationary phase analysis. The number of points where destructive interferences
can occur, i.e. the number of sub-peaks, is determined as NS−P ∝ |∆f |, i.e. it is proportional
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Figure 3.3: The one-photon emission probability dW/dω′dΩ as a function of the frequency
ω′ of the emitted photons at constant emission angles θ = ϕ = 0 for a0 = 1
(left panels) and a0 = 2 (right panels). Upper (lower) panels correspond to a
laser pulse duration of ∆φ = 20 (∆φ = 50). The full vertical red lines denote
the non-linear Compton edges for the ideal case of an IPW laser field, while
dotted grey lines represent the respective linear Compton edges.

to the ponderomotive phase shift which is accumulated during the scattering [Har10]. In
[Ghb12], a method was proposed to counteract the bandwidth increase and the emergence of
the sub-peaks due to the non-linear interaction in a short pulse with finite bandwidth, using
special chirped laser pulses.

In a real experiment, the contrast of these sub-peaks will be reduced by a variety of
mechanisms. These include effects such as (i) the transverse ponderomotive force in focused
beams, (ii) the influence of transverse intensity profiles as well as (iii) contributions due to
the phase space distribution of the electron beam, in particular its energy spread ∆γ/γ and
transverse beam emittance ε. These effects are discussed in some detail in Appendix F. It is
shown there that a verification of the individual sub-peaks with a 100 TW or a PW class
laser system in conjugation with a high quality electron source, such as ELBE or REGAE
[REG, Har12], is within experimental reach.

The emitted radiation is characterized as a function of the frequency ω′ and scattering
angle θ in Figure 3.4. The electron parameters are the same as for Figure 3.3, and the laser
has a0 = 1 and ∆φ = 20. In the left panel of Figure 3.4, the emission probability is exhibited
for linear laser polarization, characterized by ξ = 0, i.e. the laser polarization vector points
along the positive x axis. The decadic logarithm of the one-photon emission probability is
shown in the plane of polarization, ϕ = 0 (right part of the panel, for positive values of
θ), and in the plane perpendicular to the polarization, ϕ = π/2 (left part of the panel, for
negative values of θ). Since the electron is relativistic, most of the radiation is emitted within



48 3 One-photon Compton scattering

Figure 3.4: Survey of the emission probability for linear and circular polarization in
the ω′ – θ plane, for ϕ = 0 and ϕ = π/2. The left panel is for linear laser
polarization while the right panel is for circular polarization.

a cone around the forward direction of the electron, θ = 0, with an opening angle γθ ∼ 1.
The Doppler up-shift factor strongly depends on the scattering angle θ as ω′ = 1+v

1−v cos θω,
where v = tanh ζ ≈ 1 is the electron velocity. Thus, the frequency of the emitted radiation
strongly depends on the scattering angle with a maximum at θ = 0. For linear polarization,
the emission probability also depends on the azimuthal angle; for ϕ = 0 and ϕ = π/2 the
emission probability behaves differently.

The case of circular polarization is depicted in the right panel of Figure 3.4. One clearly
sees the so called dead-cone: For θ = 0 there is no emission above the linear Compton edge
ω′1(0) = 38 keV. The emission probability depends only marginally on the azimuthal angle ϕ
(this is different for ultra-short pulses).

The cases considered so far were for relatively long laser pulses, ∆φ = 20 and 50,
i.e. ∆φ� 1, such that the bandwidth of the laser pulse ∝ 1/∆φ is much smaller than unity,
i.e. the separation of neighbouring Zel’dovich levels of the initial and final Volkov states. The
dominant origin for the width of the Zel’dovich levels is the accumulated ponderomotive
phase shift ∆f , which, in the limit of IPW, would provide the quasi-momentum. Therefore,
this regime is denoted as ponderomotive regime. On the contrary, for ultra-short laser pulses,
∆φ ∼ 1, such that the bandwidth is of the order of adjacent Zel’dovich levels, or even larger,
the relation 1/∆φ > 1 holds. This regime is denoted as bandwidth dominated regime.

The discussion is continued with a systematic survey of the a0 dependence of the emission
spectra in both of these regimes, starting with the ponderomotive regime. To this end,
the one-photon emission probabilities (divided by a2

0) as a function of the scaled frequency
ω′/e2ζω for constant scattering angle θ are depicted in Figure 3.5. In each of the four panels
of that figure, the dependence of the emission probability on the value of a0 is exhibited as a
series of curves for a certain value of the scattering angle θ, depicting the transition from
the linear regime for a0 = 0.01 (yellow) to the non-linear regime with a0 = 1 (black). At low
intensity, there is a single peak, corresponding to the Fourier transform of the pulse envelope
[cf. Eq. (3.28)]. Upon increasing the value of a0, the height of the peak decreases (note
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°µ = 0.5 °µ = 1.0

Figure 3.5: Survey of the frequency spectrum for non-linear Compton scattering, i.e. the
emission probability as a function of the scaled frequency ω′/e2ζω, scaled
by a2

0, for various values of a0 = 0.01, 0.2, 0.4, 0.6, 0.8, 1.0. In the different
panels, the frequency spectrum is shown for the scattering angles γθ = 0.0
(top left), 0.2 (top right), 0.5 (bottom left) and 1.0 (bottom right). The pulse
has Gaussian shape with ∆φ = 20.

that the emission probability has been divided by a factor of a2
0 for illustration purposes),

broadens and the spectral strength is distributed over an increasing number of sub-peaks.
Furthermore, additional peaks at higher frequencies appear. These are higher harmonics.
In the ponderomotive regime, the notion of harmonics is meaningful since the non-linear
Compton amplitude can be expanded into a series of partial amplitudes which are denoted as
harmonics (see discussion in Section 3.9).

The differential emission probability for an ultra-short Gaussian shaped laser pulse with
∆φ = 2 is exhibited in Figure 3.6 for various values of a0 and linear laser polarization. The
electron beam has γ = 104 and the radiation is observed in the plane of polarization (ϕ = 0)
for scattering angles γθ = 0.5 (left panel ) and γθ = 1.0 (right panel). The curve for a0 = 1
(yellow) shows no indications of sub-peaks as they were observed for longer pulses. Instead,
the broad peaks are merged due to the large bandwidth in an ultra-short pulse. Upon
increasing the laser strength even further the general characteristic shape of the peaks does
not change as was observed in the ponderomotive regime, although their number increases.
In particular, one does not observe the emergence of sub-peaks.

In Figure 3.7, the dependence of the emission probability on the carrier envelope phase
φ̂ is exhibited for a linearly polarized laser pulse with ∆φ = 2, where the carrier envelope
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°µ = 0.5 °µ = 1.0

Figure 3.6: Differential emission probabilities in an ultra-short laser pulse with ∆φ = 2
and a Gaussian envelope. The left panel is for γθ = 0.5 and the right panel is
for γθ = 1.0

a0 = 1 a0 = 2

Figure 3.7: Dependence of the photon emission probability on the carrier envelope phase
φ̂ for an ultra-short strong laser pulse with ∆φ = 2 for a0 = 1 (left panel) and
a0 = 2 (right panel).

phase is varied in the range φ̂ = 0 . . . π. The laser strength is a0 = 1 in the left panel and
a0 = 2 in the right panel (all other parameters correspond to the left panel of Figure 3.6).
The frequency spectrum in Figure 3.7 shows a strong dependence on the carrier envelope
phase. In the two panels the emission spectrum for φ̂ = 0 consists of a series of small peaks
which merge upon increasing φ̂ and for φ̂ = π one observes only a single peak for a0 = 1 and
a few very broad peaks for a0 = 2.

For longer pulses, the dependence of the spectrum on the carrier envelope phase vanishes.
For instance, in [Boc09] it was argued that the value of φ̂ becomes irrelevant for ∆φ > 20.
Also for weak short laser pulses, e.g. for ∆φ = 2 and a0 = 0.1, the value of the carrier envelope
phase has a weak influence on the spectrum.

The transition from the bandwidth dominated regime for ultra-short pulses to the pon-
deromotively dominated regime for longer pulse lengths is exhibited in Figure 3.8, where
the emission probability divided by the pulse length ∆φ is shown as a function of scaled
frequency ω′/e2ζω for γ = 100, θ = 0.005, ϕ = 0, linear laser polarization and a0 = 1 for
various values of the pulse length parameter ∆φ in a sequence of curves. In the left panel, the
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Figure 3.8: Evolution from bandwidth dominated regime (for small values of ∆φ) to the
ponderomotive regime (for large values of ∆φ) by increasing the pulse length
from ∆φ = 2 (yellow curve in the left panel) up to ∆φ = 50 (green curve in
the right panel), keeping fixed all other parameters.

shorter pulse lengths are shown, for ∆φ = 2 . . . 10, while the right panel is for longer pulse
lengths ∆φ = 10 . . . 50. The sub-peaks become clearly visible for a pulse length of the order
of ∆φ = 10 which can be considered as the transition between the bandwidth-dominated
regime and the ponderomotive regime in this case.

Azimuthal distributions
Now, the azimuthal spectra are discussed, starting with linear polarization. While for
long pulses and IPW each harmonic has a characteristic multi-pole pattern, this behaviour
changes for ultra-short pulses and the emission can become unidirectional. In Figure 3.9,
the dependence of the azimuthal spectra is exhibited for linear laser polarization for various
values of a0 and the carrier envelope phase φ̂. In the panels, the quantity

dI

dϕ
=
∫
dω′

∫
dθ sin θ dI

dω′dΩ , (3.45)

is displayed, where the integration over the polar angle is done over a cone within an opening
angle θ = 3/γ around the z axis, which is the direction of the incoming electron. The energy
integration has the lower boundary of 1 keV.4

The differential azimuthal energy spectrum dI/dϕ is exhibited in Figure 3.9 for a squared
cosine pulse [cf. Eq. (A.35) Appendix A.3] with a pulse length of ∆φ = π, i.e. a laser pulse
with one cycle of the carrier wave. At low laser intensity a0 = 0.1 (upper left panel), the
emission has a strong dipole pattern with the preferred emission in the plane transverse to
the polarization of the laser (which is the x axis). Upon increasing the laser strength up to
a0 = 1 (upper centre panel) a0 = 2 (upper right panel) and a0 = 3 (lower left panel), the
shape develops towards an unidirectional emission. For large values of a0, there is a strong
dependence of the azimuthal emission probability on the carrier envelope phase φ̂. While
for φ̂ = 0 the emission probability has the strong unidirectional characteristics, this changes

4Here, the integrated energy spectrum dI is used, instead of the integrated probability dW , for experimental
reasons. One problem which arises in the experimental detection of Compton scattered photons are pile-ups in
calorimeters, where two photons with energies ω1 are detected calorimetrically as a single photon with energy
2ω1. This means of course that the detected photon number is 1 instead of 2. However, the detected energy is
the same in both cases. The drawback of the energy spectrum is that it is not a Lorentz invariant quantity.
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Figure 3.9: Azimuthal non-linear Compton spectra dI/dϕ for a squared cosine pulse
envelope with ∆φ = π, i.e. a single-cycle pulse and linear laser polarization
with ξ = 0. The upper three panels are for φ̂ = 0 with increasing values of
a0 from left to right as denoted beneath each panel. The lower three panels
depict the dependence of the azimuthal spectra on the value of the carrier
envelope phase φ̂ for a0 = 3. The distributions are normalized to unity.

upon increasing φ̂ up to φ̂ = π/2. In the case of φ̂ = π/2, the emission spectrum has a dipole
type pattern in the direction of the polarization vector of the laser. Upon increasing φ̂ further
up to φ̂ = π, one would find a unidirectional emission with the maximum at ϕ = 0. This
dependence on the carrier envelope phase φ̂ for a0 > 1 is the basis for an experimental access
to the carrier envelope phase proposed in [Mac10]. In that paper, and also in [Mac11, Kra12],
the dependence of the spectrum on the carrier envelope phase was not discussed on the basis
of the azimuthal spectra, but on asymmetries on the polar-angle spectra for ϕ = 0 and ϕ = π.
This discussion is adequate for linear polarization, but obscures the view on the relevant
quantities for general polarization. For instance, for circular polarization, the azimuthal
symmetry which is always present for infinitely long laser pulses and only marginally broken
for long laser pulses with ∆φ � 1, is completely lost in ultra-short pulses with ∆φ ∼ 1.
In the rightmost panel of Figure 3.10 the azimuthal spectrum dI/dϕ is exhibited for a
circularly polarized single cycle laser pulse with ξ = π/4 and for a0 = 3, showing the strong
asymmetry. This is due to the fact that the vector potential has no azimuthal symmetry
for an ultra-short pulse, since a distinguished direction is defined by the maximum of the
laser pulse, i.e. for which the non-linearities are maximized. (For a single cycle laser pulse
the vector potential vanishes in the opposite direction.) The azimuthal symmetry is replaced
by another remarkable symmetry, namely a symmetry in the composite variable ϕ− φ̂, that



3.5 The classical radiation spectrum 53

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.2
0.4

0.6
0.8

1.0

ξ = 0

ϕ
0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.2
0.4

0.6
0.8

1.0

ξ = π/20

ϕ
0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.2
0.4

0.6
0.8

1.0

ξ = π/8

ϕ
0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.2
0.4

0.6
0.8

1.0

ξ = π/4

ϕ

Figure 3.10: Polarization dependence of the azimuthal emission spectrum. The leftmost
panel depicts linear polarization, while the rightmost panels is for circular
polarization. In the two central panels, elliptically polarized laser pulses
with different values of the ellipticity have been used.

means the distinguished direction depends on the value of the carrier envelope phase. It can
be shown by an analytical calculation that the amplitude M (s) depends on ϕ and φ̂ only in
the combination ϕ− φ̂. For circular polarization one has cos 2ξ = 0, such that the non-linear
phase f(φ) depends on φ̂ only via the term proportional to α−, which reads

Re
(
α−

∫
dφg(φ)ei(φ+φ̂)

)
= α0Re

(∫
dφg(φ)ei(φ−(ϕ−φ̂))

)
, (3.46)

where

α− = ma0√
2
k′x − ik′y
k · p

= ma0ω
′ sin θ√

2 k · p′
e−iϕ ≡ α0e

−iϕ . (3.47)

A further dependence on the carrier envelope phase φ̂ can be found in the two phase integrals
A±. This dependence can also be cast into a form ϕ − φ̂ when calculating the emission
spectrum dI.

The azimuthal emission spectra for a single cycle laser pulse as above for different laser
polarization are exhibited for a0 = 3 and φ̂ = 0.3π in Figure 3.10 for linear laser polarization
(ξ = 0, left panel), elliptic polarization (ξ = π/20 and ξ = π/8, central two panels), and
circular polarization (ξ = π/4, right panel). Indeed, the azimuthal emission spectra show a
characteristic dependence on the polarization of the laser pulse, which gradually develops
from the narrow unidirectional emission in the axis of polarization for linear polarization (left
panel) to the directional emission into the preferential direction π + φ̂ ≡ 234◦ for circular
polarization (right panel).

This concludes the study of the azimuthal spectra. It was shown that the energy integrated
azimuthal spectra show a strong dependence on the laser polarization and the value of the
carrier envelope phase for ultra-short laser pulses. The asymmetry for circular polarization is
explained by the preferred direction where the vector potential reaches its maximum value.
A remarkable symmetry in the composite variable ϕ− φ̂ for ultra-short circularly polarized
laser pulses replaces the general azimuthal symmetry of infinitely long circularly polarized
plane waves.

3.5 The classical radiation spectrum
In the limit of low energy, the derived expressions for the photon emission probability, energy
spectrum and cross section need to coincide with appropriate classical expression for Thomson
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scattering. These classical expressions are derived here in a concise way. The differential
energy spectrum, emitted by an accelerated charged particle into the solid angle dΩ and the
frequency interval dω′, corresponding to the quantum result (3.37),5 is given by the covariant
expression [Hei10b, Mit98]

d2I

dω′dΩ = − ω′2

16π3 j(k
′)∗ · j(k′) , (3.48)

where

jµ(k′) = e

∫
dτuµ(τ)eik′ ·x(τ) (3.49)

is the Fourier transform of the electron current

jµ(x) = e

∫
dxµδ4(x− x(τ)) = e

∫
dτuµ(τ)δ4(x− x(τ)) . (3.50)

Here, xµ(τ) and uµ(τ) are the classical orbits in a given background field as solutions of the
Lorentz force equation (2.1). A classical photon emission probability d2W

dω′dΩ , which might serve
as classical analogue to (3.34) (other names for that quantity are photon spectral density or
photon yield), is derived from (3.48) by dividing out the energy of one photon:

d2W

dω′dΩ = 1
ω′

dI

dω′dΩ = − ω′

16π3 j(k
′) · j∗(k′) . (3.51)

Employing the continuity equation k′ · j(k′) = 0, one may eliminate j0 = n′ · j such that
(3.51) turns into the more familiar but not manifestly covariant expression [Jac83]

d2W

dω′dΩ = ω′

16π3 |n
′ × j(k′)|2 . (3.52)

Using the orbits in the plane wave laser field Eqs. (2.7) and (2.8) together with the definition
of the vector potential (A.24) one can evaluate the exponential in (3.49) yielding

k′ ·x(φ) = k′ ·x0 + z0φ− z1 cos ξ
∫
dφg cosφ− z2 sin ξ

∫
dφg sinφ

− z3

∫
dφg2(1 + cos 2ξ cos 2φ) , (3.53)

where irrelevant constant phases, such as k′ ·x0, will be dropped in the following. The
definitions of the quantities zi read

z0 = k′ ·u0
k ·u0

, (3.54)

z1,2 = a0
k ·u0

(
k′ · ε1,2 −

k′ · k
k ·u0

(ε1,2 ·u0)
)
, (3.55)

z3 = −a
2
0

4
k′ · k

(k ·u0)2 . (3.56)

The part of the integral (3.49) which is proportional to uµ0 is divergent, just as the phase
integral A0(s). A suitable integration by parts (after having introduced a convergence factor
e−ε|φ|) to handle the surface terms yields the result∫

dφeik
′ ·x = lim

ε→0

∫
dφ eiz0φ+iP(φ)−ε|φ| = − 1

z0

∫
dφ
dP
dφ

eik
′ ·x (3.57)

5A label for the distinction of classical and quantum probability is left away here and noted where necessary.
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with
dP
dφ

= −k
′ · a
κ

+ k′ · k
κ2 (a ·u0)− k′ · k

2κ2 (a · a) , (3.58)

where aµ(φ) = eAµ(φ)/m and κ = k ·u0. Employing (3.58) in (3.49) one finds the result for
the regularized current as

jµ(k′) = e

κ

∫
dφ

{
ηµνaν(φ) + a · a

2κ ηµ
}
eik
′ ·x (3.59)

with

ηµν = uµ0k
′ν

k′ ·u0
− gµν + kµuν0

κ
− uµ0u

ν
0

κ

k′ · k
k′ ·u0

, (3.60)

ηµ = k′ · k
k′ ·u0

uµ0 − k
µ , (3.61)

fulfilling the transversality relations k′µηµ = k′µη
µν = 0 which ensures current conservation

k′ · j = 0.

3.6 Comparison of Compton and Thomson scattering
The Thomson limit of Compton scattering is achieved in situations where the electron recoil,
i.e. the momentum transfer due to the emission of a photon, is negligible. That statement
can be formalized by defining the centre-of-mass energy squared (the Mandelstam variable6)
s = (p+ sk)2 = (p′ + k′)2 as the total incoming momentum, and the recoil parameter by

y ≡ s−m2

m2 = 2sk · p
m2 = 2s% , (3.62)

where one can state that the classical or Thomson limit is achieved for y → 0 as the recoil free
limit of Compton scattering. This means that even if the recoil parameter in the weak-field
case % = k · p/m2 may be small, one can be far away from the Thomson limit since s can be
large in strong laser fields with a0 � 1. Another way of expressing this fact is the statement
that in strong laser fields the parameter χp = a0% determines the relevance of non-linear
quantum effects. The Mandelstam variable s can be expressed as s = m2 +2sk · p = m2(1+y),
where the Thomson limit means neglecting the second, s dependent contribution to the
centre-of-mass energy. The parameter y is a function of ω′ since s depends on ω′,

y = 2sp · k
m2 = 2

m2
(p · k′) (p · k)
(p · k − k′ · k) , (3.63)

which diverges at the point where p · k = k′ · k, defining the frequency

ω′∞ = k · p
n′ · k

<∞ , (3.64)

where the momentum transfer would be infinite.
Considering the kinematics now, it is noted that the frequency of back-scattered photons

in Thomson scattering is obtained from the corresponding quantum expression (3.18) by
neglecting the recoil sk with respect to p in the denominator, i.e.

ω′Th(s) = s
k · p
p ·n′

, ω′(s) = s
k · p

(p+ sk) ·n′ (3.65)

6To avoid confusion, the Mandelstam variable will denoted as s to distinguish it from the momentum
transfer between the electron and the laser field s.
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where the result for Compton scattering is given on the right.7 In the limit of infinite
monochromatic waves one obtains the frequencies [cf. Eqs. (C.24) and (C.47)]

ω′`,Th = `
k · q
q ·n′

, ω′` = `
k · q

(q + `k) ·n′ . (3.66)

Taking the limit s→∞ (or alternatively `→∞) in the above expressions one obtains

lim
`→∞

ω′` = lim
s→∞

ω′(s) = ω′∞ <∞ , (3.67)

whereas

lim
`→∞

ω′`,Th = lim
s→∞

ω′Th(s) =∞ . (3.68)

Thus, ω′∞ is the maximum available frequency of the outgoing photon in non-linear Compton
scattering. The physical phase space for non-linear Compton scattering is restricted by
0 < ω′ < ω′∞ in contrast to the phase space in Thomson scattering where 0 < ω′ < ∞,
i.e. arbitrary high frequencies can be emitted in the classical theory. However, for the emission
of high-frequency photons, that is for large values of s, where the electron interaction with
many laser photons, one surely leaves the regions of applicability of the classical theory as
the recoil parameter y grows proportional to s. The bottom line is that in high-intensity
laser fields with a0 � 1, the photon emission has to be described within the quantum theory
to account properly for the electron recoil, even if % is small, since many low energy laser
photons can interact simultaneously with the electron such that the total recoil can have a
non-negligible strength.

For the discussion of the Thomson limit, y → 0, in the following it will be helpful to define
the variable

χ ≡ k · p′

k · p
= 1− k′ · k

p · k
= 1− ω′

ω′∞
, (3.69)

with 0 ≤ χ ≤ 1, where in the low-energy limit the relation 1− χ � 1 holds. The function
χ is related to the momentum transfer from the incoming electron to the outgoing electron
via p′+ = χp+. Thus, χ is the fraction of momentum p+ transferred from the incoming
electron to the outgoing electron p′+. Furthermore, the fraction of momentum transferred
to the photon is k′+ = (1− χ)p+ thus, 1− χ is another measure of the electron recoil. One
notes that χ is a monotonically decreasing function of ω′. The point χ(ω′) = χ(ω′∞) = 0
corresponds to p′+ = 0 and k′+ = p+, i.e. the total amount of momentum is transferred from
the incoming electron to the emitted photon. Further increasing ω′ > ω′∞ would render both
χ and p′+ negative. If p′+ < 0, then, due to the free particle dispersion relation,

p′
− = p′2⊥ +m2

p′+
(3.70)

meaning that also p′− < 0 and p′− diverges as p′+ approaches zero. This, however, would
lead to a negative energy p′0 for the outgoing electron due to p′0 = (p′+ + p′−)/2 < 0, which
is forbidden, of course.

For the backscattering head-on geometry one obtains ω′∞ = m/2 for electrons initially
at rest and ω′∞ = meζ/2 ≈ p0 for ultrarelativistic particles, i.e. the maximum available
frequency of the outgoing photon equals the energy of the incoming electron. The momentum

7Here, the classical expressions for Thomson scattering are denoted by the label “Th” to distinguish them
form the corresponding quantum expressions.
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Figure 3.11: Left panel: Different components of the momentum p′ of the outgoing
electron as a function of frequency ω′ for the backscattering geometry (θ = 0)
in the rest frame of the incoming electron. Shown are p′− (red, dash-dotted),
p′+ (green, dashed) and p′0 (blue, solid). The physical phase space has its
support at χ > 0, i.e. for 0 < ω′/m < 0.5 = ω′∞/m in this case. Right panel:
Cut-off frequency ω′∞ as a function of the scattering angle θ, where θ = 0
denotes the backscattering direction.

components p′+, p′− and p′0 are depicted in the left panel of Figure 3.11 as a function of ω′ in
the initial electron rest frame. The right panel of Figure 3.11 shows the dependence of ω′∞ on
the scattering angle θ. It takes its minimum at the backscattering direction θ = 0 and goes
to infinity in the limit θ → π, i.e. for forward scattering. However, ω′∞(θ) ' ω′∞(θ = 0) for all
angles inside of the radiation cone with opening angle θ ∼ 1/γ for ultrarelativistic electrons.

The consequences for scattering experiments are tremendous: The maximum achievable
photon energy is determined by the energy of the incoming electron alone in the recoil
dominated regime y � 1. This leads to a kinematic pile-up of the emission spectrum below
ω′∞ and a sharp cut-off of the emitted radiation at ω′∞. This fact can be used to produce
highly monochromatic γ-ray beams in a suitable Compton backscattering set-up [Har08].

To relate the Compton amplitude with the classical Thomson counterpart it is instructive
to consider the low energy limit of the phase exponential sφ− f in the phase integrals An(s).
The leading term in a low-energy expansion is therefore equivalent to taking the lowest order
contribution in an expansion in (1 − χ). One can show that s = k′ · p

k · p′ = z0 + O(1 − χ).
Similarly, one finds β → z3. Furthermore,

α1,2 = ma0p · ε1,2
k · p

− ma0p
′ · ε1,2

k · p′

' ma0
k · p

[
p · ε1,2 − (p · ε1,2 − k′ · ε1,2)

(
1− k′ · k

k · p

)]
→ z1,2 , (3.71)

which shows that

sφ− f(φ)→ k′ ·x(φ) , (3.72)

which agrees with the corresponding expression (3.53) obtained in a calculation for Thomson
scattering (cf. [Hei10b, Sei11b]) up to terms of order O(1− χ) in the limit y → 0.

3.7 Scaling properties of the photon emission probability
A series of plots showing the transition from Thomson to Compton scattering is exhibited in
Figure 3.12 for ultrarelativistic electrons colliding head-on with a strong laser pulse. The
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deviations between Thomson and Compton scattering are: (i) a non-linear red-shift in
frequency, i.e. an overall compression of the peaks in frequency space related to the kinematic
pile-up, i.e. emergence of the maximal frequency ω′∞ in Compton scattering and (ii) a slight
modification of the amplitude. It is obvious that the red-shift is much more pronounced at
higher frequencies. For the chosen parameters (a0 = 1.0 and ω = 1.55 eV) the differences
become significant for γ ≥ 104, i.e. for % ≥ 0.06.

Based on these observations one finds that the classical [Thomson scattering, Eq. (3.51)]
and quantum [Compton scattering, Eq. (3.34)] emission probabilities for arbitrary pulse
shapes are related by the scaling law

d2W

dω′dΩ(ω′, θ, ϕ) = η
d2WTh
dω′dΩ (ω′/χ, θ, ϕ) (3.73)

with the two scaling factors η and χ. The frequency scaling factor χ is the purely kinematical
factor introduced in Eq. (3.69). The overall rescaling factor η can be found as

η ≡ 1
ω′2

dσ

dΩ

/
1
ω′2Th

dσTh
dΩ , (3.74)

where the differential cross sections for Compton scattering dσ/dΩ and Thomson scattering
dσTh/dΩ are the monochromatic IPW cross sections presented in Eqs. (C.43) and (C.54),
respectively. For circular polarization, one has

η = J`
K`

= 1 + x2

1 + x

L`

2L` − 8
a2

0
J2
` (z)

, (3.75)

where x = (1− χ)/χ, y? ≡ y/(1 + a2
0/2) and

z = 2`

√
a2

0/2√
1 + a2

0/2

√
x

y?

(
1− x

y?

)
. (3.76)

The definitions of J`, K` and L` are given in Eqs. (C.52) and (C.53), with ` = s− β. In the
limit a0 → 0 one gets

lim
a0→0

η = 1 + x2

1 + x

1
2− 4 x

y?
(1− x

y?
) (3.77)

which is a good approximation for a0 . 1. For linear laser polarization, a similar relation for
η can be derived using the appropriate IPW cross section (e.g. using the results of [Iva04]).

Further differences between the classical and quantum emission probabilities arise in
phase space regions where different harmonics overlap. There, the sub-peaks in the quantum
calculation show completely different patterns in comparison to a classical calculation (see
[Sei11b] for details). The generation of the sub-peaks is described as an interference effect
[Hei10b]. Thus, when the harmonics overlap, for a fixed value of ω′ the contributions of
different harmonics and their interference is very sensitive to subtle changes in the phase of the
integrals An(s), depending on whether the recoil of the electron is considered in the quantum
case or it is neglected in the classical picture. This of course is a regime where the scaling
(3.73) cannot be applied. The difference in the spectral distributions looks qualitatively
similar to the results of [Har96a], where the influence of classical radiation reaction force on
the spectrum was studied. The radiation reaction force also provides an electron recoil in
the classical calculation, slightly changing the phases and leading to a modified spectrum.
Although the numerical values of the recoil differ quantitatively between the Compton recoil
and the radiation reaction force [Har05], the qualitative effect of the radiation spectra is the
same.
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Figure 3.12: The photon spectrum as a function of the frequency ω′ for γ = 102, 103, 104,
2× 104, 3× 104 and 5× 104 from top left to bottom right for θ = 1/2γ and
ϕ = 0 for a Gaussian pulse shape. The upper (lower) blue (red) curves are
for a quantum (classical) calculation of Compton (Thomson) scattering. The
vertical grey lines mark the positions of the classical (ω′`,Th) and quantum
(ω′`) harmonics in an IPW according to Eq. (3.66). The other parameters
are a0 = 1.0, ω = 1.55 eV, ∆φ = 20 and ξ = 0, i.e. linear laser polarization.
The thick grey vertical line in the bottom right panel depicts the cut-off
frequency ω′∞ = γm = 25.5 GeV for that case.
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3.8 The slowly varying envelope approximation
One strategy for the evaluation of the photon emission probability (3.34) is based on a direct
numerical integration of the phase integrals An(s) in (3.19), as employed above in Section 3.4.
One particular complication is the fact that the integrand of An(s) includes integrals in the
non-linear phase f(φ) itself, which are either complicated special functions or which are even
unknown analytically for certain pulse envelopes. The numerical calculations can be simplified
upon utilizing the slowly varying envelope approximation (SVEA) of the phase of the An(s)
functions. Furthermore, this approximation is the starting point for some exact analytic
calculations of the scattering amplitude M (s), which is presented below in Section 3.11. It
provides a possibility to derive approximate expressions for the photon emission probability
for a0 � 1, where a direct numerical integration is hard to do. This approximation scheme is
suitable for long pulses with ∆φ� 1, i.e. for many oscillations of the carrier wave under the
envelope. To derive the approximation, an integration by parts is performed in the integrals
in (3.7) yielding∫

dφg(φ)eiφ = −ig(φ)eiφ + i

∫
dφ
dg

dφ
eiφ ,∫

dφg(φ) sin(φ+ φ̂) = −g(φ) cos(φ+ φ̂) +
∫
dφ
dg

dφ
cos(φ+ φ̂) ,∫

dφg(φ) cos(φ+ φ̂) = g(φ) sin(φ+ φ̂)−
∫
dφ
dg

dφ
sin(φ+ φ̂) ,∫

dφg2(φ) cos 2(φ+ φ̂) = 1
2g

2(φ) sin 2(φ+ φ̂)−
∫
dφg(φ)dg

dφ
sin 2(φ+ φ̂) . (3.78)

The SVEA basically means neglecting the second terms containing integral and the derivative
of the pulse shape dg/dφ because it is O(1/∆φ) smaller than the first term. This means that
the SVEA result for the non-linear phase reads

fSVEA(φ) = f̃SVEA(φ) + βG2(φ) , (3.79)

while the oscillating part is

f̃SVEA(φ) = −Re
(
iα−g(φ)ei(φ+φ̂)

)
+ β

2 g
2(φ) sin 2(φ+ φ̂) (3.80)

= α1 cos ξ g(φ) sin(φ+ φ̂)− α2 sin ξ g(φ) cos(φ+ φ̂) + β

2 g
2(φ) sin 2(φ+ φ̂) ,

(3.81)

and G2(φ) =
∫
dφg2(φ). This is a generalizing the approximation scheme of [Nar96b] to

arbitrary laser polarization; it was also employed in e.g. [Sei11b, Tit12].
Even for rather short pulses, such as for ∆φ = 5 meaning that the pulse length is 15 fs

for a laser wavelength λ = 800 nm, the SVEA is quite a good approximation. For instance,
the SVEA of the cosine integral in Eq. (3.78) is depicted in the left panel of Figure 3.13
in comparison to the full integral verifying only a minor deviation for ∆φ = 5. A similar
comparison is given in the right panel of Figure 3.13 for the phase integral A+(s) for a0 = 3.
For even shorter pulse lengths the validity of SVEA is reduced. As an empirical fact one can
say that 5 oscillations in the pulse is the lower limit for the applicability of the SVEA, which
coincides quite well with the statement of [Tit12] that the SVEA is a good approximation for
∆φ > 2π for a hyperbolic secant pulse. Analysing the asymptotics of the non-linear phase f
for φ→ ±∞ one sees that the oscillating part f̃SVEA is proportional to the envelope function
g in the SVEA and, thus, it vanishes in the limit φ→ ±∞. In the SVEA, the only source
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Figure 3.13: Left panel: Comparison of the integral
∫
dφg cosφ (red solid curve) and the

corresponding SVEA (green dashed curve), i.e. only the first term on the
right hand side of Eq. (3.78) for a pulse length of ∆φ = 5 and for φ̂ = 0.
Right panel: The result for the real part of the phase integral A+(s) using
the full non-linear phase f [red solid curve, cf. Eq (3.7)], compared to the
SVEA of A+(s) (green dashed curve), where fSVEA is substituted for f in
(3.19) for ∆φ = 5 and a0 = 3.

of a phase shift ∆f is the ponderomotive part βG2 of f , thus, within the SVEA, one finds
∆f = β(G2(∞)−G2(−∞)).

Now the focus is turned back to the full oscillating part f̃ of the non-linear phase exponent
to expose the physical differences between the SVEA and the full result

f̃(φ) =
∫
dφ
[
α1 cos ξg cos(φ+ φ̂) + α2 sin ξg sin(φ+ φ̂) + β cos 2ξg2 cos 2(φ+ φ̂)

]
,

(3.82)

which contains integrals of the form

In =
∫
dφ
[
g(φ)eiφ

]n
, n ∈ {1, 2} . (3.83)

With these definitions, the oscillating parts of the non-linear phase read

f̃1 = Re
(
α−e

iφ̂I1(φ)
)
, (3.84)

f̃2 = β cos 2ξRe
(
e2iφ̂I2(φ)

)
, (3.85)

where f̃ = f̃1 + f̃2. The integrals In can be evaluated for certain pulse envelopes, as listed
in Appendix A.4. For instance, for a hyperbolic secant pulse, the results for In read with
x = eφ/∆φ

f̃1 = ∆φRe
{1
a
α−e

iφ̂x2a
2F1(1, a; a+ 1;−x2)

}
, (3.86)

f̃2 = β∆φ cos 2ξRe
{1
a
e2iφ̂x4a

2F1(2, 2a; 2a+ 1;−x2)
}

(3.87)

with a = (i∆φ+ 1)/2 and the hypergeometric function 2F1 [WFS]. For short pulses, ∆φ� 1,
a→ 1/2 becomes real, and the hypergeometric function take the limiting values [Rys57]

2F1(1, a; a+ 1;−x2)→ 2F1(1, 1
2; 3

2;−x2) = 1
x

arctan x , (3.88)

2F1(2, 2a; 2a+ 1;−x2)→ 2F1(2, 1; 2;−x2) = 1
1 + x2 , (3.89)

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/
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such that

f̃1 = 2∆φRe
(
α−e

iφ̂
)

arctan
(

exp φ

∆φ

)
, (3.90)

f̃2 = ∆φβ cos 2ξ cos 2φ̂ tanh φ

∆φ . (3.91)

The complete phase reads for short pulses with ∆φ� 1

f(φ) = ∆φRe
(
α−e

iφ̂
)

arctan
(

exp φ

∆φ

)
+ ∆φβ(cos2 ξ cos2 φ̂ + sin2 ξ sin2 φ̂) tanh φ

∆φ , (3.92)

recovering the result of [Mac11] for a single-cycle laser pulse with linear polarization, ξ = 0,
and carrier envelope phase φ̂ = 0.

In the opposite limit of long pulses, ∆φ� 1, the quantity a becomes purely imaginary,
a→ i∆φ/2. The slowly varying envelope approximation can be obtained from Eqs. (3.86)
and (3.87) by approximating [Rys57]

2F1(n, na;na+ 1;−x2)→ 2F1(n, na;na;−x2) = 1
(x2 + 1)n , (3.93)

which coincides with (3.81) for the hyperbolic secant envelope g(φ) = cosh−1 φ/∆φ. This
explicitly shows how the general result Eqs. (3.86) and (3.87) for the hyperbolic secant pulse
contains both the slowly varying envelope approximation for ∆φ� 1 and the single-cycle
laser pulse approximation for ∆φ� 1 as limiting cases.

One of the main differences between the slowly varying envelope approximation and the
full result is the build-up of an additional phase shift ∆f̃ due to the oscillating part of the
non-linear phase when going from the remote past, φ = −∞, to remote future, φ = +∞, in
addition to the ponderomotive phase shift ∆f = β(G2(∞)−G2(−∞)). In the SVEA, this
phase shift is equal to zero, ∆f̃SVEA = 0, as discussed above. In the exact expressions for the
phase, however, the additional phase shift is non-zero and depends on the carrier envelope
phase and polarization of the laser pulse via

∆f̃ = Re
(
α−e

iφ̂
)

∆φ I(∞)
1 (∆φ) + β cos 2ξ cos 2φ̂∆φ I(∞)

2 (∆φ) , (3.94)
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where the functions I(∞)
n (∆φ) are related to the asymptotics of the integrals In (see Ap-

pendix A.4 for details). Thus, the total phase shift becomes now ∆f = ∆fSVEA + ∆f̃ , where
the first term is the ponderomotive phase shift originating from βG2, which is also present in
the SVEA, with ∆fSVEA ∝ β∆φ. The functions I(∞)

1 (∆φ) and I(∞)
2 (∆φ), depending only on

the pulse length ∆φ and the pulse shape, are depicted in Figure 3.14 for the hyperbolic secant
(red solid curves) and Gaussian (blue dashed curves) pulse envelope. The additional phase is
relevant for ∆φ < 5 only. For longer pulsed the phase shifts drop to zero exponentially fast.
This explains why the slowly varying envelope is much better than expected, even down to
∆φ = 5, although it appears as an expansion in inverse powers of ∆φ.

In order to calculate higher order corrections in inverse powers of ∆φ to the SVEA result
one would have to perform further integrations by parts of the integrals on the right hand
side of (3.78), e.g.∫

dφgeiφ = −igeiφ + g′eiφ + ig′′eiφ − g′′′eiφ + . . . . (3.95)

Each term in a finite order approximation of that series contains a factor of g or a derivative
of g, which all vanish in the limit φ→ ±∞. Thus, at any finite order approximation of the
oscillating phase f̃ , the phase shift ∆f̃ will be identically zero. Thus, it is meaningless to
calculate corrections to the SVEA to extend the range of applicability to pulses shorter than
∆φ = 5. The important effect of the phase shift cannot be obtained in this way.

3.9 Expansion into harmonics for pulsed plane waves
For the remainder of this chapter, the focus will be on laser pulses which fulfil the condition
for the applicability of the SVEA. Then, in analogy with the harmonics in an IPW, as
presented in Appendix C, one can also define harmonics for PPW given the condition ∆φ� 1
[Nar96b]. Since this is an approximation for long pulses, the carrier envelope phase φ̂ has
only a marginal influence on the emission spectra and is, therefore, set to zero. Within the
SVEA of pulsed laser fields, the oscillating part of the phase exponential8 f̃(φ), as given in
(3.81) is not periodic. However, non-periodic functions can be expanded into a (generalized)
Fourier series over the floating interval [φ− π, φ+ π] according to [Nar96b]

e−if̃(φ) =
∞∑

`=−∞
B`(φ)e−i`φ , ` ∈ N (3.96)

with the non-constant, phase dependent Fourier coefficient functions

B`(φ) = 1
2π

φ+π∫
φ−π

dφ′ei`φ
′−if̃(φ′) . (3.97)

The form of the expansion coefficients B`(φ) can be transferred from the corresponding
Fourier expansion coefficients BIPW

` in monochromatic IPW (C.18) with the replacements
ᾱ→ ᾱg(φ) and β → βg2(φ), thus,

BIPW
` → B`(φ) = J`

(
ᾱg(φ), βg2(φ) cos 2ξ/2;φ0

)
, (3.98)

where ᾱ = |α−| and φ0 = argα− such that α− = ᾱeiφ0 , just as for IPW. In the limit of
circular and linear laser polarizations, one may employ the corresponding expressions (C.19)

8The subscript SVEA will be omitted in the following. All quantities are assumed to be taken in the slowly
varying envelope approximation.
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and (C.20) for B`, respectively. Plugging the Fourier series (3.96) into the expression for the
phase integrals (3.19) one obtains the expansion of the latter ones as


A0(s)
A±(s)
A2(s)

 =
∑
`

∫
dφ


B`(φ)

g(φ)B`∓1(φ)
g2(φ)

[
B`(φ) + cos 2ξ

2 (B`+2(φ) +B`−2(φ))
]


× exp{i(s − `)φ − iβG2(φ)} . (3.99)

This equation represents the general expression for the expansion of the phase integrals An(s)
into a series of harmonics for arbitrary polarization of the laser pulse. Using this expansion,
the non-linear Compton matrix element M (s) turns into a sum over partial amplitudes

M (s) =
∑
`

M`(s) . (3.100)

From here on, the case of circular laser polarization is considered with B`(φ) = J`(ᾱg(φ))e−i`φ0 ,
such that the partial amplitudes can be written as

M`(s) = e−i`φ0
[
T0c

`
0(s− `) + T2c

`
2(s− `) + eiφ0T+c

`
+(s− `)

+ e−iφ0T−c
`
−(s − `)

]
(3.101)

with the Dirac currents Tn from Eqs. (3.13) – (3.15) and purely real coefficients


c`0(s− `)
c`±(s− `)
c`2(s− `)

 =
∞∫
−∞

dφ


J`
(
ᾱg(φ)

)
g(φ)J`∓1

(
ᾱg(φ)

)
g2(φ)J`

(
ᾱg(φ)

)
 exp{i(s− `)φ− iβG2(φ)} . (3.102)

In the expansion (3.100), the integer ` is interpreted as the net number of absorbed laser
photons from the background field as for infinite monochromatic waves, thus labelling the
harmonics. The seeming contradiction of continuous s and integer ` can be resolved easily:
In the energy momentum conservation (3.17) the photon four-momentum k is calculated
with the central frequency ω. However, the pulsed laser field has a finite energy bandwidth
∆ω/ω ∝ 1/∆φ. Therefore, it appears as if there would be a continuous photon number. Also
the emitted photon spectrum is a continuous spectrum. It is impossible for PPW to formulate
the energy-momentum conservation as p+ `k = p′ + k′ with integer ` which would imply that
the harmonics have support on a delta comb. The energy-momentum conservation has to be
stated as p+ sk = p′ + k′ and each of the harmonics ` has a broad support. In other words,
for each harmonic `, there exists a range of values s where the partial amplitude M`(s) is
substantially different from zero. The precise location of the support of the harmonics ` can
be calculated using the following stationary phase analysis.

3.10 Stationary phase analysis
The integrals that determine the value of the coefficients c`n(s− `) are of the form

∞∫
−∞

dxF (x)eiNG(x) (3.103)
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with an oscillating phase exponential; N denotes the magnitude of the phase exponent. The
stationary phase approximation, where the value of the integral is determined by the points of
stationary phase, i.e. dG/dx = 0, is appropriate for N � 1. Thus, the values of the integrals
(3.102) for the coefficients c`n(s− `) are determined by the points where the exponential phase
becomes stationary, i.e. where [Nar96b]

d

dφ

(
(s− `)φ− βG2(φ)

) != 0 , (3.104)

if the coefficients in the exponent s and β become large, in particular for a0 � 1. The
stationary phase points φ? are solutions of the equation

g(φ?) =
√
s− `
β

, (3.105)

which are always found as pairs ±φ? with φ? > 0. The support of a certain harmonic `
is determined by the condition that there exist stationary phase points on the real axis,
i.e. Eq. (3.105) possesses real solutions for φ?. Explicit solutions for the stationary phase
points for various pulse shapes are listed in Table 3.1.

The conditions for the existence of real stationary phase points are that in (3.105) the
argument of the square root has to be positive and the value of the square root has to be
larger than zero and smaller than unity since 0 ≤ g(φ) ≤ 1. Thus, for a given harmonic `,
the allowed range of s is bounded as (note that β < 0)

β + ` ≤ s ≤ ` , (3.106)

independent of the explicit shape of the pulse (except for the box-shaped pulse where this
method cannot be applied). Outside this region the stationary phase has an imaginary part
leading to an exponential suppression of the coefficient functions c`n(s − `). These regions
where the harmonics have support are exhibited in Figure 3.15. In the left panel, where s
and β are considered as independent variables, the support of the harmonics with ` = 1, 2, . . .
are indicated as differently coloured shaded areas. However, the variables β can be expressed
as a function of s and the scattering θ as

β = −a
2
0s

4
1− v

1− v cos θ (1 + cos θ) , (3.107)

for head-on collisions with −p ‖ k, where v = tanh ζ =
√
γ2 − 1/γ denotes the velocity of

the initial electron. Since s itself can be expressed as a function of ω′ and θ, the harmonic
supports can be easily translated to the ω′ – θ phase space. This is exhibited in the right
panel of Figure 3.15 as shaded areas for ` = 1 . . . 8 in colour and for ` ≥ 9 in grey. These areas
are bounded by the IPW harmonics for the scattered frequency ω′`(θ; a0) (cf. C.25), where
the lower boundary of the PPW harmonic coincides with the IPW harmonic ω′`(θ; a0) and
the upper boundary of the PPW harmonic coincides with the IPW harmonic in a weak field
ω′`(θ; 0). The individual harmonics start to overlap if the lower edge of the `+ 1st harmonic
coincides with the upper edge of the `th harmonic, i.e.

ω′`(θ; a0 → 0) ≥ ω′`+1(θ; a0). (3.108)

This happens always for sufficiently large values of a0 and `, see e.g. the right panel of
Figure 3.15. The parameters in Figure 3.15 are a0 = 1 and γ = 100. The black dashed,
dotted and dash-dotted lines depict the same cuts in phase space in the left and right panels
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Figure 3.15: The support of the individual harmonics for different values of ` in a PPW
in the s – β plane (left panel) and in the ω′ – θ plane (right panel). The
coloured labels in both panels are the values of ` corresponding to that
particular harmonic. The dashed, dotted and dash-dotted lines in both
panels depict the same cuts in phase space for constant values of γθ = 0.0,
0.5 and 1.0, respectively.

for constant values of γθ = 0.0, 0.5 and 1.0, respectively. This practically shows how the
information of the left panel, where s and β are considered as independent variables, can
be translated to the real physical phase space of ω′ and θ. The width of the harmonics
as described here is a reformulation of the fact that in a (continuous) pulse (excluding the
box-shaped pulse explicitly) the intensity changes continuously from zero up to the maximum
value related to a0. Simply speaking, during all the time the electron emits radiation with
different intensity-dependent red-shifts which leads to the broadening of the harmonics. This
is the ponderomotive broadening effect. The appearance of sub-peaks can be explained as an
interference effect. This issue will be dealt with below.

As a result of energy-momentum conservation, one only has to consider harmonics with
` > 0 in (3.100) since only these non-negative harmonics correspond to a net absorption of
laser photons with a support for s > 0. As discussed above in Section 3.2, the statement
s > 0 is equivalent to the statement that the frequency of the emitted photon must obey
ω′ > 0. Thus, the sum in (3.100) effectively starts at ` = 1. Beyond the stationary phase
approximation, the harmonic supports will be larger than the predicted value in the stationary
phase approximation (SPA) due to bandwidth effects, with the details depending on the
shape of the pulse envelope. In general, stating that the bandwidth is ∝ 1/∆φ one can say
that the bandwidth-broadened harmonics are given by the interval

β + `−∆φ−1 ≤ s ≤ `+ ∆φ−1 . (3.109)

As a result of this, the term with ` = 0 can also contribute to the emission spectrum at low
frequencies in the vicinity of ω′ = 0. Depending on the dominant broadening mechanism, one
distinguishes the ponderomotive broadening regime and the bandwidth dominated regime. For
long pulses ∆φ� 1 and thus ∆φ−1 � 1. Thus, for long pulses, one is in the ponderomotive
regime.



3.10 Stationary phase analysis 67

Table 3.1: A collection of the derivatives of various envelope functions g and various other
important relations for the stationary phase analysis.

hyperbolic secant Gaussian squared cosine

g(φ) 1
cosh φ

∆φ
exp

{
− φ2

2∆φ2

}
cos2 πφ

2∆φ u (φ)

g′(φ) − 1
∆φg

√
1− g2 − φ

∆φ2 g − π
∆φ
√
g − g2

g′′(φ) g
∆φ2 (1− 2g2) ( φ2

∆φ4 − 1
∆φ2 )g π2

2∆φ2 (1− 2g2)
g′′(0) − 1

∆φ2 − 1
∆φ2 − π2

2∆φ2

φ? ∆φArcosh
√

β
s−` ∆φ

√
ln β

s−`
2∆φ
π arccos

(
s−`
β

) 1
4

g′(φ?) − 1
∆φ

√
1− s−`

β

√
s−`
β − 1

∆φ

√
− s−`

β ln s−`
β − π

∆φ

√√
s−`
β −

s−`
β

The SPA of the integral (3.103) reads

∞∫
−∞

dxF (x)eiNG(x) SPA−−→
∑
x?

F (x?)
√

2π
iNG′′(x?)

eiNG(x?) , (3.110)

where the sum goes over all stationary points x? on the real axis and G′′(x?) ≡ d2G/dx2∣∣
x=x? .

Thus, the SPA of the coefficients (3.102) at a given value of s is given by the sum of the
contributions from the two symmetric stationary points

c`n(s− `) = JLn
(
ᾱg(φ?)

)
g|n|(φ?)

√
2π

|βG′′2(φ?)|

× exp
{
i(s− `)φ? − iβG2(φ?)− i

π

4

}
+ JLn

(
ᾱg(−φ?)

)
g|n|(−φ?)

√
2π

|βG′′2(−φ?)|

× exp
{
−i(s− `)φ? − iβG2(−φ?) + i

π

4

}
= JLn

(
ᾱg(φ?)

)
g|n|(φ?)

√
4π

|βg(φ?)g′(φ?)|
cos

{
(s− `)φ? − βG2(φ?)−

π

4

}
(3.111)

with the index

Ln =
{
`, n = 0, 2 ,
`∓ 1, n = ± , (3.112)

using the definition that |n| = 1 for n = ±, and G′′2(φ?) = 2g(φ?)g′(φ?). The explicit values
for the stationary phase points as well as for the derivatives g′ are listed in Table 3.1. The
oscillations of the coefficient functions c`n, i.e. the appearance of sub-peaks in the harmonics,
stem from the cosine term in (3.111). This allows to estimate the number of sub-peaks NS−P
in a given harmonic ` since the number of zeros K in the harmonic equals the number of
sub-peaks as NS−P = K. The functions c`n are zero whenever the contributions from the two
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symmetric stationary points interfere destructively; they coincide with the zeros of the cosine
term in (3.111), i.e. whenever the stationary phase points fulfil the additional equation

β

φk?g2(φk?)−
φk?∫
0

dφg2(φ)

− (1
4 − k

)
π = 0 (3.113)

defining a series (sk) of zeros of the coefficient functions, c`n(sk − `) = 0. The total number
of zeros K is the number of different integer values k that can fulfil Eq. (3.113), i.e. K =
kmax − kmin, which is determined by the range of values that the term in the square brackets
in (3.113) can take. On noting that the function in the square brackets in (3.113) is a
monotonically decreasing function of its argument φk?, it suffices to consider the asymptotic
values at φk? → ±∞. The first term in the square brackets goes to zero when approaching
infinity due to the presence of the pulse envelope g. The range of values is therefore
β
∫∞
−∞ dφg

2(φ) which one easily recognizes as the ponderomotive phase shift ∆f . To obtain
the exact number of sub-peaks NS−P one has to include an additional factor of 1/2 to
correct for the double counting of the symmetric stationary phase points ±φ?. Since the
ponderomotive phase shift is a function of s, with s ∼ ` for the `th harmonic, one multiplies
∆f by a factor `/s to obtain a number that characterizes a given harmonic `. The final result
for the number of sub-peaks in the `th harmonic is given by

NS−P = |∆f |2π
`

s
= ν2[g]|β∆φ|

2π
`

s
= `ν2[g]a

2
0∆φ
8π

1− v
1− v cos θ (1 + cos θ) . (3.114)

The last line in (3.114) employs the representation (3.107) for β and is valid for head-on
collisions with −p ‖ k. The factor ν2[g] is a characteristic number of order unity for each pulse
shape g. Explicit values for the relevant pulse shapes are given in Table A.1 in Appendix A.3.
This result is the proof for the empirical fact that the number of sub-peaks in a given harmonic
scale as NS−P = Pa2

0∆φ, as stated above in Section 3.4. There, in Eq. (3.44), the factor of
proportionality P was determined as P = 0.16 for backscattering of the first harmonic in
a hyperbolic secant pulse (θ = 0, ` = 1) by counting the number of sub-peaks for various
sets of numerical parameters. Here, using (3.114), the exact number for that situation is
calculated as P = 1/2π ' 0.159. This result is a generalization of the findings of [Har10]
within the classical theory of Thomson scattering for hyperbolic cosine pulse shapes in the
backscattering direction to the quantum theory of Compton scattering for arbitrary pulse
shapes and arbitrary scattering angles.

3.11 Analytical result for the partial amplitudes M`(s)
To understand the physical content and the pulse shape dependence of the partial matrix
elements (3.101) beyond the general analysis of the preceding section using general stationary
phase arguments one needs to study the pulse shape and pulse length dependence of the
coefficients c`n(s − `), defined in (3.102). However, the pulse envelope g(φ) inconveniently
appears as argument of the Bessel functions there. Using the multiple argument formula for
Bessel functions [WFS] the pulse envelope g can be removed from the argument of the Bessel
functions J` via a series expansion

J`(ᾱg) = g`(φ)
∞∑
k=0

(1− g2(φ))k J`+k(ᾱ)
k!

(
ᾱ

2

)k
, ` ∈ N (3.115)

which is a power series in 1− g2(φ). The expansion coefficients contain Bessel functions of
higher order ≥ ` times powers of ᾱ, leading to a sequence of approximations by truncating

http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/16/03/
http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/16/03/
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Figure 3.16: The functions J`(ᾱg) scaled by J`(ᾱ) as a function of g for ᾱ = 1 (left panel)
and ᾱ = 2 (right panel). The solid curves depict the full functions J`(ᾱg)
for ` = 0 (grey), 1 (red), 2 (blue) and 3 (green). The dashed and dotted
curves display the zeroth-order and first-order approximation, i.e. terms up
to k = 0 and k = 1 are considered in Eq. (3.115), respectively.

the series at a finite order in k. The lowest order contribution, k = 0, explicitly reads
J`(ᾱg) ' g`J`(ᾱ). For not too large values of ᾱ, i.e. for ᾱ smaller than the first stationary
point of the Bessel function where dJ`/dᾱ = 0, this lowest order term is sufficient (excluding
` = 0). The behaviour of J`(ᾱg) as a function of g is exhibited in Figure 3.16 for ᾱ = 1
(ᾱ = 2) in the left (right) panel. The different curves are for ` = 0 (grey), 1 (red), 2 (blue)
and 3 (green). Full curves depict the full function J`(ᾱg), while the dashed curves are for
the zeroth-order (k = 0) approximation J`(ᾱg) ' g`J`(ᾱ) and the dotted curves are for the
first-order approximation

J`(ᾱg) ' g`J`(ᾱ) + g`(1− g2)J`+1(ᾱ) ᾱ2 . (3.116)

For low lying harmonics, i.e. for small `, the expansion shows the worst convergence. One
reason for this is that the first stationary point of the Bessel functions increases with the
order of the Bessel function. Thus, for larger values of `, the series in k in Eq. (3.115) might
be truncated at a lower order. In Figure 3.16, the convergence for ` = 3 is seen to be much
better than for lower values of `; the zeroth-order approximation is sufficiently accurate even
for ᾱ = 2, where the first-order is required for ` = 1. In particular, for the ` = 0 term, the
zeroth-order approximation, i.e. the term with k = 0, is inaccurate since in the lowest-order
approximation J0(ᾱ) is a constant while J0(ᾱg(φ)) is not (see grey curves in the left panel of
Figure 3.16). For large values of `, g(φ)` typically is much narrower than g(φ) itself [compare
the orange curves in the two panels of Figure 3.17 for ` = 1 (left) and 3 (right)]. Thus,
higher harmonics are more sensitive to the high-intensity regions at the centre of the pulse,
leading to a stronger accumulation of spectral strength in the vicinity of the non-linear IPW
resonance at s = ` + β. The higher-order correction (1 − g2)k vanish at the centre of the
pulse, they are sensitive to the low-intensity regions in the pulse, thus, leading to an increased
emission in the vicinity of the linear IPW resonance at s = `. For larger values of `, the
higher-order corrections in k are suppressed due to smaller overlap of g` with (1− g2)k, as one
can observe by a comparison of the brown or black curves (for k = 2 or k = 5, respectively)
in the two panels of Figure 3.17. In the right panel (for ` = 3), the overlap is much smaller
than in the left panel (for ` = 1). The rapidly decreasing overlap between g` and (1− g2)k
explains why for larger the value of `, fewer terms of the sum over k have to be considered.

Employing the argument expansion series (3.115) for the Bessel functions in the definition
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Figure 3.17: Contributions to the series in (3.115) as a function of the scaled phase φ/∆φ.
The curves are for the leading term k = 0 (orange) as well as k = 1 (red),
2 (brown) and 5 (black). The left panel is for the first harmonic ` = 1 and
the right panel is for the third harmonic ` = 3. Higher order terms in k are
sensitive to the edges of the pulse. For higher values of ` the higher-order
terms in k are suppressed due to smaller overlap of g` with (1− g2)k.

of the coefficients c`n, the corresponding series representations for the latter ones read
c`0(s)
c`±(s)
c`2(s)

 =
∞∑
k=0

1
k!

(
ᾱ

2

)k
J`+k(ᾱ)B(k)

` (s, β)
J`+k∓1(ᾱ)B(k)

`+1∓1(s, β)
J`+k(ᾱ)B(k)

`+2(s, β)

 , (3.117)

where the ponderomotive integrals B
(k)
n (s, β) are defined by

B(k)
n (s, β) =

∞∫
−∞

dφgn(φ)
(
1− g2(φ)

)k
eisφ−iβG2 . (3.118)

In the monochromatic IPW limit, g → 1, these integrals collapse to B
(k)
n (s, β)→ δk0δ(s− β).

For functions B
(k)
n with k > 0, recurrence relations can be found using (1 − g2)k = (1 −

g2)k−1 − g2(1− g2)k−1, yielding

B(k)
n (s, β) = B(k−1)

n (s, β)−B
(k−1)
n+2 (s, β) . (3.119)

Subsequent applications of (3.119) furnishes a binomial-like sum rule, relating arbitrary terms
with k > 0 to terms with k = 0 as

B(k)
n (s, β) =

k∑
ν=0

(−1)ν
(
k

ν

)
B

(0)
n+2ν(s, β) . (3.120)

Thus, one has to calculate the coefficients with k = 0 only. The ponderomotive integrals
B

(k)
n are well defined for n > 0 but in B

(k)
0 , in particular in B

(0)
0 (s, β), the pre-exponential

pulse shape function g making the integral convergent is missing, therefore, this integral
diverges. The origin of the divergence of A0(s) has been localized formally in the expansion
into harmonics as part of the contribution to the ` = 0 harmonic. This coincides with the
observation above that the divergence of A0(s) is ∝ δ(s). In particular, for the divergent
expression B

(0)
0 (s, β) one can regularize the integral by performing an integration by parts in



3.11 Analytical result for the partial amplitudes 71

the spirit of [Boc09], yielding

B
(0)
0 (s, β) = β

s
B

(0)
2 (s, β) . (3.121)

For the divergent terms B
(k)
0 (s, β) with k ≥ 1, one may use the recursion relation (3.119) to

reduce the order of k. The ponderomotive integrals (3.118), have the following analytical
properties

B(k)
n (s, β)∗ = B(k)

n (s, β) , reality , (3.122)
B(k)
n (−s,−β) = B(k)

n (s, β) , reflection symmetry . (3.123)

Furthermore, after a rescaling of the integration variable φ → φ/∆φ, the pulse length ∆φ
appears only as a global pre-factor and in combination s∆φ or β∆φ, such that

B(k)
n (sβ) ≡ 1

∆φB
(k)
n

(
s

∆φ ,
β

∆φ

)
(3.124)

is independent of the pulse length ∆φ. This provides a scale-invariant master-spectrum
for all pulse lengths. The scale invariance is provided by the SVEA due to the fact that
the oscillating part of the non-linear phase exponential is proportional to powers of the
envelope function g, and the phase f̃(φ) has the same value at φ = ±∞, thus, ∆f̃ = 0 as
discussed above. The scale invariance is the reason why non-linear effects are expected also
for weak laser fields, i.e. for values a0 � 1, if the pulse length is sufficiently large [Har10].
The appearance of sub-peaks as non-linear effect is sensitive to the the parameter a2

0∆φ as
discussed in the previous Section 3.10 using stationary phase arguments. Here, the same result
is obtained with the argument of the scale-invariant master spectrum. The scale invariance
is broken for ultra-short laser pulses, i.e. for pulse lengths ∆φ = O(1), where the SVEA
becomes inapplicable. Some examples for the master spectra are exhibited in Figure 3.18 for
g = cosh−1 φ/∆φ. The functions B(0)

1 (top left), B(0)
3 (top right), B(2)

1 (bottom left) and B(2)
3

(bottom right) are shown in the s – β plane, considering s and β as independent variables.
One clearly sees that the master spectra are non-zero in the region between the two lines
s = 0 and s = β, where they are oscillating functions. Outside of this region, the functions
B(k)
n rapidly drop to zero. This support confirms the findings of the stationary phase analysis

in Section 3.10. Another feature of the numeric results in Figure 3.18 is that the terms with
k = 2 have the tendency to have larger values in the vicinity of the line s = 0, i.e. beneath
the linear IPW resonance, which confirms the above assertion that the correction with higher
values of k are sensitive to the low-intensity regions of the pulse. Furthermore, for B(0)

3 (top
right panel in Figure 3.18) one finds the anticipated accumulation of spectral strength in the
vicinity of the non-linear IPW resonance at the line s = β.

The final formula for the `th partial amplitude, using the expansion (3.117) in (3.101),
reads

M`(s) = e−i`φ0
∞∑
k=0

1
k!

(
ᾱ

2

)k {
T0 J`+k(ᾱ)B(k)

` (s− `, β)

+ T2 J`+k(ᾱ)B(k)
`+2(s− `, β)

+ T+ J`+k−1(ᾱ)B(k)
` (s− `, β) eiφ0

+ T− J`+k+1(ᾱ)B(k)
`+2(s− `, β) e−iφ0

}
. (3.125)

Employing also the recursion relation for the ponderomotive integrals B
(k)
n , Eq. (3.119),

one arrives at an expression for the partial matrix element where all B(k)
n are replaced by
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Figure 3.18: Contourplot of the ponderomotive master spectra B(k)
n (s, β) as a function of

s and β for various values of (n, k) = (1, 0) in top left panel panel, (3, 0) in
the top right panel, (1, 2) in bottom left panel and (3, 2) in the bottom right
panel.

B
(0)
n ≡ Bn,

M`(s) = e−i`φ0
∞∑
k=0

k∑
ν=0

(−1)ν

k!

(
ᾱ

2

)k (k
ν

)

×
{
B`+2ν(s− `, β)

[
T0 J`+k(ᾱ) + T+ J`+k−1(ᾱ) eiφ0

]
+B`+2ν+2(s− `, β)

[
T2 J`+k(ᾱ) + T− J`+k+1(ᾱ) e−iφ0

]}
. (3.126)

In the case of not too strong fields (ᾱ . 1), the lowest-order approximation of the sum over k

M`(s) = e−i`φ0
{
B`(s− `, β)

[
T0 J`(ᾱ) + T+ J`−1(ᾱ) eiφ0

]
+B`+2(s− `, β)

[
T2 J`(ᾱ) + T− J`+1(ᾱ) e−iφ0

]}
(3.127)

is sufficient.
If the pulse envelope g is specified as a hyperbolic secant pulse, g = cosh−1 φ/∆φ, it

is possible to derive a completely analytical result for the partial amplitudes M`. In this
case, the ponderomotive integrals Bn(s, β) possess a representation with special functions.
It was discovered that the phase integrals (3.19) can have solutions as degenerate confluent
hypergeometric functions [Har96b, Har02] or equivalently as Laguerre polynomials [Har10] for
circular laser polarization and a hyperbolic secant envelope in the special case of backscattering,
θ = 0, for the fundamental harmonic, i.e. ᾱ = 0 and ` = 1. For that special case it can
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be shown that the SVEA is exact. In the general case of arbitrary scattering angle and for
arbitrary harmonics, a generalization of the results of [Har02, Har10] can be derived. After
three subsequent changes of variables in (3.118), x = expφ/∆φ, z = (x2 − 1)/(x2 + 1) and
t = (1 + z)/2, one arrives at

Bn(s, β) = 2n−1∆φ e−i∆φβ
1∫

0

dt t(n−2+i∆φs)/2(1− t)(n−2−i∆φs)/2e2i∆φβt . (3.128)

The integral can be recognized as being related to the generalized Laguerre functions [WFS]

Lλµ(z) = −sin πµ
π

1∫
0

dt ezt t−µ−1(1− t)µ+λ (3.129)

with the constraints Re (µ+λ) > −1 and Reµ < 0. Identifying z = 2i∆φβ, µ = −(n+i∆φs)/2
and λ = n− 1 one obtains

Bn(s, β) = 2n−1∆φπ
sin π

2 (n+ i∆φs)e
−i∆φβLn−1

−(n+i∆φs)/2(2i∆φβ). (3.130)

The previously considered case [Har10] mentioned above would correspond to n = 1 in this
notation. The constraints Re (µ+ λ) = n/2− 1 > −1 and Reµ = −n/2 < 0 require n > 0.
So again, the missing pre-exponential for n = 0 manifests itself in ill-defined mathematical
relations that need to be handled with special care, e.g. by a regularization as in (3.121).

The completely analytical result for the partial amplitudes for hyperbolic secant pulse is
given by

M`(s) = π∆φ e−i`φ0−i∆φβ

sin π
2 (`+ i(s− `)∆φ)

∑
k,ν

ᾱk

k! 2`−k+2ν−1
(
k

ν

)

×
{
Lab (2iβ∆φ)

[
T0 J`(ᾱ) + T+ J`−1(ᾱ) eiφ0

]
−4La+2

b−1 (2iβ∆φ)
[
T2 J`(ᾱ) + T− J`+1(ᾱ) e−iφ0

]}
, (3.131)

with a = `+ 2ν − 1 and b = −(`+ 2ν + i(s− `)∆φ)/2. This concludes the analytical study of
the non-linear Compton scattering matrix element. All space-time integrations in S matrix
have been performed analytically under the condition ∆φ� 1 and for the hyperbolic secant
pulse g = cosh−1 φ/∆φ, yielding a series of generalized Laguerre functions, for which many
mathematical properties are known.

The arguments of the Laguerre functions depend only on the values of s, β and the pulse
length, while the dependence on the variable ᾱ is solely in the Bessel functions. This result
could be used for further systematic studies of the non-linear Compton matrix element and
may provide approximative results for specific values of these parameters.

3.12 Averaged spectra at ultra-high intensity
The emission probability dW/dω′dΩ can be determined by either a numerical integration of the
phase integrals An(s) or by certain analytical manipulations as demonstrated in the preceding
sections. For ultra-strong laser pulses with a0 � 1, another method for calculating the emission
probability is presented here, utilizing certain approximations on top of the stationary phase
analysis presented in Section 3.10. In this section, all calculations are performed in the special

http://functions.wolfram.com/HypergeometricFunctions/LaguerreL3General/
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reference frame where the electron is initially at rest, i.e. pµ = (m, 0, 0, 0), meaning that γ = 1
and the rapidity ζ = 0. In this frame one has β = −a2

0s/4(1 + cos θ). Using the expansion of
the matrix element M into partial amplitudes as in (3.100),

M (s) =
∑
`

M`(s) , (3.132)

the square of M in the expression for the emission probability (3.34) is a coherent sum over
all harmonics, which is actually a double sum

|M (s)|2 =
∑
`,`′

M ∗
` (s)M`′(s) =

∑
`

|M`(s)|2 +
∑
`′ 6=`

M ∗
` (s)M`′(s), (3.133)

where the incoherent diagonal contributions are separated from the off-diagonal elements
which lead to interferences between different harmonics whenever they are overlapping. The
overlapping of harmonics can happen only for pulsed fields because of the broad support of
each harmonic, and it is inevitable for large values of a0 in pulsed laser fields; it does not
appear for monochromatic laser fields where the support is a delta comb.

One may define the partial differential photon emission probability for a single harmonic
by

dW`

dω′dΩ = 1
2
∑

spin,pol

e2ω′

64π3k · pk · p′
|M`|2 , (3.134)

such that

dW

dΩdω′ =
∑
`

dW`

dωdΩ + interferences . (3.135)

The partial differential emission probabilities dW`/dω
′dΩ are exhibited in Figure 3.19 for

the first three harmonics ` = 1, 2 and 3 in the special reference frame as a function of scaled
frequency ω′/ω and scattering angle θ. The spectra are shown for a0 = 2 and a pulse length
of ∆φ = 20 for a hyperbolic secant pulse shape g = cosh−1 φ/∆φ. Each of the harmonics
consists of many sub-peak lines. In general, the interferences between different harmonics
are important for differential observables, in particular, for energy resolved spectra, for not
too high values of a0 ∼ 1. There, the substructures of the harmonics, which can be seen in
Figure 3.19, yield interesting spectral information on the non-linear Compton scattering in
short laser pulses [Sei11b, Mac11]. However, for high laser strength, a0 � 1, the differential
photon emission probability (3.134) is a rapidly oscillating function of the photon energy ω′.
The number of peaks per harmonic, given in Eq. (3.114), grows ∝ a2

0. That means, when
measuring the energy spectrum with a spectrometer with finite energy resolution, one actually
obtains an averaged spectrum. Denoting this average by 〈. . .〉, one finds that〈

dW

dΩdω′
〉

=
∑
`

〈
dW`

dΩdω′
〉

(3.136)

which means that the interference terms in (3.135) average to zero [Nar96b]. Similarly, the
total emission probability W , integrated over the complete phase space, is determined by the
diagonal elements alone as

W =
∑
`

W` , (3.137)
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Figure 3.19: The differential emission probability for the first three harmonics ` = 1, 2
and 3 (from left to right panels) in the special reference frame where pµ =
(m, 0, 0, 0) as a function of the scaled frequency ω′/ω and scattering angle
θ. The colour code denotes the decadic logarithm of dW`/dω

′dΩ in units
of inverse eV. The laser has an intensity parameter of a0 = 2 and a pulse
length parameter of ∆φ = 20.

i.e. the off-diagonal elements give no contribution to the total emission probability in the case
of a0 � 1. For large values of a0, a direct numerical integration of the integrals (3.102) to
calculate the coefficients c`n(s− `) becomes hard since the integrands are rapidly oscillating
functions of the laser phase φ. However, for rapidly oscillating phase integrals, the stationary
phase approximation for the coefficients (3.111) yields accurate results. The SPA result
can be simplified further by observing that the many sub-peaks of the coefficient functions
c`n(s− `) to be averaged over stem from the cosine term in (3.111), which is a common factor
in all contributions to the partial matrix element M`. Thus, the oscillations of the partial
amplitudes are determined by

M` ∼ cos
{

(s− `)φ? − βG2(φ?)−
π

4

}
. (3.138)

When squaring the matrix element to calculate the partial differential photon emission
probability dW`, one obtains

〈|M`|2〉 ∼
〈

cos2
{

(s− `)φ? − βG2(φ?)−
π

4

}〉
= 1

2 . (3.139)

Since the interferences between different partial amplitudes with ` 6= `′ cancel on average, one
may translate the average back to the c`n and replace the cosine in (3.111) by 1/

√
2, defining

the averaged functions by

〈c`n(s− `)〉 = JLn
(
ᾱg(φ?)

)
g|n|(φ?)

√
2π

|βg(φ?)g′(φ?)|
. (3.140)

However, even for large values of a0 there are regions in phase space where the stationary
phase method is inapplicable:

1. In the vicinity of the non-linear IPW resonance at s − ` = β, the stationary points
are located at the centre of the pulse and very close to each other. There, the first
derivative g′(φ?) is almost zero and, therefore, the stationary phase approximation
tends to diverge. The exponent has to be expanded up to the third-order derivative of
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the phase around the point of zero convexity (where the second derivative of the phase
in (3.102) vanishes), yielding [Nar96b]

c`n(s− `) = 2πJL(α)
( 1
|βg′′(0)|

) 1
3

Ai(−y) , (3.141)

where

Ai(y) = 1
2π

∞∫
−∞

dt exp
{
iyt+ i

t3

3

}
(3.142)

is the Airy function [WFS] with the argument

y = s− `− β
|βg′′(0)|

1
3
. (3.143)

2. The stationary phase approximation is appropriate for large |β| � 1. However, in
the vicinity of the forward scattering direction θ ≈ π, one finds that |β| behaves as
|β| = a2

0
ω′

ω
ϑ2

2 , with ϑ = π − θ � 2, thus, the stationary phase method can be applied
for angles ϑ2 � a−2

0
ω
ω′ only where |β| is sufficiently large [Mac11].

Fortunately, these evaluation techniques complement one another, such that they may
be combined together by suitable matching conditions to allow for an accurate calculation
of the non-linear Compton scattering spectra. In doing so, the phase space is divided into
three disjoint regions (I, II, III) where the three different evaluation schemes for the averaged
coefficients 〈c`〉 are applied. In Figure 3.20, these three regions are exhibited together with two
transition lines which are determined by the two parameters M1,2 (the subscripts 1 and 2 refer
to conditions 1. and 2. above). The choice of these parameters can be motivated as follows:
The parameter M1 determines the transition line between the stationary phase approximation
and the zero convexity approximation. The matching line is defined by y = M1 = const
which should be in the range 1.4 < M1 < 2.3381 because for smaller values of M1 the two
stationary phase points would be too close to each other [Nar96b] and for larger values the
two approximations start to differ too much. The stationary phase approximation is used
for y ≥M1 (region I in Figure 3.20), and the zero convexity approximation is employed for
y < M1 (region II in Figure 3.20). The parameter M2 determines the transition between the
direct numerical evaluation and the stationary phase/zero convexity approximation. The
direct numerical integrations of c`n have to be used whenever |∆φβ| becomes too small,
thus, for |∆φβ| < M2 = const (region II in Figure 3.20). The stationary phase and zero
convexity approximations are hence used for |∆φβ| ≥ M2. The numerical result for the
emission probability was found to be rather insensitive to the specific value of M2 in the
range 10 < M2 < 50.

The formula for the phase space averaged partial emission probability reads〈
d2W`

dω′dΩ

〉
= e2ω′

64π3k · pk · p′

{
(4p · p′ − 8m2)〈c`0(s− `)〉2 − 2m2a2

0 〈c`0(s− `)〉〈c`2(s− `)〉

+ m2a2
0

2

(
k · p
k · p′

+ k · p′

k · p

) [
〈c`+(s− `)〉2 + 〈c`−(s− `)〉2

]
− 2αk · k′ 〈c`0(s− `)〉

[
〈c`+(s− `)〉+ 〈c`−(s− `)〉

]}
(3.144)

http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/
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Figure 3.20: Differential photon yield dW1/dω
′dΩ as a function of scaled frequency ω′/ω

and scattering angle θ for a0 = 5, ∆φ = 25, and a hyperbolic secant pulse
envelope in the special reference frame. In the different areas of phase space
(I, II and II, which are delineated by dashed curves), different methods of
evaluation for the coefficients 〈c`n〉 are employed. Parameters are M1 = 2.33
and M2 = 10. (Compare with Figure 3.19.)

with the averaged coefficients

〈c`n(s− `)〉 =



JLn

(
ᾱ
√

s−`
β

)√
s−`
β

|n|√ 2π∣∣∣β√ s−`
β
g′(φ?)

∣∣∣ y ≥M1 and |β∆φ| ≥M2 ,

2πJLn(ᾱ) 1
|βg′′(0)|

1
3

Ai(−y) y < M1 and |β∆φ| ≥M2 ,

c`n(s− `) |β∆φ| < M2
(3.145)

with y from (3.143) and Ln is defined in Eq. (3.112). The explicit values of g′(φ?) and g′′(0)
can be taken from Table 3.1 for various pulse envelopes g. This method of approximation of the
partial amplitudes M` is not restricted to the non-linear Compton scattering process. It can be
easily transferred to other strong-field processes such as stimulated pair production [Hei10a,
Tit12, Nou12] or one-photon annihilation of e+e− pairs [Ild11b] which are cross channel
processes of non-linear Compton scattering.

For the numerical evaluation, the laser will be considered to have a frequency (in the
laboratory system) of ω = 1.55 eV colliding head-on with an electron beam with energy of
40 MeV, representing the conditions at ELBE at the HZDR described above in Section 3.4.
The partial emission probability W` for the first and second harmonics in a hyperbolic
secant pulse of duration ∆φ = 20 are presented in the left panel of Figure 3.21, where
the emission probability in the pulsed field is represented by the symbols. The emission
probability in a PPW is compared to an appropriate equivalent probability for an IPW.
This equivalent emission probability from an infinite plane wave is obtained by multiplying
the photon emission rate Ẇ` in an IPW with the effective interaction time Teff = ∆φeff/ω
which is related to the invariant phase interval ∆φeff (see discussion in Appendix A.3 for
details of the definition of ∆φeff), thus, W IPW

` = TeffẆ`. This corresponds to a normalization
to the same energy contained in the laser pulse. Within this approach, both the pulsed
and monochromatic photon yields coincide for low a0 � 1. That means that in the linear
interaction regime pulsed and infinite plane waves give the same result for the emission
probability. The dependence on the pulse shape drops out. For large values of a0 � 1, the
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Figure 3.21: Partial photon yields W` in a hyperbolic secant pulse with ∆φ = 20 (symbols
and interpolating thin curves) compared to the appropriately scaled yield in
an IPW (thick solid and dash-dotted curves). The matching parameters are
M1 = 2.33 and M2 = 20. Left panel: Behaviour of the first two harmonics
W1 (red diamonds and solid curve) and W2 (blue circles and dash-dotted
curve) as a function of a0. Right panel: Partial emission probabilities W` for
different laser strength a0 = 20 (green squares and solid curve) and a0 = 100
(orange triangles and dash-dotted curve). The two vertical lines in the left
panel refer to the values of a0 which are exhibited in the right panel.

emission probability in a pulsed laser field is enhanced by almost a factor of ten as compared
to the emission probability in an IPW. The differences between pulsed and monochromatic
yields at large values of a0 are due to non-linear finite-size effects. The two vertical green
and orange lines at a0 = 20 and a0 = 100, respectively, refer to the right panel of Figure 3.21,
where the partial emission probability W` is shown for fixed values of a0 = 20 (green solid
curves and squares) and a0 = 100 (orange dash-dotted curves and triangles) as a function
of the harmonic number ` including harmonics up to ` = 107. The symbols represent the
calculation in a PPW; the thick curves are for the appropriate IPW emission probabilities.
The cut-off harmonic in a monochromatic laser field can be estimated from the behaviour of
the Bessel functions at large values of both the index and the argument as `max ∼ a3

0 [Wat22].
While for low harmonics the photon yield W` is larger in pulsed fields, the ordering of the
two curves changes for high harmonics. There the emission probability in a PPW is smaller
than the corresponding probability of an IPW.

Comparing the total photon yields W =
∑
`W`, summed over all harmonics up to ` = 107

in Figure 3.22, it is found that the total emission probability in a pulsed field (red diamonds)
exceeds the IPW result by a factor of two for a0 = 100. For the result in an IPW, the
first harmonic, ` = 1, is shown as black dashed curve, as well as the sum over the first 140
harmonics (solid green curve), showing the slow convergence of the sum over `. Additionally,
an asymptotic approximation is depicted, which is equivalent to a constant crossed field
approximation (blue solid curve, see e.g. [Rit85, Tit11]). Additionally, the dotted curve is
a rough estimate for the asymptotic probability W = αa0∆φeff [DP10], with the effective
phase interval ∆φeff defined in (A.44) and the fine structure constant α.

3.13 Summary of Chapter 3
In this chapter, the process of non-linear one-photon Compton scattering in short strong
laser pulses was considered in the framework of strong-field QED using Volkov states within
the Furry picture where the laser pulse is modelled by a temporally shaped plane wave. An
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Figure 3.22: The total one-photon emission probability W as a function of laser strength
a0. The results for pulsed laser fields are shown as symbols (red diamonds)
being a factor of two above the asymptotic monochromatic result (solid blue
curve) based on the constant crossed field approximation (cf. e.g. [Tit11]).
The solid green curve shows the sum of the first 140 harmonics in a monochro-
matic wave (cf. [Tit11]). The blue dotted curve is a rough approximation
to the asymptotic IPW result (see the text). The black dashed curve is the
contribution from the first harmonic, ` = 1, for an IPW.

expression for the S matrix element was presented for the general case, i.e. for arbitrary
scattering geometry, laser strength, pulse length, pulse shape, laser polarization and carrier
envelope phase. The dependence of the S matrix and the photon emission probability on
the laser pulse is contained in three independent phase integrals A±(s) and A2(s). Several
methods for calculating these phase integrals have been presented. A direct numerical
integration of the corresponding expression allowed for a survey of the general features of
the frequency spectra and the azimuthal spectra of non-linear Compton scattering in short
laser pulses. Two different regimes, the ponderomotive regime and the bandwidth dominated
regime, were identified for ∆φ� 1 and ∆φ ∼ 1, respectively. It was shown that ∆φ ∼ 5 can
be considered as much larger than unity in this context.

In the ponderomotive regime, the frequency spectra acquire an interesting sub-peak
structure in strong laser pulses. The origin of these sub-peaks is an interference effect of
radiation produced at different times during the course of the pulse. This was verified using a
stationary phase analysis. The number of these sub-peaks has been calculated; it is related to
the value of the ponderomotive phase shift, ∆f ∝ a2

0∆φ, which is the same term that leads to
the emergence of the quasi-momentum in the limit of infinite plane waves. The ponderomotive
regime has been studied further by deriving a completely analytical representation of the
non-linear Compton amplitude in terms of generalized Laguerre functions.

For ultra-short laser pulses, ∆φ ∼ 1, the emission spectra strongly depend on the value
of the carrier envelope phase φ̂ for a0 > 1, leading to observable effects in the frequency
spectra and even more pronounced signatures in the azimuthal distributions. In the case of
linear laser polarization, the emission is either unidirectional or dipole-like in the direction
of the laser polarization, depending on the value of the carrier envelope phase. For circular
polarization, the symmetry in the azimuthal angle ϕ known from IPW is completely lost
for a0 > 1. A preferred direction is given by the direction where the laser vector potential
reaches its maximum value. The azimuthal symmetry is replaced by a new symmetry in the
composite variable ϕ− φ̂.

The low-energy limit of non-linear Thomson scattering was studied in comparison to
non-linear Compton scattering. In the quantum theory of non-linear Compton scattering,
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there exists a cut-off frequency ω′∞ <∞, which restricts the possible physical phase space,
while in the classical theory of Thomson scattering ω′∞ →∞. A scaling law for the Thomson
and Compton emission probabilities was derived, based on the different physical phase spaces,
i.e. the kinematic pile up below ω′∞ for non-linear Compton scattering is mimicked by a
suitable rescaling of the frequency variable. The scaling law allows to account for the quantum
recoil in classical calculations by rescaling emission probabilities.

For ultra-strong laser pulses, a0 � 1, an approximative calculation scheme for the emission
probability was presented, where an averaging over the sub-peaks in phase space is included.
Significantly modified partial and total photon yields in pulsed laser fields are found upon
comparing to the case of IPW laser fields. The partial yield for the first harmonic can be
up to a factor of ten larger than the corresponding IPW result for large values of a0. The
summed total photon yield is by a factor of two larger than the IPW result which is typically
approximated by a constant crossed field at large values of a0. This shows that the constant
crossed field approximation gives the correct order of magnitude, but underestimates the
total emission probability for pulsed laser fields.

The fact that the total emission probability in ultra-strong pulses with a0 � 1 can exceed
unity, W (1) & 1, is a hint that multi-photon emission channels need to be taken into account
in that regime [DP10]. This will be elaborated further in the next chapter, where the process
of two-photon emission in strong laser pulses is considered.

Effects due to the spatial focusing of the laser pulse, i.e. the extension to realistic spatial
pulse distributions deserves further investigations. (The discussion in the present chapter
is limited due to the fact that not even the single-particle wave functions in the field of a
focused laser pulse are known, as generalizations of Volkov states.) Nonetheless, these are
important issues in view of an experimental verification of the non-linear short pulse effects
described in this chapter. In particular, the robustness of the sub-peaks with respect to
realistic experimental conditions would be of great interest. The subjects of spatial focusing
of the laser pulse as well as finite electron distributions are considered in Appendix F within
the classical theory of Thomson scattering.



4
Chapter 4

Two-photon Compton scattering

Two-photon emission in an ultra-strong laser pulse, i.e. the simultaneous emission of
two photons with momenta k1,2 off an electron with momentum p in a collision with an
ultra-strong laser pulse is given by the reaction

e(p) + laser→ e(p′) + laser + γ(k1) + γ(k2) . (4.1)

This is the strong-field analogue of double Compton scattering [Man52], which is a pure
quantum process, becoming manifest in the vanishing of the process in the low energy limit
(k · p)/m2 → 0. The strong-field process, described by the one-step reaction (4.1) can also
happen due to the two-step process

e(p) + laser→ e(P ) + laser + γ(k1) , (4.2)
e(P ) + laser→ e(p′) + laser + γ(k2) , (4.3)

where the intermediate electron with momentum P becomes a real particle on the mass shell
P 2 = m2, which is enabled by the presence of the background laser field and is not possible
for the weak-field process.

4.1 Introductory remarks
Two-photon Compton scattering in a strong-laser field, i.e. the reaction (4.1), is described by
the S matrix element S = 〈p′r′;k1λ1;k2λ2|Ŝ[A]|pr〉, with one electron with momentum p and
spin r in the initial state |pr〉, and with one electron with momentum p′ and spin r′ as well
as two photons with momenta k1,2 and polarizations λ1,2 in the final state 〈p′r′;k1λ1;k2λ2|.
The reduction of the S matrix element into the two Feynman diagrams of Figure 4.1 is
outlined in Appendix A.7. This is a second-order process, meaning that the scattering
operator Ŝ[A] has to be expanded up to the second order in the Dyson series. Thus, the
Dirac-Volkov propagator appears in the Feynman diagrams. Two-photon Compton scattering
in strong-field QED has been considered previously in constant crossed fields in relation
to the two-loop electron mass operator [Mor75] and in infinite monochromatic plane-wave
fields [Löt09b, Löt09a]. Also two-photon synchrotron emission in a strong constant magnetic
field [Sok76] had been calculated. In this chapter, the two-photon Compton scattering is
presented for pulsed plane-wave fields. There are significant modification of the two-photon
Compton process in short laser pulses as compared to the case of infinite plane-wave fields
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p p′

k1 k2

+ p p′

k2 k1

Figure 4.1: Feynman diagrams for the two-photon Compton process, i.e. the coherent
emission of two photons (wavy lines). The double lines represent laser dressed
Volkov in and out states and the Dirac Volkov propagator between the two
vertices, respectively.

considered previously [Löt09b]. One of the most drastic modifications is the fact that there
are no singularities in the resonant on-shell part of the scattering matrix element for PPW,
as shown below.

Recently, the (incoherent) multi-photon emission in a strong laser field has been considered
as quantum radiation reaction [DP10]. The discussion of radiation damping as multi-
photon emission in the quantum picture (for the weak-field process) can also be found in
[Hei41, Wil41, Bet46, Bla47]. The two-photon process considered here is the lowest order
multi-photon emission process, going beyond the approximation of incoherent photon emission.

In this chapter, the laser field is considered to be linearly polarized with polarization
parameter ξ = 0, i.e. the general expression for the laser vector potential (A.24) goes over to

Aµ(φ) = A0g(φ)εµ cos(φ+ φ̂) , (4.4)

where the single laser polarization vector is denoted as εµ = (0, 1, 0, 0).
The present chapter is organized as follows: The derivation of the S matrix element

and a formula for the emission probability are presented, which allows for a later numerical
investigation of the latter one. The weak-field limit a0 � 1 is discussed, showing that the
general strong-field matrix element coincides with the well known perturbative matrix element
in the leading order expansion in a0. The relation of the one-step and two-step processes
described above are discussed. They are related to on-shell and off-shell contributions to
the two-photon emission process. For the on-shell part of the S matrix a factorization
into products of one-photon emission S matrices is shown explicitly. This is an expression
of the optical theorem on the tree level [Ild11a]. The relevance of Oleinik resonances is
discussed and the reappearance of the Oleinik singularities in the limit of infinite plane
waves mentioned. Numerical results for the differential two-photon emission probability are
analysed, highlighting the differences between infinite plane waves and pulsed laser fields. The
two-photon to one-photon ratio is calculated and a value of R = 10−2 is obtained for a0 = 1,
which is two orders of magnitude larger than the result for weak fields. Some analytical
results are obtained for a box-shaped pulse profile, where the dependence of the different
parts of the emission probability on the pulse length become apparent.

4.2 Two-photon matrix element and emission probability
The reduction of the S matrix element S = 〈p′r′;k1λ1;k2λ2|Ŝ[A]|pr〉, as presented in
Appendix A.7 leads to the two Feynman diagrams in Figure 4.1. They correspond to the two
contributions to the S matrix

S = −ie2
∫
d4xd4yΨ̄p′(y)/ε∗2e

ik2 · yG(y, x|A)/ε∗1e
ik1 ·xΨp(x) + (1↔ 2) , (4.5)
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where (1↔ 2) means the exchange of photons “1” and “2” in the second term accounting for
the symmetrization of the two-photon wave function. In the above equations, Ψp and Ψ̄p′

denote the Volkov wave functions for the electron in the initial and final states with momenta
p and p′, respectively; G(y, x|A) denotes the laser dressed Dirac-Volkov electron propagator
[Rit85], see also Section 2.9. The momenta of the two emitted photons are denoted by k1,2,
while ε1,2 stand for the corresponding polarization vectors with k1,2 · ε1,2 = 0. Both, the
Volkov wave function Ψp(x) and the Dirac-Volkov propagator G(x, y|A), depend on the Volkov
matrix functions Ep(x), for which it is most suitable to employ the spectral decomposition

Ep(x) =
∫
dsdφ

2π e−i(p+sk) ·xeisφΩp(φ) , (4.6)

with

Ωp(φ) =
(

1 + e

(2k · p)
/k /A(φ)

)
e−ifp(φ) (4.7)

and the non-linear phase

fp(φ) = αp

φ∫
0

dφ′a(φ′) + 2βp
φ∫

0

dφ′a2(φ′) (4.8)

with coefficients αp = ma0(p · ε)/(p · k), βp = m2a2
0/(4p · k) and introducing the abbreviation

a(φ) = g(φ) cos(φ+ φ̂). Using the representation (2.77) for the Dirac-Volkov propagator, the
S matrix element (4.5) can be written as

S = −ie2
∫
d4xd4y

d4P

(2π)4 ūp′Ēp′(y)/ε∗2EP (y)G0(P )ĒP (x)/ε∗1Ep(x)up + (1↔ 2) , (4.9)

with the free electron propagator in momentum space G0(P ) = (/P −m+ i0+)−1. Using the
spectral decomposition for the Volkov matrix functions in the S matrix, one obtains

S = − ie2

(2π)8

∫
d4xd4yd4P [ds][dφ]ei(s1φ1−s′1φ

′
1+s2φ2−s′2φ

′
2)

× ei(p′+s′2−P−s2k+k2) · y e−i(p+s1k−P−s′1k−k1) ·x

× ūp′Ω̄p′(φ′2)/ε∗2ΩP (φ2)G0(P )Ω̄P (φ′1)/ε∗1Ωp(φ1)up + (1↔ 2) , (4.10)

where [ds] is an abbreviation for the integration over all variables dsj and ds′j ; the same holds
for [dφ]. The integrations over d4x and d4y yield momentum conserving delta distributions

S = −ie2
∫
d4P [ds][dφ]ei(s1φ1−s′1φ

′
1+s2φ2−s′2φ

′
2)

× δ4(p′ + k2 − P + (s′2 − s2)k) δ4(p− k1 − P + (s1 − s′1)k)
× ūp′Ω̄p′(φ′2)/ε∗2ΩP (φ2)G0(P )Ω̄P (φ′1)/ε∗1Ωp(φ1)up + (1↔ 2) . (4.11)

Shifting the variables s1,2 → s1,2 + s′1,2 and integrating over d4P fixes the propagator
momentum as P = p− k1 + s1k. With the suitable definition of P1 = p− k1 one finds for the
S matrix the expression

S = −ie2
∫

[ds][dφ]ei(s1φ1+s2φ2)ei(s
′
1(φ1−φ′1)+s′2(φ2−φ′2)) δ4(p− k1 − k2 − p′ + (s1 + s2)k)

× ūp′Ω̄p′(φ′2)/ε∗2ΩP1(φ2)G0(P1 + s1k)Ω̄P1(φ′1)/ε∗1Ωp(φ1)up + (1↔ 2) , (4.12)
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p p′

k1 k2

−→ p p′

`

P1 + `k

s− `

k1 k2

Figure 4.2: Feynman diagrams for the two-photon Compton process in a representation
using dressed vertices.

upon noting that the matrices Ωp do depend only on the three momentum components which
are transverse to k, namely p1, p2 and p+, with k1 = k2 = k+ = 0, such that ΩP1+sk =
ΩP1 . The successive integrations over the primed variables s′1,2 yield delta distributions
∝ δ(φ′1,2 − φ1,2) and the following integrations over φ′1,2 fix the values of φ′1,2 = φ1,2, yielding

S = −ie2(2π)2
∫

[ds][dφ]ei(s1φ1+s2φ2) δ4(p− k1 − k2 − p′ + (s1 + s2)k)

× ūp′Ω̄p′(φ2)/ε∗2ΩP1(φ2)G0(P1 + s1k)Ω̄P1(φ1)/ε∗1Ωp(φ1)up + (1↔ 2) . (4.13)

Defining the dressed vertex functions

fε1P,p(φ) = Ω̄P (φ)/ε∗1Ωp(φ) = Γ̄P (φ)/ε∗1Γp(φ)eifP (φ)−ifp(φ) (4.14)

and with a last shift of variables s2 → s = s1 + s2 and denoting ` = s1, the intermediate
result for the S matrix is given as

S = −ie2(2π)2
∫
ds δ4(p+ sk − k1 − k2 − p′)

∫
dφ1dφ2d`

× ūp′
(
ei(s−`)φ2fε2p′,P1

(φ2)
)
G0(P1 + `k)

(
ei`φ1fε1P1,p

(φ1)
)
up + (1↔ 2) . (4.15)

This result for the S matrix strongly resembles an alternative formulation of strong-field QED
where laser dressed vertices are employed instead of laser dressed propagators and initial- and
final-state wave functions [Mit75]. The physical meaning of Eq. (4.15) is interpreted easily
when it is read from right to left, see also Figure 4.2. The initial electron with momentum p
approaches the first vertex, where the electron interacts with the laser field and absorbs a
number of ` laser photons (with total momentum `k) while the first photon with momentum
k1 is emitted. The amplitude for this partial process is described by the dressed vertex factor
ei`φ1fε1P1,p

(φ1). After the interaction, the electron, which has a momentum P1 + `k, freely
propagates to the second vertex. There, s− ` laser photons are absorbed from the background
field while the second photon with momentum k2 is emitted. The total number of absorbed
laser photons is s and is fixed by the energy momentum conservation upon performing the
integral over ds as

s = p′− + k−1 + k−2 − p−

k−
= p′ · (k1 + k2) + k1 · k2

k · p
. (4.16)

The value of the photon exchange at the first vertex ` is not fixed. One has to coherently
add all allowed possibilities, which is implemented by the integral over d`. One could say
that the integral over ` in (4.15) accumulates all possible paths the system may take during
the interaction. The integral over d` can be evaluated analytically by employing the contour
integration technique, similar to the discussion of the laser dressed propagator in Section 2.9
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making possible a numerical evaluation of the two-photon S matrix in (4.15). The free
electron propagator is rewritten as

G0(P1 + `k) =
/P 1 + `/k +m

(P1 + `k)2 −m2 + i0+ = 1
2P1 · k

/P 1 + `/k +m

`− `1 + i0′+ (4.17)

to expose the single pole at ` = `1 − i0′+ with

`1 ≡
m2 − P 2

1
2k ·P1

= p · k1
k ·P1

(4.18)

and 0′+ ≡ sign(P+
1 )0+. The quantity `1 controls the amount of momentum `1k transferred

to the electron such that the propagator momentum is on its mass shell, i.e. (P1 + `1k)2 =
m2. The sign of P+

1 determines the location of the propagator pole to be below or above
the real axis in the complex ` plane. For the process of two-photon Compton scattering
discussed here, the momentum conservation for the plus component of the momentum reads
P+

1 = p+ − k+
1 = p′+ + k+

2 . Since both k+
2 > 0 and p′+ > 0 are positive, as they belong

to asymptotically free on-shell particles, also P+
1 > 0. Thus, the propagator pole in (4.17)

always lies below the real axis due to momentum conservation.
Since the integrand of the pole integration d` does not vanish in the limit `→ ±∞, one

has to transform the integrand according to

`

`− `1 + i0′+ → 1 + `1
`− `1 + i0′+ (4.19)

such that the non-trivial part goes to zero as ` → ∞. With these preparations, the pole
integration can be performed, yielding (with φ ≡ φ2 and φ′ ≡ φ1)

∞∫
−∞

d`
(/P 1 + `/k +m)e−i`(φ−φ′)

`− `1 + i0′+

= /k

∞∫
−∞

d`e−i`(φ−φ
′) + (/P 1 + `1/k +m)

∞∫
−∞

e−i`(φ−φ
′)

`− `1 + i0′+ (4.20)

= 2πδ(φ− φ′)/k − 2πiΘ(φ− φ′)e−i(`1−i0′+)(φ−φ′)(/P 1 + `1/k +m) . (4.21)

The result of the pole-integration in (4.21) resembles the typical structure of a fermion
propagator in light-front form [Kog70]. The last term in the last line of (4.21) introduces a
time ordering (in the laser phase), meaning that the emission at the second vertex has to
happen at a later (light-front) time than the emission at the first vertex by means of the step
function Θ(φ− φ′). Additionally, (4.21) includes a part ∝ δ(φ− φ′) where both photons are
emitted simultaneously, which is related to the instantaneous zero-mode propagator. This
contribution is specific to the fermion propagator and does not appear in the analysis of
the trident process [Ild11a] with the photon propagator. Negative values of P+

1 would shift
the pole to the upper half plane corresponding to the opposite time ordering Θ(φ′ − φ), as
encountered in the analysis of the Fourier transformed Dirac-Volkov propagator in Section 2.9.
As discussed there, this opposite time ordering corresponds to the propagation of anti-particles
in the intermediate states. Thus, propagating anti-particles do not give any contribution to
the two-photon Compton process due to the conservation of P+ [Kog70]. The final result for
the S matrix of two-photon Compton scattering in a strong laser pulse is noted as

S = −ie2(2π)3 2
k−

δ3 (p− k1 − k2 − p′
)
M (4.22)
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Table 4.1: The Dirac current coefficients Vn and Unl of the two-photon Compton amplitude,
using the abbreviations Xp = /k/ε ma0/(2 k · p), X̄p = γ0X†pγ

0 and G1 = /P 1 +
`1/k +m.

V0 /ε∗2/k/ε
∗
1

V1 (X̄p′/ε
∗
2/k/ε
∗
1 + /ε∗2/k/ε

∗
1Xp)

V2 X̄p′/ε
∗
2/k/ε
∗
1Xp

U00 /ε∗2G1/ε
∗
1

U01 /ε∗2G1(X̄P1/ε
∗
1 + /ε∗1Xp)

U10 (X̄p′/ε
∗
2 + /ε∗2XP1)G1/ε

∗
1

U11 (X̄p′/ε
∗
2 + /ε∗2XP1)G1(X̄P1/ε

∗
1 + /ε∗1Xp)

U02 /ε∗2G1XP1/ε
∗
1Xp

U20 X̄p′/ε
∗
2XP1G1/ε

∗
1

U12 (X̄p′/ε
∗
2 + /ε∗2XP1)G1X̄P1/ε

∗
1Xp

U21 X̄p′/ε
∗
2XP1G1(X̄P1/ε

∗
1 + /ε∗1Xp)

U22 X̄p′/ε
∗
2XP1G1X̄P1/ε

∗
1Xp

with the amplitude

M = 1
2k ·P1


2∑

n=0
VnCn(s)− i

2∑
n,l=0

UnlBnl(s, `1)

 + (1↔ 2) (4.23)

and the phase integrals

Cn(s) =
∫
dφ an(φ) exp{isφ− ifp(φ) + ifp′(φ)} , (4.24)

Bnl(s, `1) =
∫
dφ dφ′Θ(φ− φ′)an(φ) exp{i(s− `1)φ− ifP1(φ) + ifp′(φ)}

× al(φ′) exp{i`1φ′ − ifp(φ′) + ifP1(φ′)} (4.25)

with a(φ) = g(φ) cos(φ + φ̂). The Dirac current coefficients read Vn = ūp′Vnup and Unl =
ūp′Unlup, where Vn and Unl are summarized in Table 4.1. The phase integrals C0, B0l and
Bn0 are numerically non-convergent due to the missing pre-exponential factors g(φ) and
g(φ′), respectively. However, these integrals can be defined as a superposition of convergent
phase integrals by applying a gauge transformation εµi → εµi + Λikµi [Ild11a], yielding, e.g.

(s− `1)B0l(s, `1) = iCl(s) + (αP1 − αp′)B1l(s, `1) + 2(βP1 − βp′)B2l(s, `1) . (4.26)

Thus, gauge invariance reduces the number of independent phase integrals from twelve to six
well-behaved ones per channel. The calculations that lead to the relation (4.26) can be found
in Appendix D together with further relations for the other divergent phase integrals. The
argumentation that leads to relations like (4.26) is that the two-photon Compton amplitude
M is invariant under the gauge transformations mentioned above if and only if the phase
integrals fulfil the relations which are summarized in Eqs. (D.19) – (D.21), which is a possibility
to define C0, B0l and Bn0 in a unique way based on basic principles of the theory.

Eliminating all of the divergent phase integrals, one arrives at the alternative expression
for the two-photon amplitude

M = 1
2k ·P1


2∑

n=1
ṼnCn(s)− i

2∑
n,l=1

ŨnlBnl(s, `1)

 + (1↔ 2) (4.27)
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with the modified Dirac current structures

Ṽ1 = V1 + V0
αp − αp′

s
− U10

`1
+ U01
s− `1

+ U00

[
αp − αp′
s(s− `1) −

αP1 − αp′
`1(s− `1)

]
, (4.28)

Ṽ2 = V2 + V0
2(βp − βp′)

s
− U20

`1
+ U02
s− `1

+ 2U00

[
βp − βp′
s(s− `1) −

βP1 − βp′
`1(s− `1)

]
, (4.29)

Ũ11 = U11 + U10
αp − αP1

`1
+ U01

αP1 − αp′
s− `1

+ U00
αp − αP1

`1

αP1 − αp′
s− `1

, (4.30)

Ũ12 = U12 + U10
2(βp − βP1)

`1
+ U02

αP1 − αp′
s− `1

+ U00
2(βp − βP1)

`1

αP1 − αp′
s− `1

, (4.31)

Ũ21 = U21 + U20
αp − αP1

`1
+ U01

2(βP1 − βp′)
s− `1

+ U00
αp − αP1

`1

2(βP1 − βp′)
s− `1

, (4.32)

Ũ22 = U22 + U20
2(βp − βP1)

`1
+ U02

2(βP1 − βp′)
s− `1

+ U00
2(βp − βP1)

`1

2(βP1 − βp′)
s− `1

.

(4.33)

The differential two-photon emission probability can be obtained in the usual way by
squaring the S matrix and multiplying with the phase space of the final state particles as
dW = 1

2p+ |S|2dΠ with the three-particle phase space element

dΠ = d3p′
(2π)32p′+

d3k1
(2π)32ω1

d3k2
(2π)32ω2

, (4.34)

where the phase space element of the outgoing electron p′ is employed in light-front form for
an easy integration of the delta distribution in |S|2. The six-fold differential probability of
two-photon emission per incident laser pulse finally reads

d6W

dω1dΩ1dω2dΩ2
= α2ω1ω2

64π4(k · p)(k · p′) |M |
2 (4.35)

with the fine structure constant α = e2/4π. This quantity of course depends on all the spin
and polarization variables of the participating particles (r, r′, λ1, λ2), which are not noted
explicitly. If one is not interested in the spin and polarization dependence, one should average
the above expression over r and sum over all final state polarizations and spin states r′, λ1, λ2
as

d6W

dω1dΩ1dω2dΩ2
= 1

2
∑

r,r′,λ1,λ2

d6W (r, r′, λ1, λ2)
dω1dΩ1dω2dΩ2

. (4.36)

4.3 Weak-field expansion of the two-photon matrix element
For weak laser fields, characterized by a0 � 1, the strong-field two-photon Compton amplitude
(4.23) goes over to the perturbative result, known from [Man52, Jau76]. To extract the
perturbative matrix element from the general expression (4.23), only terms up to the order of
a0 have to be taken into account. The Dirac current coefficients Tn and Unl (see Table 4.1)
behave as Vn ∼ an0 and Unl ∼ an+l

0 , which reduces the number of relevant terms in (4.23)

M = 1
2P1 · k

{
V0C0 + V1C1 − i

(
U00B00 + U01B01 + U10B10

)}
+ (1↔ 2) . (4.37)

One uses the various gauge invariance relations (D.19) – (D.21) to regularize the ill-defined
phase integrals with index zero. For instance, the transformed B10 is

B10(s, `1) = − i

`1
C1(s) + αp − αP1

`1
B11(s, `1) + 2βp − βP1

`1
B12(s, `1) , (4.38)



88 4 Two-photon Compton scattering

1 2

+

2 1

=

1 2

+

1 2

+

1 2

+

2 1

+

2 1

+

2 1

+ · · ·

Figure 4.3: Expansion of the non-perturbative two-photon Compton matrix element in
powers of the interaction with the laser pulse up to the leading order in a0,
showing the non-vanishing contributions only.

where the first term is O(a0
0), the second term is O(a1

0) and the third term even is O(a2
0).

Any term but the first one may be safely neglected as they produce contributions in higher
order than the leading order in a0 when B10 is plugged into (4.37). Using this argumentation
for all relevant terms one ends up with

M = C1(s)
2P1 · k

{
V1 + (αp − αp′)

s
V0 + αp − αp′

s(s− `1)U00 −
αP1 − αp′
`1(s− `1)U00 + U01

s− `1
− U10

`1

}
+ (1 ↔ 2) . (4.39)

Since the term in the brackets is of order a1
0, the phase integral C1(s) can be approximated

in the leading order as

C1(s)→
∫
dφeisφg(φ) cos(φ+ φ̂) ≡ C̃1(s) . (4.40)

After some cumbersome manipulations, using the relations

∆(p+ k) = 1
2p · k , ∆(p′ − k) = − 1

2p′ · k , (4.41)

∆(p− k1) = − 1
2`1P1 · k

, ∆(p− k1 + k) = 1
(1− `1)2P1 · k

, (4.42)

∆(p− k1 + k) = `1
`1 − 1∆(p− k1) , (4.43)

where ∆(p) = (p2 −m2 + i0+)−1 is the scalar Feynman propagator, one finally ends up with
the result

M = ma0C̃1(s)
{
ūp′/ε

∗
2G0(p− k1 + k)/ε∗1G0(p+ k)/εup

+ ūp′/ε
∗
2G0(p− k1 + k)/εG0(p− k1)/ε∗1up

+ ūp′/εG0(p′ − k)/ε∗2G0(p− k1)/ε∗1up
}

+ (1↔ 2) , (4.44)

where the three contributions correspond to the three Feynman diagrams in the first line
of Figure 4.3, where the first, second and third term correspond to the first, second and
third Feynman diagram. The three diagrams in the second line of Figure 4.3 are obtained by
interchanging photon “1” and “2”. In the limit of a monochromatic IPW laser field, g → 1,
C̃1(s) → π[δ(s − 1) + δ(s + 1)], where the second term is excluded by energy momentum
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conservation. Using this result in the amplitude (4.44), one obtains the S matrix in the
weak-field approximation

S = −ie
2ma0
2 (2π)4δ4(p+ k − k1 − k2 − p′)

{
ūp′/ε

∗
2G0(p− k1 + k)/ε∗1G0(p+ k)/εup

+ ūp′/ε
∗
2G0(p− k1 + k)/εG0(p− k1)/ε∗1up

+ ūp′/εG0(p′ − k)/ε∗2G0(p− k1)/ε∗1up
}

+ (1↔ 2) (4.45)

which is, except for the different global normalization, equivalent to the textbook result for
the S matrix for perturbative double Compton effect [Jau76].

4.4 On-shell and off-shell contributions
It is known that in strong-field second-order processes the intermediate particles can come
on their mass shell due to the presence of the background field [Ole67, Ole68, Löt09b, Hu10,
Ild11a]. Thus, the S matrix for two-photon Compton scattering contains contributions from
virtual off-shell and real on-shell intermediate electrons. For IPW laser fields this fact leads
to the emergence of Oleinik singularities, i.e. unphysical divergences of the S matrix, which
have to be regularized, e.g. by including an imaginary mass contribution to the propagator
denominator, which is related to the imaginary part of the mass operator Σ and to the
total probability of one-photon Compton scattering via the optical theorem [Löt08, Löt09b].
This is an implementation of the radiative width of the Zel’dovich quasi-energy levels due to
single-photon decay [Ole68, Bec76]. In [Ild11a] it was shown for the trident pair-production
process that the matrix element is free of singularities in pulsed laser fields. Here, this method
is applied to the two-photon Compton process, where the internal particle is a fermion instead
of the photon in the trident process.

According to [Ild11a], the virtual off-shell contributions can be separated from the resonant
on-shell contributions due to real intermediate electrons by applying the Sokhotsky-Weierstraß
theorem, which is valid in the distributional sense,

1
`− `1 + i0+ = P 1

`− `1
− iπδ(`− `1) , (4.46)

where P denotes the principal value part. Using this relation in the expression (4.21) for the
pole integral, one finds the decomposition

∞∫
−∞

d`
e−i`(φ−φ

′)

`− `1 + i0+ = P
∞∫
−∞

e−i`(φ−φ
′)

`− `1
− iπe−i`1(φ−φ′) . (4.47)

Using methods of complex analysis, the principal value of an integral can be calculated by
taking the arithmetic average of evading the pole above (complex path C+) and below (C−)
the real line [Sch12]

P
∞∫
−∞

d`
e−i`(φ−φ

′)

`− `1
≡ 1

2

 ∫
C+

d`
e−i`(φ−φ

′)

`− `1
+
∫
C−

d`
e−i`(φ−φ

′)

`− `1


= −iπ[Θ(φ− φ′)−Θ(φ′ − φ)]e−i`1(φ−φ′) . (4.48)

By means of the δ distribution in (4.46) it becomes clear that the imaginary part of (4.46) is
precisely the contribution of intermediate on-shell particles since δ(` − `1) singles out the
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on-shell values of the propagator momentum P1 + `k → P1 + `1k, where (P1 + `1k)2 = m2.
By recalling that principal value integration (P) effectively means cutting out a small interval
around the pole at ` = `1 it becomes clear that principal value part of M refers to the virtual
(off-shell) process.

Thus, the two-photon amplitude M is decomposed into an off-shell part Moff , related
to the principal value, and an on-shell part Mon related to the pole contribution of the
propagator where the propagator momentum is forced on its mass shell. The on-shell part
refers to the two-step process, where the two photons are emitted independently [Ild11b].
This has also been denoted as Compton cascade in the literature [Löt09b].

From the technical point of view, this decomposition affects only the two-dimensional
phase integrals Bnl. The domain of integration in (4.25) is a triangle due to the appearance
of the step function Θ(φ− φ′), which is the only occasion where the integrations over dφ and
dφ′ are coupled. The above decomposition (4.47) into principal value and delta contribution
divides the domain of integration of the Bnl according to

Θ(φ− φ′) = 1
2sign(φ− φ′) + 1

2 (4.49)

such that

Bnl,off = 1
2

∫
dφ dφ′ sign(φ− φ′)an(φ)al(φ′)ei(s−`1)φ−ifP1 (φ)+ifp′ (φ)ei`1φ

′−ifp(φ′)+ifP1 (φ′) .

Bnl,on = 1
2

∫
dφ dφ′ an(φ)al(φ′)ei(s−`1)φ−ifP1 (φ)+ifp′ (φ)ei`1φ

′−ifp(φ′)+ifP1 (φ′) . (4.50)

For the on-shell part of Bnl, the two integrations over dφ and dφ′ decouple.1 With these
results the on- and off-shell parts of the two-photon amplitude can be given as

Moff = 1
2k ·P1


2∑

n=0
VnCn(s) +

2∑
n,l=0

UnlBnl,off(s, `1)

 + (1↔ 2) , (4.51)

Mon = − 1
2k ·P1

2∑
n,l=0

UnlBnl,on(s, `1) + (1↔ 2) . (4.52)

One finds for the squared amplitude |M |2 = |Moff |2 + |Mon|2, i.e. there is no interference
between the off- and on-shell parts, or between the one-step and two-step processes. It is
therefore possible to define on-shell and off-shell emission probabilities according to

d6Won,off
dω1dΩ1dω2dΩ2

= α2ω1ω2
64π4(k · p)(k · p′) |Mon,off |2 ,

d6W

dω1dΩ1dω2dΩ2
= d6Woff
dω1dΩ1dω2dΩ2

+ d6Won
dω1dΩ1dω2dΩ2

(4.53)

It can be shown that the on-shell part of the S matrix factorizes into a product of two
one-photon S matrices for each of the two channels. To show the factorization of the on-shell
part of the S matrix, it is convenient to apply again the Sokhotsky-Weierstraß theorem,
i.e. to force the propagator momentum on its mass shell in Eq. (4.15), where one has the
replacement

G0(P1 + `k)→ − iπ

2k ·P1
(/P 1 + `k +m)δ(`− `1) . (4.54)

1 For φ̂ = 0 it can be shown that Bnl,on = Re Bnl and Bnl,off = Im Bnl with the symmetric choice of the
lower integration boundary of the non-linear phase integrals fp in Eq. (4.8).
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Figure 4.4: Diagrammatic representation of the on-shell part of the two-photon Compton
matrix element and the factorization into two one-photon S matrix elements.
The dashed vertical lines indicate the pole contribution of that propaga-
tor, i.e. the propagator is replaced by a delta distribution according to the
Sokhotsky-Weierstraß theorem.

With this result the on-shell part Son of the S matrix reads

Son = −ie2(2π)2 −iπ
2k ·P1

2
k−

δ3(p− p′ − k1 − k2)

×
∫
dφ1dφ2ūp′ e

i(s−`1)φ2fε2p′,P1
(φ2)G1 e

i`1φ1fε1P1,p
(φ1)up + (1↔ 2) . (4.55)

Employing the completeness relation for spinors G1 =
∑
r′′ uP1+`1k,r′′ ūP1+`1k,r′′ to the numer-

ator of the propagator (r′′ is the spin of the intermediate electron), one obtains

Son = 1
2
∑

r′′=↑,↓
(−ie)2(2π)3 1

2P+
1

( 2
k−

)2
δ3(p− p′ − k2 − k1)

×
∫
dφ2ūp′e

i(s−`1)φ2fε2p′,Q1
(φ2)uQ1,r′′

×
∫
dφ1ūQ1,r′′e

i`1φ1fε1Q1,p
(φ1)up + (1↔ 2) (4.56)

with Q1 = P1 + `1k being the on-shell value of the propagator momentum with Q2
1 = m2.

Using the identity

δ3(p− p′ − k1 − k2) =
∫
d3p′′ δ3(p′′ − p′ − k2) δ3(p− p′′ − k1) , (4.57)

the on-shell part of S factorizes on the amplitude level

Son = 1
2

∫
d2p′′

(2π)32p′′+
∑

r′′=↑,↓
S

(1)
p′′→p′k2

(s− `1)S(1)
p→p′′k1

(`1)

+ 1
2

∫
d2p′′

(2π)32p′′+
∑

r′′=↑,↓
S

(1)
p′′→p′k1

(s− `2)S(1)
p→p′′k2

(`2) , (4.58)

where S(1) denotes the S matrix for the one-photon Compton process given in Eq. (3.20).
The product of the one-photon S matrices has to be integrated over all intermediate states
with the Lorentz invariant measure d3p′′/(2π)22p′′+ and summation over the intermediate
spin r′′. The factorization is realized on the amplitude level for each channel separately. A
diagrammatic representation is exhibited in Figure 4.4. This result is a consequence of the
optical theorem [Pes95]: The absorptive part of an amplitude is equal to to a sum over all
possible real intermediate state particles, integrated with a Lorentz invariant integration
measure. In numerical calculations of differential spectra, the interference between the two
Feynman diagrams on the left hand side of Figure 4.4, i.e. between the direct channel and
the exchange channel, can be of the same order of magnitude as the non-interference terms.
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In the weak-field limit a0 � 1, the off-shell part of the S matrix is proportional to a0 in
lowest order, as discussed above in Section 4.3, corresponding to the absorption of one laser
photon (see also Figure 4.3). Contrarily, the leading order contribution to the on-shell part is
∝ a2

0, since at least two laser photons are needed to satisfy the on-shell energy momentum
conservation. For each one-photon Compton matrix element S(1) on the right hand side of
the Eq. (4.58) one has to employ the weak-field expansion [see Eq. (3.28) and Appendix C.1],
which is of order a0.

4.5 Oleinik singularities and the IPW limit
In the limit of IPW laser fields, the on-shell part of the two-photon S matrix, i.e. the Compton
cascade or the two-step process, diverges. These divergences appear where the propagator
momentum reaches its mass shell. This phenomenon is termed Oleinik resonance singularities
[Ole67, Ole68]. In the above expression for the S matrix in a PPW laser field, no such
singularities are present. In particular all divergent phase integrals Cn and Bnl can be
regularized by the requirement of gauge invariance.

Here, the IPW limit of the two-photon Compton matrix element is calculated to reveal
the emergence of the Oleinik singularities for these laser fields. The calculation is similar to
Section 2.9, where the IPW limit of the Dirac-Volkov propagator was discussed. A proper
starting point is the expression (4.15) for the two-photon S matrix. In the case of an IPW
laser field, each of the vertex functions contains a part Φi that is periodic with the laser
frequency [Flo83],

ei`φfε1P1,p
(φ) = ei(`−βp+βP1 )φΦ1(φ) (4.59)

The periodicity of Φ1 allows for a Fourier series expansion of the latter, such that∫
dφei`φfε1P1,p

(φ) =
∞∑

n=−∞
2πδ(`− βp + βP1 − n)Ξε1P1,p

(n) , (4.60)

with the Fourier coefficients Ξε1P1,p
(n) which are complicated functions of generalized Bessel

functions times products of several Dirac matrices. Their explicit form is of no relevance for
the discussion here (for explicit representations of these expressions see e.g. [Löt09a]). Using
a similar decomposition for the second vertex, the S matrix reads

S = −ie2(2π)4 ∑
n′,n

∫
dsd` δ(s− `− βP1 + βp′ − n′)δ(`− βp + βP1 − n)

× δ4(p+ sk − k1 − k2 − p′)
ūp′Ξε2p′,P1

(n′)(/P 1 + `/k +m)Ξε1P1,p
(n)up

(P1 − `k)2 −m2 + i0+ + (1↔ 2) .

(4.61)

Performing the integrals over d` and ds one obtains

S = −ie2(2π)4 ∑
n′,n

δ4(q + n′k − k1 − k2 − q′)

×
ūp′Ξε2p′,P1

(n′ − n)(/P 1 + (n+ βp − βP1)/k +m)Ξε1P1,p
(n)up

(q − k1 − nk)2 −m2
? + i0+ + (1↔ 2) , (4.62)

where the quasi-momentum qµ = pµ + βpk
µ and the effective mass m2

? = q2 have been
introduced. Abbreviating the expression in the numerator as J21(n′ − n, n), the S matrix in
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IPW laser fields reads [Löt09b, Löt09a]

S = −ie2(2π)4
∞∑
n′=1

∞∑
n=−∞

δ4(q + n′k − k1 − k2 − q′)

×
(

J21(n′ − n, n)
(q − k1 − nk)2 −m2

? + i0+ + J12(n′ − n, n)
(q − k2 − nk)2 −m2

? + i0+

)
, (4.63)

The S matrix diverges if any of the two propagator denominators becomes zero. This defines
the resonance conditions as

(q − k1,2 − nk)2 −m2
? = 0 . (4.64)

Solving for ω1,2, the resonance frequencies read [Löt09a]

ωres
1,2(n) = nk · q

(q + nk) ·n1,2
= nk · p

[p+ (n+ βp) k] ·n1,2
, (4.65)

where n1,2 = (1, cosϕ1,2 sin θ1,2, sinϕ1,2 sin θ1,2, cos θ1,2) is the unit vector in the direction of
k1,2 (with θ1,2 and ϕ1,2 denoting the usual polar and azimuthal angles of the emitted photons).
The resonances for ω1 (ω2) emerge when the first (second) propagator denominator in (4.63)
vanishes, which corresponds to first (second) Feynman diagram in Figure 4.1 and coincide
with the one-photon Compton IPW harmonics (C.24). The difference between the IPW and
PPW case is the following: For pulsed fields the propagator denominator can also vanish.
However, these pole contributions are rendered finite due to the integration over d`, e.g. in
Eq. (4.20). In contrast, for the case of IPW considered here, the integration is replaced by a
sum due to the infinite extent of the laser field. Hence, in the case of IPW one has a sum
over divergences. In calculations of physical processes within the IPW model for the laser
fields these singularities have to be regularized, which has been done in the literature by
including the imaginary part of the electron mass operator to the propagator denominator
[Ole68, Bec76, Ros96, Sch07, Löt09a]. Since the imaginary part of the (one-loop) mass
operator Σ is related to the total emission one-photon emission probability, this replacement
accounts for the finite lifetime of Volkov electrons, which spontaneously emit photons via the
one-photon Compton effect [Hu11]. The appearance of Oleinik resonances is related to the
existence of Zel’dovich levels of the Volkov wave functions and the Dirac-Volkov propagator in
the case of IPW [Ole68]. For finite temporal laser pulses, the Zel’dovich levels are broadened,
which leads to finite results for the on-shell contributions to two-photon Compton scattering
and other second-order strong-field processes. The singularities are replaced by resonance
structures as can be seen in the numerical results below.

The energy momentum conservation in (4.63) leads to an expression for ω2 as a function
of ω1 and the scattering angles

ω2(ω1, n
′) = n′k · q − (q + n′k) · k1

[q + n′k − k1] ·n2
=
n′k · p− p · k1 −

(
n′ + m2a2

0
4k · p

)
k · k1[

p+
(
n′ + m2a2

0
4k · p

)
k − k1

]
·n2

. (4.66)

While in a PPW the two frequencies ω1,2 are independent of each other, the above equation
induces a correlation between ω1 and ω2, with the harmonic number n′ ∈ N.

4.6 Numerical results
For the numerical evaluations, the initial electrons are considered to have a Lorentz factor
γ = p0/m = 104, available, e.g. at the European XFEL electron beam [XFE], in head-on
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collisions with a laser pulse with frequency ω = 1.55 eV. The calculations have been performed
for a pulse shape g(φ) = cos2( πφ

2∆φ) for −∆φ ≥ φ ≥ ∆φ and zero otherwise, such that ∆φ
is the dimensionless FWHM pulse length. (A similar kinematic situation with the same
centre-of-mass energy could be achieved by colliding an XFEL X-ray pulse [XFE] with low
energy electrons, e.g. γ = 10, provided by an optical laser acceleration set-up [Fau06].)

In Figures 4.5, 4.6 and 4.7, the numerical results for the differential two-photon emission
probability are exhibited as a function of ω1 and ω2. In the case of an IPW there is the
strict correlation ω2(ω1, n

′), such that one can expect the most drastic differences between an
IPW and a PPW to be evident in this phase space cut. Since the motion of the electron is
relativistic, the radiation is produced in a cone around the spatial direction of p with a typical
opening angle of 1/γ. The differential probability is shown at the scattering angles θ1,2 = 1/γ
and ϕ1 = π/2 and ϕ2 = 3π/2, i.e. the two photons are emitted in a plane perpendicular to
the polarization plane of the laser.

In Figure 4.5, the differential two-photon emission probability, is shown for a moderately
strong laser pulse with a0 = 0.1 and a pulse length of ∆φ = 20, which corresponds to
9 fs FWHM. The left panel (a) is the off-shell part of the emission probability with the
contributions from virtual intermediate particles, Eq. (4.51). The dash-dotted lines in (a)
depict the harmonic frequencies ω2(ω1, n

′) for n′ = 1, 2, 3, i.e. the energy correlation in an
IPW. The first harmonic, n′ = 1, approximatively fulfils ω1 + ω2 ≈ 295 MeV. The off-shell
emission probability in a pulsed laser field is aligned with these lines, it resembles a broadened
IPW harmonic. In the centre panel (b) the on-shell probability, i.e. the contribution from real
intermediate particles is exhibited which are particularly strong in the vicinity of the Oleinik
resonances ωres

1,2, which are drawn in this plot as dotted lines. For the given parameters, the
first Oleinik resonance, n = 1 is located at ωres

1,2 = 291 MeV. In contrast to the IPW case
where this contribution would be singular, one finds a finite resonance behaviour for PPW,
with the strongest peak at ω1 = ω2 = 291 MeV. In the right panel (c) of Figure 4.5, the sum
of these two contributions is shown. As stated above, there are no interference terms between
the off-shell and on-shell contributions.

In Figure 4.6, differential two-photon probability is presented for a stronger laser field with
a0 = 1 and the same pulse length ∆φ = 20 as in Figure 4.5. The off-shell part exceeds the
on-shell part for low frequencies ω1,2 < 200 MeV where there are no resonances; the lowest
Oleinik resonance is shifted to ωres

1,2 = 236 MeV due to the intensity dependent red-shift. In
general, the on- and off-shell contributions are aligned with the corresponding IPW harmonics
as above, although the emission probability is distributed more in the ω1 – ω2 phase space.
Furthermore, also the off-shell part develops resonance like structures at the positions where
the Oleinik resonances coincide. One observes that the ponderomotive broadening sets in;
the PPW harmonics consist of several sub-peaks. This behaviour is much more pronounced
for a longer pulse, e.g. for ∆φ = 50 (corresponding to 21 fs FWHM), which is exhibited in
Figure 4.7. For a0 = 1, in Figures 4.6 and 4.7, the differential spectrum is dominated by the
on-shell part in almost the whole ω1 – ω2 phase space for both ω1,2 > 200 MeV, where it is
roughly one order of magnitude larger than the off-shell part. This is a generic feature also
for different scattering angles. The off-shell part exceeds to on-shell part for at least one of
the ω1,2 below 200 MeV, where the maxima of the distribution are roughly aligned with the
different harmonics n′ of the IPW energy correlation.

The Figures 4.5, 4.6 and 4.7 evidence the striking differences to the IPW case: The
strict ω2(ω1) correlation of (4.66) gets completely lost. Instead, resonance like structures
with sub-peaks appear which are produced by the ponderomotive broadening mechanism,
resembling the ones observed in the one-photon Compton process. Furthermore, the on-shell
part leads to finite resonances in a PPW laser field instead of the singular result in the IPW
case.
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(a) (b) (c)

Figure 4.5: Contour plots of the differential two-photon emission probability as a function
of ω1 and ω2 for a0 = 0.1 and ∆φ = 20, showing the off-shell contribution
(a), the on-shell contribution (b) and the sum of both (c). In (a) the IPW
harmonics ω2(ω1, n

′) are shown for n′ = 1, 2, 3 as dash-dotted curves, while
in (b) the dotted lines represent the Oleinik resonances ωres

1,2, Eq. (4.65), for
n = 1, 2. For parameters see the text.

(a) (b) (c)

Figure 4.6: The same as in Figure 4.5 but for ∆φ = 20 and a0 = 1.

(a) (b) (c)

Figure 4.7: The same as in Figure 4.5 but for ∆φ = 50 and a0 = 1.
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4.7 The inclusive two-photon probability and comparison with
one-photon emission

In Figure 4.8, the inclusive spectrum

d3W

dω1dΩ1
=
∫
dω2dΩ2

(
d6W

dω1dΩ1dω2dΩ2

)
(4.67)

is exhibited, arising from (4.35) by integrating over the phase space of photon “2” which
allows for a comparison between one-photon and two-photon emission. For soft photons
ω2 → 0, the emission probability of two-photon emission becomes divergent. The cancellation
of this infrared divergence by soft virtual photons due to loop corrections of one-photon
scattering is ensured by the Bloch-Nordsieck theorem [Blo37] as in the perturbative case. The
calculation of the infrared divergent parts and their cancellation is presented in Appendix E.
It is shown there, that the laser dressed vertex fε2P,p → /ε∗2 goes to the free (non-dressed)
vertex if the frequency of the emitted photon goes to zero ω2 → 0, such that the infrared
divergence in the strong-field QED process has the same structure as in perturbative QED.
The exact cancellations of the infrared divergence of weak-field perturbative double Compton
scattering with the one-loop radiative corrections to one-photon Compton scattering have
been shown in [Bro52]. For practical purposes, however, an infrared cut-off ωmin

2 = 100 keV
is included in the frequency integral in (4.67) to avoid the soft-photon divergence in the spirit
of [Löt09b]. The value of the integral is rather insensitive to a variation of the cut-off in the
range of 1− 1000 keV.

The inclusive spectrum accounts for the experimental observation of only one of the two
photons. To compare with one-photon Compton backscattering, the backscattering direction
θ1 = ϕ1 = 0 is chosen. In the case of strong laser fields, e.g. for a0 = 1 in Figure 4.8, the
inclusive spectrum is found about two orders of magnitude below the one-photon spectrum
for ω1 > 200 MeV. At photon energies ω1 < 200 MeV, the two-photon process exceeds the
one-photon process (see Figure 4.8), opening, at least in principle, a window to access its
observation without coincidence measurements.

Approximating the integrations over the solid angle of photon “1” as
dW

dω1
=
∫
dΩ1

dW

dω1dΩ1
≈ 2π
γ2

dW

dω1dΩ1

∣∣∣∣
θ1=ϕ1=0

(4.68)

and integrating over ω1, one can estimate the total number of produced pairs as 1.1× 10−3

per pulse and electron as compared to 5 × 10−2 coming from the one-photon Compton
process. With an assumed laser repetition rate of 10 Hz one can expect 950 two-photon
events as compared to 43000 single photon events in one day which should be sufficient for
an experimental observation. The coincidence detection of rare two-photon events, where
both photons are emitted within a small opening angle has been successfully demonstrated
in the photon splitting process [Akh02]. The experimental sensitivity might be increased by
a simultaneous detection of the scattered electrons (like in photon tagging). The electron
beam should be a dilute beam tuned to one interaction per laser pulse.

In the weak-field regime the rate of the two-photon Compton process is suppressed by a
factor of α%2 relative to the one-photon Compton process for % = k · p/m2 � 1 [Hei34], (see
also Figure 1.5). For the momenta considered here, with % = 0.06, the estimated suppression
in the weak field regime is 3× 10−5. To discuss the relevance of the two-photon emission in
strong laser fields, the two-photon to one-photon ratio is defined as

R = dW (2)

dΩ1

/
dW (1)

dΩ1
, (4.69)
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Figure 4.8: The inclusive two-photon spectrum (red solid curve; the green dashed curve
and the blue dash-dotted curve depict the on-shell and off-shell contributions)
in comparison to the one-photon Compton spectrum (thin black solid curve)
as a function of the photon frequency ω1. The low-energy range below
400 MeV where the two-photon probability exceeds the one-photon probability
is magnified.

taken in the direction ϕ1 = θ1 = 0. For ∆φ = 10 (see Figure 4.9) a value of R = 10−2 is
obtained at a0 = 1 which is about two orders of magnitude larger than the perturbative
estimate. For lower values of a0 < 0.1 the suppression of the two-photon probability rapidly
approaches a constant value of R = 10−4, as anticipated in [Hei34]. Considering the on-shell
and off-shell contributions, [where W (2)

on,off are employed in the definition of R in Eq. (4.69),]
it is found that the ratio for the on-shell process Ron = 0.01a2

0 for a0 < 1. The off-shell ratio
Roff is independent of a0 for a0 < 0.1, with a value of Roff = 10−4. Above a0 > 0.1 the
value of Roff increases and reaches Roff = 10−3 at a0 = 1. These findings show that even
at moderate intensities of a0 = 1, the probability for two-photon emission is significantly
enhanced as compared to the weak-field case. The ratio of R = 0.01 means that for each 100
photons that are emitted via one-photon Compton process, there is one emitted pair due to
the two-photon process. The tendencies in Figure 4.9 indicate that the two-photon process
might be even more important for a0 � 1. However, for larger values of a0, starting at a0 ≥ 3,
considerable numerical uncertainties on the order of 50% and larger were encountered, such
that a definite answer on that issue cannot be given at the moment.

4.8 The pulse length dependence of the two-photon emission probability
The pulse length dependence of the cascade part and the coherent part of the emission
probability are different. While the coherent part of the emission probability is proportional
to ∆φ, the cascade part has a dependence ∝ ∆φ2, since it is the product of two one-photon
events which are ∝ ∆φ each [Hu11]. In this section, the pulse length dependence of the
different contributions (on-shell and off-shell contributions) to the two-photon emission
probability is studied for a box-shaped pulse envelope g(φ) = u(φ) with constant amplitude
[see Eq. (A.34)], for which the pulse length dependence of the two-photon amplitude M ,
Eq. (4.23), can be evaluated completely analytically. This is achieved by relating the phase
integrals Cn(s) and Bnl(s, `1) over the complete pulse to reduced phase integrals Cn(s) and
Bnl(s, `1), which are defined over the fundamental interval of periodicity of their integrands
φ, φ′ ∈ [−π, π]. The dependence on the pulse length then appears in the prefactors of these
reduced phase integrals. It is convenient to use as pulse length parameter the number of full
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Figure 4.9: The dependence of the two-photon to the one-photon ratio R (red solid curve
with diamonds) as a function of a0 for ∆φ = 10. The green dashed curve with
squares depicts the on-shell ratio Ron while the blue dash-dotted curve with
circles is for the off-shell ratio Roff . To guide the eye, the black dotted line
depicts the slope of a2

0.

oscillations N = ∆φ/2π, such that the domain of the φ and φ′ integrations for the full phase
integrals Cn(s) and Bnl(s, `1) is the interval [−Nπ,Nπ] for n, l ∈ {1, 2}. The phase integrals
with index 0 have still an infinite integration range and are defined through Eqs. (D.19) –
(D.21). By partitioning the interval [−Nπ,Nπ] into N subintervals [−π, π] and shifting the
integration variables, the one-dimensional integral is evaluated to be (setting φ̂ = 0)

Cn(s) =
Nπ∫
−Nπ

dφ cosn φ ei(s−βp+βp′ )φ−i(αp−αp′ ) sinφ−i(βp2 −
βp′
2 ) sin 2φ (4.70)

=
N−1∑
j=0

−Nπ+2π(j+1)∫
−Nπ+2πj

dφ cosn φ ei(s−βp+βp′ )φ−i(αp−αp′ ) sinφ−i(βp2 −
βp′
2 ) sin 2φ (4.71)

=
N−1∑
j=0

eiz(2πj−(N−1)π)Cn(s) (4.72)

with z = s − βp + βp′ . In the last line, the integration variable has been transformed
φ→ φ+ (N − 1)π − 2πj and the periodicity of the trigonometric functions has been utilized.
The complete dependence on the summation variable j has been taken out of the integral.
The sum can be evaluated yielding

N−1∑
j=0

eiz(2πj−(N−1)π) = sin πNz
sin πz . (4.73)

This prefactor defines the support of the spectrum as diffraction pattern, converging to a
delta comb upon taking N →∞, eventually.
The integral over the fundamental interval [−π, π],

Cn(s) =
π∫
−π

dφFn(φ; z, αp − αp′ , βp − βp′) , (4.74)

is the phase integral over a single oscillation of the laser, having defined the integral kernel

Fn(φ; z, α, β) = (−1)n(N−1) cosn φ eizφ−i(−1)N−1α sinφ−iβ2 sin 2φ . (4.75)
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Figure 4.10: Decomposition of the domain of integration of the two-dimensional phase
integrals Bnl, which is the large triangle, into fundamental domains I
(red, consisting of N fundamental triangles) and II (green, consisting of
N(N − 1)/2 fundamental squares). The pulse length here is N = 5.

The fundamental integral Cn, which is a purely real quantity, does still depend on the pulse
length N via the factors (−1)N−1. However, it is relevant only whether N is an even or odd
an number, giving two different values of the integral in (4.74). Thus, when discussing the
pulse length dependence or when taking the limit N → ∞ one should stay within one of
these two classes. This behaviour is related to the fact that for even values of N one has an
additional shift of π to reach the fundamental interval [−π, π].

The two-dimensional phase integrals Bnl are a bit more involved to analyse. The two-
dimensional domain of integration in (4.25) is a triangle via the action of the Heaviside step
functions. A decomposition into fundamental domains involves a distinction into a series
of N fundamental triangles (domain I) and N(N − 1)/2 fundamental squares (domain II),
thus, Bnl = BI

nl + BII
nl , see Figure 4.10. Considering first the domain I yields, using similar

shifts of the integration variables as for the calculation of Cn,

BI
nl(s, `1) =sin πNz

sin πz Bnl(s, `1) (4.76)

with the integral over the fundamental triangle

Bnl(s, `1) =
π∫
−π

dφ

φ∫
−π

dφ′ Fn(φ;x, αP1 − αp′ , βP1 − βp′)Fl(φ′; y, αp − αP1 , βp − βP1)

(4.77)

which is a complex number. The integral over domain II requires the evaluation of a double
sum with the result

BII
nl = i

2

{
eiπx

sin πx
sin πNz
sin πz −

eiπNx

sin πx
sin πNy
sin πy

}
B′nl(s, `1) , (4.78)

B′nl(s, `1) =
π∫
−π

dφFn(φ;x, αP1 − αp′ , βP1 − βp′)
π∫
−π

dφ′Fl(φ′; y, αp − αP1 , βp − βP1)

= 2ReBnl(s, `1) (4.79)



100 4 Two-photon Compton scattering

with x = s − `1 − βP1 + βp′ , y = `1 − βp + βP1 and x + y = z. The fundamental phase
integrals are not independent as the value of B′nl equals twice the real part of Bnl. In total,
the two-photon amplitude M is given by

M = 1
2k ·P1

(
sin πNz
sin πz

2∑
n=1

ṼnCn(s)

−i
2∑

n,l=1
Ũnl

[
sin πNz
sin πz Bnl + i

{
eiπx

sin πx
sin πNz
sin πz −

eiπNx

sin πx
sin πNy
sin πy

}
ReBnl

]
+ (1 ↔ 2) .

The final result for the on- and off-shell parts of the two-photon amplitude reads

Moff = Z1
2k ·P1

 2∑
n=1

ṼnCn(s) +
2∑

n,l=1
Ũnl ImBnl(s, `1)


+ Z3

2k ·P1

2∑
n,l=1

Ũnl ReBnl(s, `1) + (1↔ 2) , (4.80)

Mon =− Z2
2k ·P1

2∑
n,l=1

Ũnl ReBnl(s, `1) + (1↔ 2) (4.81)

with the same decomposition into off-shell and on-shell parts as employed in (4.51) and (4.52).
These expression for Mon,off are employed in (4.53) to calculate the on- and off-shell emission
probabilities in a box-shaped pulse envelope. All the dependence on the pulse length has
been extracted from the phase integrals and is now located in the prefactors which resemble
diffraction patterns, which are given by

Z1 = sin πNz
sin πz , (4.82)

Z2 = sin πNx
sin πx

sin πNy
sin πy , (4.83)

Z3 = sin πNz
sin πz

cosπx
sin πx −

sin πNy
sin πy

cosπNx
sin πx . (4.84)

The numerical results for the emission probability in the box-shaped pulse are exhibited in
Figure 4.11, calculated in the rest frame of the incoming electron, with initial Lorentz factor
γ = 104 (i.e. the rapidity is ζ = 9.9) as before and a0 = 1. The scattering angles are taken as
the non-symmetric values θ1 = 0.1, θ2 = 0.5, ϕ1 = π and ϕ2 = 0.1π. The emission spectra are
exhibited in Figure 4.11 as a function of the scaled energies ω1/ω? and ω2/ω?, where ω? = ωeζ

is the laser frequency boosted to the rest frame of the electron. For the case of a short pulse,
consisting of N = 2 oscillations of the carrier wave in Figure 4.11 (a), the emission probability
as a function of ω1 and ω2 shows no specific structures related to the diffraction patterns
Zi, i ∈ {1, 2, 3}. The emission is distributed over the exhibited part of the phase space with
certain structures that roughly resemble the ones in Figure 4.6. Upon increasing the pulse
length to N = 10 (b), the picture drastically changes. The diffraction patterns condense to
narrow peaks, which are located at the positions of the Oleinik resonance frequencies ωres

1,2.
This behaviour becomes even stronger if the pulse length is further increased to N = 20 (c).
Furthermore, some of the diagonal lines in Figure 4.11 (b) and (c) can be related to the IPW
harmonics ω2(ω1, n

′).
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(a) (b) (c)

Figure 4.11: Two-photon emission probability in a box-shaped laser pulse with as a func-
tion of the scaled frequencies ω1,2/ω?, where ω? denotes the laser frequency
in the rest frame of the initial electron, for N = 2 (a), 10 (b) and 20 (c)
oscillations of the carrier wave, respectively. For parameters see the text.

As mentioned above, the functions Zi, i ∈ {1, 2, 3} are diffraction patterns, which are
periodic when considered as functions of the independent variables x and y with the period
one. These diffraction patterns condense to delta combs in the limit N →∞. In particular,
from Z1, one obtains the condition z = s− βp + βp′ = n′, where n′ ∈ N. With the definition
of s from (4.16), one precisely gets the IPW energy correlation ω2(ω1, n

′), Eq. (4.66), when
solving for ω2. This shows the transition from a pulsed laser field to an infinite laser field in
the case of a box-shaped pulse. From the diffraction pattern Z2 and from the corresponding
expression for the second Feynman diagram, one obtains in the limit N → ∞ the Oleinik
resonance frequencies ωres

1,2, Eq. (4.65), due to `1,2−βp+βP1,2 = n with n ∈ N. The diffraction
pattern Z3 does not provide such an easy interpretation. It can be shown that Z3 vanishes at
the Oleinik resonances, but strongly peaks in the vicinity of these resonances.

The complete dependence of the emission probability on the pulse length is contained
in the diffraction patterns Zi (except for the aforementioned distinction of even and odd
values of N). Thus, to study the pulse length dependence of the different contributions to the
two-photon emission probability, is is sufficient to consider the pulse length dependence of
these diffraction patterns. It convenient to employ the periodicity of the diffraction pattern
expressions Zi and to calculate the integrals over the fundamental range of periodicity thereof,
defining

Iij(N) =
1∫

0

dx

1∫
0

dy Zi(x, y)Zj(x, y) , (4.85)

as a measure for the pulse length dependence of the various contributions. As a result one
finds the values

I11 = N , (4.86)
I22 = N2 , (4.87)
I33 = N(N − 1) , (4.88)
I13 = 0 . (4.89)

The last value of I13 = 0 is particularly interesting, since it states that there is no interference
between the two terms ∝ Z1 and ∝ Z3 when squaring the amplitude Moff . As expected
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[Hu11], the value of I11, which is related to the off-shell amplitude is proportional to the
pulse length N . That means, in the limit N →∞, the two-photon emission rate Ẇ ∝W/N ,
i.e. the emission probability divided by the interaction time N , stays finite. Furthermore,
the value for the on-shell part I22 = N2 signals the appearance of Oleinik singularities in the
IPW limit, since the emission rate Ẇ is proportional to N and therefore diverges in the limit
N →∞. The result for I33, which is part of the off-shell amplitude is not as easy to interpret,
since it scales as ∝ N2, although it has been identified as part of the off-shell process. Thus,
in pulsed laser fields, there is a resonant enhancement of the off-shell process. A more detailed
study of the behaviour of this contribution in the limit N → ∞ is required, going beyond
this simple approximation. It turns out that the distinction between the two-step cascade
and the true one-step two-photon emission is not as straightforward. Such ambiguities were
also approached in calculations of the two-photon decay of excited atomic states [Lab09].

4.9 Summary of Chapter 4
In this chapter, the complete evaluation of the differential probability of two-photon emission
by an electron in a short intense laser pulse was presented. The on-shell part of the matrix
element factorizes into subsequent one-photon Compton processes and gives naturally a finite
contribution to the differential probability due to the temporal pulse structure. It was shown
how the Oleinik resonance singularities, which are associated with the infinite series of poles
of the Dirac-Volkov propagator in the case of IPW laser fields, emerge from the general
expression for the two-photon S matrix upon taking the limit g → 1. The weak-field limit of
the S matrix was calculated and it was shown that it coincides with the textbook results for
the double Compton scattering.

The result allows for the first time for an unambiguous comparison of the probability of
the two-photon process in relation to the one-photon process for realistic pulsed laser fields by
calculating the inclusive two-photon probability. It was found that the inclusive two-photon
probability exceeds the one-photon probability for the low-frequency part of the spectrum
< 200 MeV. Above this frequency, the two-photon probability is found to be two orders of
magnitude below the one-photon probability. The two-photon to one-photon ratio R was
discussed as a function of a0 and it was found that for a0 � 1 the perturbative value of
R = 10−4 is obtained. For larger values of a0 ∼ 1 the ratio increases and reaches values of
R > 10−2, which means that at higher laser intensity the two-photon process becomes more
relevant.

The experimental detection scheme for two-photon Compton scattering described above
in Section 4.7 is complementary to the one used for the observation of the perturbative
weak-field double Compton scattering in [Bra56, Sek88, San00] in the following sense: In the
mentioned experiments the scattering of single incoherent photons on a solid-density target
was observed via coincidence measurements. To achieve the non-linear interaction regime,
a0 ∼ 1 one necessarily has a high density of laser photons. Therefore, the density of the
scatterers (in this case the electrons) should be reduced and tuned to an appropriate level to
allow for coincidence measurements.

The presented approach furthermore opens the avenue towards a detailed study of the two-
photon polarization which is considered as a signature of the Unruh radiation in [Che99, Sch08].
Further studies are necessary to evaluate the relevance of the off-shell contributions in view
of the quantum radiation reaction. The factorization of the on-shell part of the S matrix
and the resonant enhancement of the off-shell part need to be confronted with a complete
incoherent model for two-photon emission [DP10] to estimate the relevance of the coherent
part of the process.
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Chapter 5

Summary & Outlook

The purpose of this thesis is to advance the understanding of strong-field QED processes in
pulsed laser fields, with the focus on the one-photon and two-photon Compton scattering
processes, i.e. photon emission processes in collisions of relativistic electrons with high-

intensity ultra-short laser pulses. A realistic description of the finite pulse length in such
experiments is made necessary by the present and upcoming generation of high-intensity
lasers. In majority, these lasers achieve the high output-power via ultra-short pulse lengths
on the order of femtoseconds.

Chapter 2 serves as introduction to the theory of strong-field QED. The study of coherent
and semi-coherent photon states provided an equivalence between the semi-coherent states
and the description of the laser field as classical background field, which allows to work in
the Furry picture where the one-particle states are Volkov states, i.e. solutions of the Dirac
equation in the presence of the plane wave background field. These Volkov states and also
the Dirac-Volkov propagator are constructed with the help of Volkov matrix functions whose
completeness and orthogonality are essential for employing Volkov solutions as basis for
the Furry picture. Employing the analytic light-front structure of these matrices, which is
partly derived in Appendix B, a new and very simple proof of these properties is given in
Appendix B.3. The properties of Volkov states in pulsed laser fields are discussed, comparing
with the case of infinite plane wave fields. The modification of the Zel’dovich levels, which
appear in the latter case are highlighted. The sum over discrete values of momentum in
the case of infinite plane waves turns into an integral over continuous values of momentum
exchanged between the electron and the laser field. These differences lead to a modified pole
structure of the laser dressed Dirac-Volkov propagator in pulsed laser fields. The infinite
series of poles in the case of infinite plane waves does not appear for pulsed laser fields,
where finite resonances occur instead. The light-front structure of strong-field QED in laser
fields becomes apparent via the pole integration of the propagator, singling out a light-like
coordinate and the resultant light-front time ordering. A correspondence between the classical
orbits of charged particles in a pulsed laser field and the Volkov states in the same laser field
is emphasized. Local minima and maxima of the energy along the classical trajectory leave
imprints in the momentum space occupation numbers of the Volkov states at that particular
energies.

In Chapter 3, the one-photon Compton emission process is described in detail in strong
pulsed laser fields utilizing the framework of strong-field QED, where the Volkov wave
functions are employed as initial and final states for the electrons.
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The expression for the S matrix in a strong pulsed laser field with finite temporal
envelope involves integrals over the laser phase with complex non-linear exponentials as
integrands. These functions determine the emission probabilities, i.e. the one-photon spectra
and need to be evaluated, which has to be done numerically in general. However, for the
special hyperbolic secant pulse envelope, a completely analytical expression for the non-linear
Compton amplitude has been calculated in terms of generalized Laguerre functions.

Two different regimes of non-linear one-photon Compton scattering have been identified:
(i) the ponderomotive regime, where the appearance of the spectrum is determined by the
ponderomotive part of the non-linear phase exponents (i.e. the slowly varying part related to
the ponderomotive potential) and (ii) the bandwidth dominated regime, were the form of the
spectrum is dominated by the large bandwidth of the laser pulse.

In the ponderomotive regime, that is for pulse lengths T ≥ 10 . . . 20 fs, the frequency
spectra acquire an interesting sub-peak structure in strong laser pulses, with the dimensionless
laser strength a0 > 1. The number of these sub-peaks is determined by the ponderomotive
part of the non-linear exponential, which is proportional to a2

0T ; it is an interplay between
the laser bandwidth and the variation of the laser intensity that leads to the emergence of
the sub-peaks.

The azimuthal distributions of radiation have been studied for ultra-short single-cycle laser
pulses, for T ∼ 2 . . . 5 fs. In this regime, the emission spectra strongly depend on the value of
the carrier envelope phase for a0 > 1. In the case of linear laser polarization, the emission is
either unidirectional or dipole-like in the direction of the laser polarization, depending on the
value of the carrier envelope phase. For circular polarization, the symmetry in the azimuthal
angle known from IPW is completely lost for a0 > 1. The azimuthal symmetry is replaced by
a new symmetry in a composite variable: the difference between the azimuthal angle and the
carrier envelope phase.

The low-energy limit of non-linear Thomson scattering was studied in comparison to
non-linear Compton scattering. In Compton scattering, a cut-off frequency exists due to the
electron recoil. As a result, a scaling law was found which takes into account the different
phase spaces of Thomson and Compton scattering. The scaling law allows to mimic the effect
of the electron recoil in classical calculations.

For ultra-strong laser pulses, a0 � 1, an approximative calculation scheme for the emission
probability was presented. The photon yield in a pulsed field was found to be larger than in
comparable infinite plane wave and constant crossed field models.

In Chapter 4, the two-photon Compton emission process in strong pulsed laser fields is
discussed. The complete evaluation of the differential probability of two-photon emission
by an electron in a short intense laser pulse was presented. In contrast to one-photon
Compton scattering, this is a second-order strong field process which involves the intermediate
propagation of an electron via the Dirac-Volkov propagator. This fact makes the analysis far
more complicated. An integration over the propagator pole produces light-front time ordered
contributions as well as instantaneous parts related to the light-front zero-mode propagator.
Furthermore, the propagator momentum can be on its mass shell due to the presence of the
background field, leading to a distinction of on-shell and off-shell parts related to real and
virtual intermediate particles, respectively. The on-shell part of the matrix element factorizes
into subsequent one-photon Compton processes and gives naturally a finite contribution to
the differential probability due to the temporal pulse structure in contrast to infinite plane
waves, where the on-shell part diverges due to Oleinik resonance singularities.

A numerical analysis of the differential two-photon emission probability showed striking
differences between the case of a pulsed and and infinite laser field. As one can infer
from the different behaviour of the propagator in these two cases, the emission probability
has a resonance-like structure but no divergences. For the used parameters, the effect of
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ponderomotive broadening and the emergence of sub-peaks was observed also for two-photon
Compton scattering. The weak-field limit of the S matrix was calculated and it was shown
that it coincides with the textbook results for the double Compton scattering.

When comparing the inclusive two-photon probability to the one-photon Compton proba-
bility, a two-photon to one-photon ratio R = 10−2 was obtained for a moderately strong laser
amplitude of a0 = 1. This value of R is two orders of magnitude larger than the perturbative
estimate due to [Man52]. The calculation of the inclusive two-photon probability involves the
integration over the phase space of one of the two photons. In soft-photon region, i.e. when
a low-energy photon, ω1 → 0, is emitted, the two-photon emission probability is infrared
divergent. The cancellation of this infrared singularity with contributions of virtual photons
from the radiative corrections of one-photon Compton scattering is discussed (the details
are presented in Appendix E). In the soft-photon limit the dressed vertex becomes the free
vertex, such that the cancellation of the infrared divergent parts in strong-field QED proceeds
as for perturbative QED.

Important issues concerning the experimental observability of the strong-field finite-size
effects are discussed in Appendix F. There, the subject of realistic experimental conditions
including finite electron distributions and the spatial focusing of the laser pulses are considered.
There are promising results that some of the effects may be observable when loosely focusing
the light of a (sub-)petawatt laser to achieve non-linear intensity with a0 ∼ 1 homogeneously
(with low gradients) in a large spatial volume and probing the centre of that region with a
high-quality electron source such as ELBE or REGAE.

Outlook

An important problem to be tackled in future work would be to go beyond the plane-wave
approximation in a quantum description of these strong-field processes, that is to find solutions
of the Dirac equation in more general field configurations, in particular for focused laser
pulses. This would be desirable in view of a more realistic description of experimental
conditions of strong-field QED scattering processes that do not posses a classical limit.
Such processes would include the cross channels of one-photon Compton scattering, but
also the spin-dependence of one-photon Compton scattering as well as all second-order and
higher-order strong-field QED processes.

For the process of two-photon Compton scattering, a study of the polarization properties
of the two emitted photons, in particular with respect to their entanglement, would be
interesting and could provide further experimental detection schemes of the two-photon
process. Similar studies have been done for infinite plane wave fields or for weak laser fields
[Sch08, Löt09b]. The polarization of the emitted photons could be measured using Compton
polarimetry [Thi09] verifying their degree of entanglement. The claimed connection between
two-photon Compton emission and Unruh radiation in [Che99] needs further investigations.

Azimuthal photon distributions and further frequency spectra could be calculated, ex-
tending the investigations of the two-photon emission probability to larger values of a0. A
refinement of the numerical integration methods are necessary to extend the study of the
inclusive two-photon Compton probability to the regime a0 � 1. Alternatively, an applica-
tion of the approximative calculation method presented for one-photon Compton scattering
could be fruitful. With this, an answer could be given to the question of the importance of
two-photon emission in the limit a0 � 1. A first study addressing differential spectra in this
“full quantum regime” with a0 � 1 and χp ∼ 1 was recently published [Mac12].

Concerning the relations between quantum multi-photon emission and the classical theory
of radiation damping, further study is necessary to fully understand the importance of the
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Figure 5.1: Feynman diagrams for laser assisted Compton scattering: An X-ray photon

with momentum K scatters off an electron (plasma) which is irradiated by
a strong laser pulse. This process could be measured in a combination of a
petawatt laser with the European XFEL at DESY.

coherent and incoherent parts of the amplitudes. The generalization of the two-photon
emission process to general N -photon emission should be achievable with the methods
presented in this thesis (recently, the three-photon Compton process was calculated in the
perturbative weak-field regime in usual QED [Löt12]). However, the final particle phase
spaces of these N -photon channels are high-dimensional. This means that a full numerical
analysis of the N -photon phase space will be demanding.

Various other second-order strong-field processes in pulsed laser fields could be calculated
with the methods presented in this thesis, such as laser assisted Compton scattering, laser
assisted Bremsstrahlung, laser assisted Bethe-Heitler pair creation, etc. due to the similar
structures of the strong-field matrix elements and the emerging integrals over the laser
phase. The pole structure is similar in all of these processes with the possible difference
being the contribution of propagating antiparticles, i.e. the opposite time ordering. Also for
second-order strong field processes involving a photon propagator, such as the trident pair
production or laser assisted electron-electron scattering, the structure of the S matrix is not
very different.

In a recent article by [Cro12], the experimental detection of non-inertial effects in quantum
field theory was proposed in a combination of high-power lasers and radiation from an X-ray
free electron laser. The experimental setting consists of a pre-formed electron plasma, which
is irradiated by a strong laser pulse with an intensity of 1019 W/cm2 in order to accelerate
the plasma electrons. High-energy X-ray photons from an XFEL are to be scattered off
the plasma electrons; the acceleration could be measured via an effective temperature of
the plasma, modifying the backscattered spectra (a higher temperature means a broader
spectrum). In the language of strong-field QED, this scattering process would correspond to
laser assisted Compton scattering (also denoted as resonant Compton scattering in [Ole68]). It
could be described well as a second-order strong-field QED process, namely as a cross channel
of two-photon Compton emission as depicted in Figure 5.1, where an X-ray photon with
momentum K scatters off a laser dressed Volkov electron into a final state with momentum
K ′. The presence of the strong laser field would modify the dynamics of the charged particles
and one would expect a number of subsidiary lines due to the absorption and emission of
laser photons beneath the main Compton line. The frequency of the optical laser is much
smaller than the frequency of the X-ray photon such that the different lines are very close
together on the scale of keV, resembling a broadening of the main Compton peak. These
investigations could be performed with the methods provided in this thesis for two-photon
Compton scattering by relying on crossing invariance.
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Appendix A

Notations, conventions and important
relations

This appendix serves as a collection of important relations used throughout this thesis
concerning the employed units in Section A.1, light-front coordinates in Section A.2,
important integrals in Section A.4 and the Dirac algebra in Section A.5. A detailed

discussion of the laser vector potential Aµ(φ) is given in Section A.3. The formulation of
quantum field theory in the Furry picture is presented in Section A.6. The reduction of S
matrix elements using the perturbative expansion of the operator Ŝ[A] in the background
field is outlined in Section A.7.

A.1 Units, notations & conventions
Throughout this thesis, natural units are employed with

~ = c = 1 . (A.1)
All physical units are measured in powers of electron volt (eV). The transition to lengths,
times and other physical units is achieved with the conversion factors

1 µm = 5.0677309 eV−1 ,

1 fs = 1.5192675 eV−1 ,

1 J = 6.24150934326× 1018 eV ,

1 mb = 2.568189687× 10−18 eV−2 ,

1 W/cm2 = 1.599662× 10−6 eV4 ,

1 J/cm3 = 4.795667× 104 eV4 ,

1 V/m = 6.516266× 10−7 eV2 ,

1 T = 1.953527× 102 eV2 , (A.2)
which employ the CODATA recommended values for fundamental physical constants [Moh12]

α−1 = 137.035 999 074(44) ,
m = 0.510 998 928(11) MeV ,

~c = 197.326 9718(44) MeV fm ,

c = 299792458 m/s = 0.299792458 µm/fs ,
ε0 = 8.854187817× 10−12 As/Vm . (A.3)



108 Appendix A Notations, conventions and important relations

The contravariant components of Minkowski four-vectors are denoted by upper Greek indices

(xµ) = (x0, x1, x2, x3) , (A.4)

and the Minkowski metric gµν (in Cartesian coordinates) is

(gµν) = diag (1,−1,−1,−1) . (A.5)

Covariant components of Minkowski four-vectors read

xµ = gµνx
ν , (A.6)

where Einstein’s summation convention is applied for indices that appear twice on the same
side of an equation. Scalar products between four-vectors are written as

k ·x = gµνk
µxν = kµx

µ . (A.7)

Scalar products of four-vectors with Dirac matrices (see AppendixA.5) are denoted using
Feynman’s slash

/k ≡ γµkµ . (A.8)

The spatial components of four-vectors are denoted by Latin indices xi and the vector is set
in bold face (xi) = (x1, x2, x3). For scalar products between three-vectors the notation x ·k
is used. The electron charge e is related to the fine structure constant via

α = e2

4π . (A.9)

A.2 Light-front coordinates
The light-front components of a four-vector with Cartesian coordinates (xµ) = (x0, x1, x2, x3)
are defined as

x− = x0 − x3 , x+ = x0 + x3 , x⊥ = (x1, x2) . (A.10)

The inverse coordinate transformation is given by x0 = 1
2(x+ + x−) and x3 = 1

2(x+ − x−).
Because the laser four-momentum k is light-like, k2 = 0, it can always be chosen to have
only a single non-vanishing component in light-cone coordinates, which is k− = 2ω through
this thesis. This means that the coordinate system is aligned such that the laser pulse
propagates along the negative z axis. Thus, the vector nµ = kµ/ω defines the light-front via
n ·x = x+ = const. The metric tensor in light-front coordinates, using the arrangement of
components (xµ) = (x+, x−,x⊥), has non-diagonal components

(gµν) =


0 1

2 0 0
1
2 0 0 0
0 0 −1 0
0 0 0 −1

 , (gµν) =


0 2 0 0
2 0 0 0
0 0 −1 0
0 0 0 −1

 . (A.11)

The covariant components of a four-vector are related to the contravariant components as

x− = 1
2x

+ , x+ = 1
2x
− , x⊥ = −x⊥ ,
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and scalar products become

x · y = x+y+ + x−y− + x⊥ ·y⊥ = 1
2x

+y− + 1
2x
−y+ − x⊥ ·y⊥ . (A.12)

The determinant of the metric reads
√
−g =

√
−det gµν = 1/2, thus the Lorentz invariant

integration measure is

√
−g d4x = 1

2 dx
+dx−d2x⊥ . (A.13)

For a four-dimensional delta distribution one writes in light-front form

δ4(p) = 1√
−g

δ(p+)δ(p−)δ(p1)δ(p2) = 2 δ3(p)δ(p−) . (A.14)

The transverse light-like three vector (with respect to the laser four-vector) is declared as
p ≡ (p+,p⊥) and formatted using a sans-serif font. The corresponding integration measure is
given as d3p ≡ dp+dp1dp2. The free particle dispersion relation (p0)2 = p2 +m2 for massive
particles reads in light-front coordinates

p− = p2
⊥ +m2

p+ . (A.15)

The Lorentz invariant on-shell phase space element is∫
d4p

(2π)4 (2π)δ(p2 −m2) = d3p

(2π)32p0 , p0 =
√
p2 +m2 (Cartesian) , (A.16)

= d3p
(2π)32p+ , p+ = p2

⊥ +m2

p−
(light-front) . (A.17)

Thus,

1 =
∫

d3p

(2π)32p0 (2π)32p0δ3(p− p′) =
∫

d3p
(2π)32p+ (2π)32p+δ3(p− p′) (A.18)

with the Lorentz invariant on-shell delta distributions

(2π)32p0δ3(p− p′) = (2π)32p+δ3(p− p′) . (A.19)

To verify this equation it is sufficient to show that

δ(p+ − p′+) = δ(p3 − p′3 + p0 − p′0)

= δ

(
p3 − p′3 +

√
(p3)2 + p2

⊥ +m2 −
√

(p′3)2 + p′2⊥ +m2
)

= δ
(
f(p3)

)
=
∣∣∣∣ dfdp3

∣∣∣∣−1

p′3=p3
δ(p3 − p′3)

= p0

p+ δ(p
3 − p′3) , (A.20)

since δ2(p⊥ − p′⊥) is identical in light-front coordinates and in Cartesian coordinates and

df

dp3 = 1 + p3√
(p3)2 + p2

⊥ +m2
= 1 + p3

p0 = p+

p0 . (A.21)



110 Appendix A Notations, conventions and important relations

A.3 Description of the laser field
It has been stated [Mil06a] that the electric field produced by a laser has to fulfil the constraint

∞∫
−∞

E(t,x)dt = 0 . (A.22)

These fields are denoted as nonunipolar fields. Electric fields, where the value of the integral
(A.22) is non-zero, represent fields with a non-vanishing dc component and are called unipolar ;
they can be produced from nonunipolar laser fields in non-linear optical media [Koz11]. The
implications of such fields on the Volkov states and non-linear Compton scattering has been
studied recently [Din12]. As a consequence of (A.22), the vector potential describing a laser
pulse must fulfil [Kra12]

lim
t→−∞

A(t,x) = lim
t→∞

A(t,x) , (A.23)

since E = −∂tA in a gauge where the scalar potential Φ vanishes, as used in this thesis.
Equation (A.23) means that at any spatial point x the value of the vector potential has to
be the same before the pulse arrived and after the pulse has passed. In this thesis, the laser
vector potential is modelled by the plane wave

Aµ(φ) = A0 g(φ) Re
[
εµ+ exp

{
−i(φ+ φ̂)

}]
(A.24)

with the phase φ = k ·x, where k is the wave four-vector with k · k = 0, i.e. it is a light-like
four-vector. The time-component of k is the frequency ω = k0 of the carrier wave. The
frequency spectrum of the pulse is of course given by the Fourier transform of the pulse
envelope g(φ). In (A.24), φ̂ denotes the carrier envelope phase and εµ+ is a transverse complex
polarization vector defined below. The vector potential defined in (A.24) is a vacuum solution
of the wave equation �Aµ(x) = 0 and obeys the Lorenz gauge condition ∂ ·A(x) = 0, which
can also be stated as k ·A = 0, i.e. the vector potential is transverse to the propagation
direction. In addition to the Lorenz gauge condition, the scalar potential Φ can always be
chosen to be vanishing for plane-wave fields. The dimensionless laser strength parameter a0
is defined as a0 ≡ eA0/m.

Laser polarization
The four-vector εµ+ is a complex polarization vector of the laser field which is defined by

εµ± = cos ξεµ1 ± i sin ξεµ2 (A.25)

with εµ1 = (0, 1, 0, 0) and εµ2 = (0, 0, 1, 0) and the scalar products εi · εj = −δij for i, j ∈ {1, 2},
which is orthogonal to the propagation direction k · εi = 0, i.e. the laser field is a purely
transverse electromagnetic plane-wave field of arbitrary spectral composition and polarization.
With this definition, the real part of the vector potential can be given explicitly as

Aµ = A0g(φ)
{
εµ1 cos ξ cos(φ+ φ̂) + εµ2 sin ξ sin(φ+ φ̂)

}
. (A.26)

The scalar products between the complex polarization vectors read ε+ · ε− = −1 and ε+ · ε+ =
ε− · ε− = − cos 2ξ. In (A.25), the parameter ξ ∈ [−π/2, 3π/4) determines the polarization
state of the laser. For ξ = 0 (ξ = π/2) the laser is linearly polarized in the x (y) direction. For
ξ = ±π/4, the four-vector ε+ describes a circularly polarized wave with positive (negative)
helicity for the upper (lower) sign [Jac83]. For other values of ξ, the laser is elliptically polarized
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[Pan02b]. The ellipse’s major and minor axes are the the x and y axes for ξ ∈ (−π/4, π/4)
and vice versa for ξ ∈ (π/4, 3π/4). The scalar products between the different polarization
vectors can be summarized as εi · εj = −Cij with the symmetric matrix

Cij =


1 0 cos ξ cos ξ
0 1 i sin ξ −i sin ξ

cos ξ i sin ξ cos 2ξ 1
cos ξ −i sin ξ 1 cos 2ξ


1
2
+
–

, (A.27)

1 2 + –

The Stokes parameters sµ [Jac83] as a common measure for the polarization properties of a
plane wave read for the vector potential (A.24) in the linear basis, defined using the complex
vector potential Aµ = A0g(φ)εµ+e−i(φ+φ̂) with Aµ = Re Aµ

s0 = |ε1 ·A|2 + |ε2 ·A|2 = 1
2A

2
0g

2(φ) , (A.28)

s1 = |ε1 ·A|2 − |ε2 ·A|2 = s0 cos 2ξ , (A.29)
s2 = 2Re [(ε1 ·A)∗(ε2 ·A)] = 0 , (A.30)
s3 = 2Im [(ε1 ·A)∗(ε2 ·A)] = s0 sin 2ξ . (A.31)

The vector potential (A.25) is normalized in such a way that for ∆φ� 1 the mean energy
density or the energy flux 〈E2〉 ∝ −AµAµ = g2(φ)A2

0/2, where 〈. . .〉 means averaging over
the fast oscillations of the carrier wave, is independent of the polarization ξ.

Laser pulse envelope
For the pulse envelope g(φ) one assumes that g(0) = 1, the symmetry g(φ) = g(−φ) and the
limit limφ→∞ g(φ) = 0. The length of the pulse envelope is characterized by the dimensionless
pulse length parameter ∆φ. It determines also the spectral bandwidth of the laser pulse in
Fourier space as being ∝ 1/∆φ. Some explicit examples for various pulse envelopes which
are used through this thesis include the hyperbolic secant pulse

g(φ) = 1

cosh
(
φ

∆φ

) , (A.32)

the Gaussian pulse

g(φ) = exp
{
− φ2

2∆φ2

}
, (A.33)

the box-shaped pulse

g(φ) = u(φ) = Θ(∆φ− φ)Θ(∆φ+ φ) (A.34)

with the Heaviside step function Θ(x), and a squared cosine pulse

g(φ) = cos2
(
πφ

2∆φ

)
u (φ) . (A.35)

A collection of properties of these pulse envelope functions is presented in Table A.1, where
the characteristic moments for the pulse shapes

µn[g] =
∞∫
−∞

dxxng(x) , νn[g] = 1
∆φ

∞∫
−∞

dxgn(x) (A.36)

are exhibited.
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Table A.1: A collection of the various pulse shape functions which are utilized throughout
this thesis with some characteristic moments.

g 1
cosh φ

∆φ
exp

{
− φ2

2∆φ2

}
cos2 πφ

2∆φ u (φ) u(φ)

µ0[g] π∆φ
√

2π∆φ ∆φ 2∆φ
µ2[g]/µ0[g]/∆φ2 1

4π
2 1 π2−6

3π2 ' 0.131 1
3

µ4[g]µ0[g]/µ2[g]2 5 3 9(120−20π2+π4)
5(π2−6)2 ' 2.406 9

5

ν1[g] π
√

2π 1 2
ν2[g] 2

√
π 3

4 2
ν3[g] π

2

√
2
3π

5
8 2

ν4[g] 4
3

√
1
2π

35
64 2

ν5[g] 3π
8

√
2
5π

63
128 2

νn[g] 2n−1 Γ2(n/2)
Γ(n)

√
2
nπ

2√
π

Γ(n+1/2)
Γ(n+1) 2

FWHM[g] 2∆φArcosh 2 2∆φ
√

2 ln 2 ∆φ 2∆φ

Laser field strength tensor

The field strength tensor of the laser field Fµν = ∂µAν − ∂νAµ reads

Fµν = ma0
e

Re
[
fµν+ (g′ − ig)e−iφ

]
(A.37)

= ma0
e

[
fµν1 cos ξ

(
g cos(φ+ φ̂)

)′
+ fµν2 sin ξ

(
g sin(φ+ φ̂)

)′]
, (A.38)

fµνi = kµενi − kνε
µ
i , i ∈ {1, 2,+,−} , (A.39)

with the prime denoting the derivative with respect to the phase φ = k ·x. The basic tensors
f iµν fulfil the relations kµf iµν = 0 and

εµi f
j
µν = Cijkν , f iµνf

να
j = Cijkµk

α , for i ∈ {1, 2,+,−} . (A.40)

Thus, the vector potential (A.24) describes a null-field with FµνF
µν = 0 and Fµν

?Fµν = 0.

Laser energy momentum tensor and normalization

The (symmetric) energy momentum tensor [Jac83] of the laser field

Tµν = FµαF
αν + 1

4g
µνFαβFαβ , (A.41)

can be evaluated with (A.38) as

Tµν = m2a2
0

2e2 kµkν
[
(g2 + g′2)

− cos 2ξ
{

(g2 − g′2) cos 2(φ+ φ̂) + 2g′g sin 2(φ+ φ̂)
} ]

. (A.42)
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Figure A.1: Relation between the pulse length parameter ∆φ and the effective phase
interval ∆φeff . For ∆φ > 5, the effective phase interval ∆φeff is proportional
to ∆φ, with the asymptotic value of ∆φeff/∆φ = ν2[g]. Dash-dotted curves
depict the hyperbolic secant pulse (A.32) while solid curves are for a Gaussian
pulse (A.33). The different colours are for various values of laser polarization
ξ and carrier envelope phase φ̂.

With the energy density1 w = T 00 one may write for the energy momentum tensor Tµν =
nµnνw with the propagation direction nµ = kµ/ω, thus, the Poynting vector becomes S = wn.
One may define a photon number density2 % corresponding to the classical field distribution
Aµ via the definition % ≡ w/ω, assuming that each photon carries an energy ω. For g = 1 and
averaging over φ one obtains the average energy density w̄ = m2a2

0ω
2/2e2 and the average

photon number density %̄ = m2a2
0ω/2e2.

One needs to define a proper flux factor for the definition of the cross section, given an
emission probability. A proposed quantity with the correct physical dimension is the number
of photons per transverse area

N⊥ = 1
ω

∞∫
−∞

dφ%(φ) = %̄
∆φeff
ω

, (A.43)

defining an effective equivalent phase interval

∆φeff ≡
1
%̄

∞∫
−∞

dφ%(φ)

=
∞∫
−∞

dφ
[
(g2 + g′2)− cos 2ξ

{
(g2 − g′2) cos 2(φ+ φ̂) + 2g′g sin 2(φ+ φ̂)

}]
.

(A.44)

Figure A.1 shows the relations between the pulse length parameter ∆φ and the effective
phase interval ∆φeff . For long pulses with ∆φ > 5 the effective phase interval approaches
the asymptotic value ∆φeff = ν2[g]∆φ. (Explicit values for ν2[g] are given in Table A.1.) For
ultra-short pulses, ∆φ ∼ 1, the value of the effective phase interval ∆φeff strongly depends
on the laser polarization ξ and the carrier envelope phase φ̂.

1The physical dimension of the energy density is [w] = 1 eV4 = 2.085× 10−5 J/cm3. For details on the
conversion of units the reader is referred to AppendixA.1.

2With units [%] = 1 eV3 = 1.301× 1014 cm−3.
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A dimensionfull effective pulse length (in units of time) is defined by Teff = ∆φeff/ω,
with the help of which one can write for the photon number per pulse per transverse area
N⊥ = %̄Teff and for the energy per pulse per transverse area W⊥ = ωN⊥ = w̄Teff

The quantity N⊥ allows for an unambiguous definition of cross sections for arbitrary
pulsed fields [see Eq. (3.38) for the definition of the cross section for one-photon Compton
scattering]. Different pulse shapes are compared by their energy per transverse area.

The total energy per laser pulse W =
∫
d3xw is, therefore, W = W⊥A⊥, where A⊥ denotes

the transverse size of the focus area. At the diffraction limit the laser spot radius is on the
order of λ, such that the spot area is A⊥ = πλ2, yielding, for a diffraction limited laser
focus, the relation WD = π2m2

2α a2
0 Teff , or in common units WD[Joule] = 1.9× 10−5 Teff [fs] a2

0.
Turning this around allows to estimate the achievable values of a0 with optimal conditions as

a0 ' 200
√

WD[Joule]
Teff [fs] ' 200

√
P [PW] , (A.45)

where P [PW] denotes the laser power in petawatt.

A.4 Important integrals
For the evaluation of the non-linear phase exponents f(φ) [cf. e.g. Eq. (3.7)] of S matrix
elements in strong-field QED in short laser pulses one has to know certain integrals of the
pulse envelope. These are collected here. It is sufficient to know the oscillating phase integrals

In(φ) =
∫
dφ
[
g(φ)eiφ

]n
(A.46)

and the ponderomotive integral

G2(φ) =
∫
dφg2(φ) (A.47)

for the different pulse envelopes g. Furthermore, the asymptotics of the quantities In is
defined as

I(∞)
n = 1

∆φ

(
lim
φ→∞

In(φ)− lim
φ→−∞

In(φ)
)
. (A.48)

Hyperbolic secant pulse
For a hyperbolic secant pulse,

g(φ) = 1
cosh φ

∆φ
(A.49)

the ponderomotive integral is

G2(φ) = ∆φ tanh φ

∆φ (A.50)

and the oscillating phase integrals are

I1(φ) =
∫
dφ

eiφ

cosh φ
∆φ

= ∆φ
a
x2a

2F1(1, a; a+ 1;−x2) , (A.51)

I2(φ) =
∫
dφ

e2iφ

cosh2 φ
∆φ

= ∆φ
a
x4a

2F1(2, 2a; 2a+ 1;−x2) (A.52)
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with x = eφ/∆φ, a = (i∆φ+1)/2 and the hypergeometric function 2F1 [WFS]. The asymptotics
is given by

I
(∞)
1 = Re

{
ψ
(
a+1

2

)
− ψ

(
a
2
)}

= 1
a

Γ(1 + a)Γ(1− a) , (A.53)

I
(∞)
2 = 2 Re

{
1 + (1− 2a)

[
ψ
(

2a+1
2

)
− ψ(a)

]}
= 1− 2a

a
Γ(1 + 2a)Γ(1− 2a) , (A.54)

where ψ(z) = d
dz log Γ(z) is the digamma function and Γ(z) is the gamma function [WFS].

Gaussian pulse
For the Gaussian envelope

g(φ) = exp
{
− φ2

2∆φ2

}
(A.55)

the corresponding integrals read

G2(φ) = 1
2
√
π∆φ erf φ

∆φ , (A.56)

I1(φ) =
∫
dφeiφe

− φ2

2∆φ2 =
√
π

2 ∆φe−
∆φ2

2 erf
(
φ− i∆φ2
√

2∆φ

)
, (A.57)

I2(φ) =
∫
dφe2iφe

− φ2

∆φ2 =
√
π

4 ∆φe−∆φ2
erf
(
φ

∆φ − i∆φ
)
, (A.58)

where erf (x) is the error function [WFS] and the asymptotics is

I
(∞)
1 =

√
2πe−

∆φ2
2 , (A.59)

I
(∞)
2 =

√
πe−∆φ2

. (A.60)

Squared cosine pulse
For the squared cosine pulse

g(φ) = cos2 φ

2N (A.61)

the phase integrals read

G2(φ) = 3
8φ+ N

2 sin φ

N
+ N

16 sin 2φ
N
, (A.62)

I1(φ) =
∫
dφeiφ cos2 φ

2N = eiφ

2i(N2 − 1)

(
N2 − 1 +N2 cos φ

N
− iN sin φ

N

)
, (A.63)

I2(φ) =
∫
dφe2iφ cos4 φ

2N = e2Ix

16i(4N4 − 5N2 + 1)

(
12N4 − 15N2 + 3

+ 16N2(N2 − 1) cos φ
N

+N2(4N2 − 1) cos 2φ
N

−8iN(N2 − 1) sin φ

N
− iN(4N2 − 1) sin 2φ

N

)
, (A.64)

with N = ∆φ/π being the number of full oscillations. The asymptotics is

I
(∞)
1 = sin πN

N −N3 , (A.65)

I
(∞)
2 = 3

8N
sin 2πN

1− 5N2 + 4N4 . (A.66)

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/
http://functions.wolfram.com/GammaBetaErf/PolyGamma/
http://functions.wolfram.com/GammaBetaErf/Gamma/
http://functions.wolfram.com/GammaBetaErf/Erf/
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A.5 Dirac algebra and spinors
The algebra of Dirac γ matrices {γµ, γν} = 2gµν is utilized in the standard representation, in
particular for the numerical evaluation of the matrix elements

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (A.67)

With the additional definitions γ5 = iγ0γ1γ2γ3 = − i
4!εαβµνγ

αγβγµγν and the antisymmetric
tensors σµν = i

2 [γµ, γν ], the 16 matrices {1, γµ, σµν , iγ5γµ, γ5} form a complete orthonormal
set of basis elements for the Clifford algebra with the scalar product (A,B) = 1

4trAB. The
projections of an element X of the Clifford algebra onto these basis elements are labelled
according to their transformation properties under Lorentz transformations as scalar S, vector
Vµ, tensor T µν , axial vector Aµ and pseudoscalar P. They are defined as

S[X] = (1, X) = 1
4tr X ,

P[X] = (γ5, X) = 1
4tr γ5X ,

Vµ[X] = (γµ, X) = 1
4tr γµX ,

Aµ[X] = (iγ5γµ, X) = 1
4tr iγ5γµX ,

T µν [X] = (σµν , X) = 1
4tr σµνX , (A.68)

and one has

X = S + Pγ5 + Vµγµ +Aµiγ5γµ + 1
2Tµνσ

µν . (A.69)

The Dirac adjoint is defined as X̄ = γ0X†γ0. The orthogonality of the basic spinors is
represented as

ūp,rup,r′ = 2mδrr′ , ūp,rvp,r′ = 0 ,
v̄p,rvp,r′ = −2mδrr′ , v̄p,rup,r′ = 0 , (A.70)

where the Dirac adjoint spinor is defined as ū = u†γ0. The completeness relations for spinors
read ∑

r=↑,↓
up,rūp,r = /p+m ≡ 2mΛ+ ,∑

r=↑,↓
vp,rv̄p,r = /p−m ≡ −2mΛ− , (A.71)

where Λ± is a projector on the subspace of solutions of the Dirac equation with positive
(negative) energy. The basic spinors fulfil the algebraic equations

(/p−m)up = 0 ,
(/p+m)vp = 0 , (A.72)
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and the relations

ūpγ
µup = 2pµ ,

ūpγ
µγνup = 2mgµν ,

ūp σ
µν up = 0 . (A.73)

As explicit representation for numerical evaluations, the following spinors are utilized

up =
m+ /p√
m+ p0u0 , (A.74)

vp =
m− /p√
m+ p0 v0 , (A.75)

with

u0,↑ = (1, 0, 0, 0)T , u0,↓ = (0, 1, 0, 0)T ,
v0,↑ = (0, 0, 1, 0)T , v0,↓ = (0, 0, 0, 1)T . (A.76)

A.6 Important relations from quantum field theory
Normalization conventions
As example, consider a neutral scalar field with L = 1

2(∂µΦ)2 − 1
2m

2Φ2. The following five
normalization constants can be chosen:

1. The single particle wave function normalization: ϕp(x) = NW e
−ipx.

2. The normalization of the scalar product: (ϕp, ϕq) = N−1
S

∫
dσµϕ∗p(x)i

↔
∂ µ ϕq(x).

3. The orthogonality of single particle wave functions: (ϕp, ϕq) = NOδ
3(p− q).

4. The eigenmode decomposition of the field operator: Φ̂(x) = N−1
Z

∫
d3p(ϕpâp + ϕ∗pâ

†
p).

5. The commutators of annihilation and creation operators: [âp, â†q] = NAδ
3(p− q).

The five normalization factors NW , NS , NO, NZ , NA are constrained by the two relations
NO = 2ωp(2π)3N2

W /NS and NA = N2
Z/(NONS). A survey of various normalization con-

ventions used in text books on quantum field theory is given in Table A.2. In this thesis,
the normalization convention of [Itz80] is employed, except for the normalization of the
basic Dirac spinors for which ūu = 2m is used (see also Section A.5), such that the above
normalization factors are equal for bosons and fermions.

Commutation relations
The electron (ĉpr), positron (d̂pr) and photon (âkλ) annihilation and creation operators fulfil
the commutation relations in the Furry picture

[âkλ, âk′λ′ ] = 0 , [â†kλ, â
†
k′λ′

] = 0 , [âkλ, â†k′λ′ ] = −(2π)32ωkδ3(k − k′)gλλ′ , (A.77)

{ĉpr, ĉp′r′} = 0 , {ĉ†pr, ĉ
†
p′r′} = 0 , {ĉpr, ĉ†p′r′} = (2π)32ωpδ3(p− p′)δrr′ . (A.78)

{d̂pr, d̂p′r′} = 0 , {d̂†pr, d̂
†
p′r′} = 0 , {d̂pr, d̂†p′r′} = (2π)32ωpδ3(p− p′)δrr′ (A.79)

with the on-shell energies ωk = |k| for photons and ωp = p0 =
√
p2 +m2 for electrons and

positrons.
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Table A.2: A survey of various normalization conventions in quantum field theory.

NW NS NO NZ NA

[Ber80] 1√
2ω (2π)3 1

√
2π3 1

[Itz80] 1 1 2ω(2π)3 2ω(2π)3 2ω(2π)3

[Ryd94] 1√
2ω(2π)3 1 1

√
2ω(2π)3 2ω(2π)3

[Fra91, Kak93] 1√
2ω(2π)3 1 1 1 1

Single particle states

Single particle Hilbert space states are defined and normalized in a Lorentz covariant manner
as

â†kλ|0〉γ = |kλ〉γ , γ〈kλ|k′λ′〉γ = −(2π)32ωkδ3(k − k′)gλλ′ , (A.80)
ĉ†pr|0〉e− = |pr〉e− , e−〈pr|p′r′〉e− = (2π)32ωpδ3(p− p′)δrr′ , (A.81)
d̂†pr|0〉e+ = |pr〉e+ , e+〈pr|p′r′〉e+ = (2π)32ωpδ3(p− p′)δrr′ . (A.82)

Eigenmode expansion of the field operators

The eigenmode expansion of the field operators reads

Âµ(x) =
3∑

λ=0

∫
d3k

(2π)32ωk

(
χµk,(λ)(x)âkλ + χµ∗k,(λ)(x)â†kλ

)
, (A.83)

Ψ̂(x) =
∑
r

∫
d3p

(2π)32ωp

(
Ψ(+)
p,r (x)ĉpr + Ψ(−)

p,r (x)d̂†pr
)
, (A.84)

ˆ̄Ψ(x) =
∑
r

∫
d3p

(2π)32ωp

(
Ψ̄(+)
p,r (x)ĉ†pr + Ψ̄(−)

p,r (x)d̂pr
)
, (A.85)

with the Gupta-Bleuler condition for physical photon states ∂µÂ(+)
µ |Φ〉 = 0 where Â

(+)
µ is the

positive frequency part of Âµ. The single-particle wave functions read

χµk,(λ)(x) = e−ik ·xεµ(λ) , (A.86)

Ψ(+)
p,r (x) = Ep(x)up,r = e−ip ·xΩp(x)up,r , (A.87)

Ψ(−)
p,r (x) = E−p(x)vp,r = eip ·xΩ−p(x)vp,r , (A.88)

where Ψ(+)
p,r (x) and Ψ(−)

p,r (x) are the positive and negative energy Volkov wave functions,
respectively. The quantities Ep(x) denotes the Volkov matrix functions defined in (2.42)
with Ep(x) = e−ip ·xΩp (see also Appendix B) and the Dirac adjoint spinors are defined as
Ψ̄ = Ψ†γ0. The scalar product in the space of the wave functions for Dirac fermions reads
[Bag90]

(Ψ1,Ψ2) =
∫
σ

dσµΨ̄1(x)γµΨ2(x) (A.89)
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with an arbitrary space-like or light-like hypersurface σ in Minkowski space and the infinitesi-
mal surface normal element dσµ thereon, and

(Ψ(+)
p,r ,Ψ

(+)
p′,r′) = (2π)3 2p0 δrr′δ

3(p− p′) = (2π)3 2p+ δrr′δ
3(p− p′) , (A.90)

(Ψ(−)
p,r ,Ψ

(+)
p′,r′) = (Ψ(+)

p,r ,Ψ
(−)
p′,r′) = 0 . (A.91)

A.7 The reduction of matrix elements
The perturbative expansion of the operator Ŝ[A] in the Furry picture [see Eq. (2.36)] utilizes
the Dyson series [Wei95]

Ŝ[A] = T exp
{
−i
∫
d4xHint(x)

}
(A.92)

=
∞∑
n=0

(−i)n

n!

∫
d4x1 · · · d4xnT

(
Hint(x1) · · ·Hint(xn)

)
(A.93)

with the interaction Hamiltonian density

Hint(x) ≡ e : ˆ̄Ψ(x)γµÂµ(x)Ψ̂(x) : , (A.94)

where : · · · : denotes the normal ordering of the enclosed operators. The reduction of an
S matrix element is shown for the example of one-photon Compton scattering with the
initial state containing an electron with momentum p and spin r. The final state contains an
electron characterized by p′ and r′, and a photon with momentum k′ in the polarization state
λ′. This is a first-order process described by the first-order term in the Dyson series (A.93)

S(1) = 〈p′r′;k′λ′|Ŝ[A]|pr〉 = 〈p′r′;k′λ′|
(
−i
∫
d4xHint(x)

)
|pr〉 (A.95)

= −ie
∫
d4x〈0|ĉp′r′ âk′λ′ : ˆ̄Ψ(x)γµÂµ(x)Ψ̂(x) : ĉ†pr|0〉 (A.96)

Employing the Wick theorem [Ber80], the operator product in the above equation can be
reduced to the completely contracted expression

〈0|ĉp′r′ âk′λ′ : ˆ̄Ψ(x)γµÂµ(x)Ψ̂(x) : ĉ†pr|0〉 = ĉp′r′
ˆ̄Ψ(x) γµâk′λ′Âµ(x) Ψ̂(x)ĉ†pr (A.97)

The contractions between the field operators and the creation and annihilation operators are
defined as the vacuum expectation values of these operators and are given by the single-particle
wave functions [Ber80]

ĉp′r′
ˆ̄Ψ(x) = 〈0|ĉp′r′ ˆ̄Ψ(x)|0〉 = Ψ̄(+)

p′,r′(x) , (A.98)

Ψ̂(x)ĉ†pr = 〈0|Ψ̂(x)ĉ†pr|0〉 = Ψ(+)
p,r (x) , (A.99)

âk′λ′Â
µ(x) = 〈0|âk′λ′Âµ(x)|0〉 = χµ∗k′,(λ′) , (A.100)

with the Volkov wave functions Ψ(+)
p,r (x) and Ψ̄(+)

p′,r′(x). The final result for the S matrix
element for non-linear one-photon Compton scattering in strong-field QED reads

S(1) = −ie
∫
d4x Ψ̄(+)

p′,r′(x) /ε∗(λ′)e
ik′ ·x Ψ(+)

p,r (x) . (A.101)
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For the second-order process of two-photon Compton scattering, where there are two photons
with momenta k1,2 and polarizations λ1,2 in the exit channel, the Dyson series has to be
taken up to the second-order term

S(2) = (−i)2

2! 〈p
′r′;k1λ1;k2λ2|T

∫
d4xd4yHint(x)Hint(y)|pr〉 . (A.102)

Upon applying the Wick theorem to the time ordered product, one encounters contractions
between electron field operators and adjoint electron field operators giving rise to the Dirac-
Volkov propagator [Rom69]

Ψ̂(x) ˆ̄Ψ(y) = 〈0|TΨ̂(x) ˆ̄Ψ(y)|0〉 = iG(x, y|A) , (A.103)

with

〈0|TΨ̂(x) ˆ̄Ψ(y)|0〉 = −〈0|T ˆ̄Ψ(y)Ψ̂(x)|0〉 . (A.104)

When calculating the contractions, there are 2! equivalent ways of contracting the fermion
operators, where only the integration variables are interchanged [Ber80], yielding

〈0|Tĉp′r′ âk1λ1 âk2λ2 : ˆ̄Ψ(x)γµÂµ(x)Ψ̂(x) :: ˆ̄Ψ(y)γνÂν(y)Ψ̂(y) : ĉ†p,r|0〉 (A.105)

= 2! ĉp′r′ ˆ̄Ψ(x)
[
âk1λ1Â

µ(x)γµ ˆ̄Ψ(x)Ψ̂(y)γν âk2λ2Â
ν(y)

+ âk2λ2Â
µ(x)γµ ˆ̄Ψ(x)Ψ̂(y)γν âk1λ1Â

ν(y)
]

Ψ̂(y)ĉpr (A.106)

= −2i
[
Ψ̄(+)
p′,r′(x)/ε∗1e

ik1 ·xG(x, y|A)/ε∗2e
ik2 · yΨ(+)

p,r (y)

+ Ψ̄(+)
p′,r′(x)/ε∗2e

ik2 ·xG(x, y|A)/ε∗1e
ik1 · yΨ(+)

p,r (y)
]
. (A.107)

Plugging this result into (A.102), one immediately finds the expression (4.5) for the two-
photon Compton S matrix. This concludes these general considerations on quantum field
theory in the Furry picture. It was shown how the S matrix elements for one-photon and
two-photon Compton scattering in the Chapters 3 and 4, respectively, can be derived from
the perturbative Dyson series expansion of the scattering operator Ŝ[A] in the presence of a
background field, employing the Wick theorem.
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Appendix B

Strong-field QED in the path integral
approach

Considering the Furry picture in the path integral formalism provides an elegant tool
to obtain the corresponding Feynman rules and n-point functions [Vai92, Fra81]. The
general idea is to find a unitary transformation Ω, that transforms the Dirac operator

with a background field Aµ into the free Dirac operator:

Ω−1(/p− e /A−m)Ω = /p−m. (B.1)

The existence of such an unitary transformation is assumed here and verified a posteriori by
an explicit calculation of Ω in Section B.2. The transition to the Furry picture is related to
the stability of the vacuum state under the action of the background field [Fra81] and the
unitarity of Ω. In Section B.3, a new and simple proof of the orthogonality and completeness
of the Volkov matrix functions Ep, which are related to Ω, is presented.

B.1 The path integral with background fields

The starting point is the generating functional in the presence of a background field Aµ which
reads

Z[Jµ, η̄, η] =
∫

DAµDΨ̄DΨ exp
{
i

∫
d4x

[
L + JµA

µ + η̄Ψ + Ψ̄η
]}

(B.2)

with the Lagrangian L = Lf + Lg + Lint, and

Lf = Ψ̄(i/∂ − e /A−m)Ψ , (B.3)

Lg = −1
4FµνF

µν − 1
2ξg

(∂µAµ)2 , (B.4)

Lint = −eΨ̄/AΨ . (B.5)

Adopting a perturbative picture for the interaction of the fermions with the quantized
electromagnetic field Aµ, the generating functional may be rewritten as

Z[Jµ, η̄, η] = exp
{
i

∫
d4xLint

(
δ

iδJµ
,
δ

iδη
,
δ

iδη̄

)}
Zg[Jµ]Zf [η̄, η] , (B.6)
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where the fields have been replaced by derivatives with respect to the appropriate sources
according to

Aµ →
δ

iδJµ
, Ψ̄→ δ

iδη
, Ψ→ δ

iδη̄
(B.7)

in the interaction Lagrangian which has been taken out of the functional integral. The
remaining generating functional factorizes into a free gauge part Zg and a fermion part Zf
containing the interaction with the background field Aµ

Zg[Jµ] =
∫

DAµ exp
{
i

∫
d4x (Lg + JµA

µ)
}
, (B.8)

Zf [η̄, η] =
∫

DΨ̄DΨ exp
{
i

∫
d4x

(
Lf + η̄Ψ + Ψ̄η

)}
. (B.9)

The transition to the Furry picture is done by a unitary transformation Ω of the fermion
fields

Ψ = Ωχ , Ψ̄ = χ̄Ω−1 , (B.10)

such that Lf looks like a free Lagrangian

Ψ̄(/p− e /A−m)Ψ = χ̄(/p−m)χ , (B.11)

in terms of the new fields χ and χ̄. The functional integration measure is invariant under the
transformation (B.10) of the fields. The fermionic generating functional Zf reads in terms of
the new fields

Zf [η̄, η] =
∫

Dχ̄Dχ exp
{
i

∫
d4x

[
χ̄(i/∂x −m)χ+ χ̄Ω−1η + η̄Ωχ

]}
. (B.12)

Proceeding with the standard procedure to “complete the squares” in the exponent, or more
precisely to shift the integration variables by a classical field χ→ χ− χcl and χ̄→ χ̄− χ̄cl
[Kak93]

χcl(x) =
∫
d4yG0(x− y)Ω−1(y)η(y) , (B.13)

which is a solution of the classical field equation with the source Ω−1η,

(i/∂x −m)χcl(x) = Ω−1(x)η(x) , (B.14)

and similarly for χ̄cl. The Green’s function of the Dirac operator (i/∂x −m)G0(x) = δ(x) is
employed above in (B.13). For the fermionic part of the generating functional one obtains
the result

Zf [η̄, η] = Zf [0, 0] exp
{
−i
∫
d4xd4y η̄(x)Ω(x)G0(x− y)Ω−1(y)η(y)

}
. (B.15)

This allows the calculation of all n-point functions of the theory by calculating the functional
derivatives with respect to the source terms. The corresponding S matrix elements are
calculated via LSZ reduction [Pes95]. For instance, the propagator, i.e. the electron 2-point
function, in the presence of a background Aµ field has a representation as [Vai92]

G(x, y|A) = 1
Zf [0, 0]

δ2Zf [η, η̄]
δη(y)δη̄(x)

∣∣∣∣∣
η̄=η=0

= Ω(x)G0(x− y)Ω−1(y) . (B.16)
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B.2 Construction of the unitary transformation Ω
In this section, the unitary transformation Ω will be constructed explicitly. In [Vai92], the
transformation Ω was calculated for a plane-wave background field Aµ in Fock-Schwinger
gauge, where (x− x′)µAµ(x) = 0 with a rather lengthy expression for the background field
vector potential Aµ. Here, a different derivation will be presented in the covariant Lorenz
gauge with ∂ ·A(x) = 0 which is consistent with the form of gauge fixing in (2.34) and the
form of the laser vector potential (A.24) used throughout this thesis. It will be shown that
the transformation Ω(x) is related to the Volkov matrix function Ep(x). The searched unitary
transformation Ω is defined by

/p− e /A = /π = Ω/pΩ−1 . (B.17)

It is convenient to construct Ω in two steps as a product Ω = UV with commutating factors
[U, V ] = 0, where U refers to the spin-0 case and V contains the spin-1

2 structure. First a
new auxiliary momentum is defined

π̄µ ≡ pµ − eA · p
k · p

kµ + e2A2

2k · pk
µ (B.18)

with π̄2 = π2 and [π̄µ, π̄ν ] = 0. The momenta π̄µ and πµ are related by πµ = Λµν π̄ν with the
local Lorentz transformation

Λµν = gµν + e

k · p
(kµAν − kνAµ)− e2A2

2(k · p)2k
µkν , (B.19)

i.e. Λµν is an orthogonal transformation ΛµνgµσΛσκ = gνκ. Even more, Λµν is an element of
the local little group E2(φ) (that is the Euclidean group in two dimensions) since Λµνkν = kµ

[Bro84, Wei95]. The transformation U is obtained by solving

π̄µ = UpµU−1 . (B.20)

The ansatz U = exp{−iΓ(φ)} leads to a differential equation for the unknown function Γ(φ)
via

dΓ
dφ

= ep ·A(φ)
k · p

− e2A2(φ)
k · p

, (B.21)

with the solution

Γ(φ, φ0) = 1
2k · p

φ∫
φ0

dφ′
[
2p ·A(φ′)− e2A2(φ′)

]
, (B.22)

which gives the solution for U . To calculate the transformation for the spin-1
2 case one notes

that

/π = V UγµpµU
−1V −1 = V γµπ̄µV

−1 = γµΛµν π̄ν . (B.23)

The matrix V has to fulfil the relation

Λ ν
µ γ

µ = V γνV −1 , (B.24)
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thus, V is a spinor representation of the Lorentz transformation Λ. A convenient ansatz for
this transformation is V = exp {cσµνΛµν} with an unknown constant c. Using this expression
in (B.24) one obtains

V = exp
{2iec
k · p

/k /A

}
(B.25)

To determine c, one has to evaluate the matrix on the right hand side of (B.24) with the
Hadamard lemma

etXY e−tX =
∞∑
n=0

tn

n!Zn , (B.26)

Zn = [X,Zn−1] , Z0 = Y . (B.27)

Here, t = 2iec
k · p , Y = γν and X = /k /A are identified. The calculation yields

Z1 = [/k /A, γν ] = /k{ /A, γν} − {/k, γν} /A = 2(Aν/k − kν /A) , (B.28)
Z2 = −4A2kν/k , (B.29)
Zn = 0 for n ≥ 3 , (B.30)

thus,

V γνV −1 = γµ
[
gµ ν + 4iec

k · p

(
Aνkµ − kνAµ

)
+ 8e2c2A2

(k · p)2 kµk
ν

]
= γµΛ ν

µ . (B.31)

A comparison of coefficients between (B.31) and (B.19) yields c = −i/4, thus, the transfor-
mation V reads

V = exp
{

e

2k · p
/k /A(φ)

}
= 1 + e

2k · p
/k /A(φ) (B.32)

The final result for the transformation Ω is

Ωp(φ) =
[
1 + e

2k · p
/k /A(φ)

]
exp

− i

2k · p

φ∫
dφ′

[
2ep ·A(φ′)− e2A2(φ′)

] , (B.33)

which is indeed related to the Volkov matrix function as Ep(x) = Ωp(φ)e−ip ·x differing only
by a free plane wave phase factor.

B.3 A proof of the completeness and orthogonality of the Volkov matrix
functions

In this section, a new proof of the completeness and orthogonality of the Volkov Ep matrix
functions will be presented, using general properties of Ep(x). Here, the momentum p is
taken to be off the mass shell, p2 6= m2. The orthogonality (B.34) and completeness (B.35)
relations for the Volkov matrices read∫

d4xĒp(x)Eq(x) = (2π)4δ4(p− q) , (B.34)∫
d4pEp(x)Ēp(y) = (2π)4δ4(x− y) , (B.35)
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which are important relations for employing the Volkov states as initial and final states for
the perturbation series. Several proofs of the above equations were given in the literature,
but they are rather lengthy and employ certain additional properties for the background field
[Rit85, Zak05, Löt08, Boc11a].

The given proof of the above relations makes use of the following general properties:

1. The Volkov matrix functions have a representation as Ep(x) = Ωp(φ)e−ip ·x as shown
in the preceding section.

2. The matrices Ωp(φ) are unitary with respect to the Dirac adjoint, i.e. Ω̄p(φ) = Ω−1
p (φ),

such that Ω̄p(φ)Ωp(φ) = Ωp(φ)Ω̄p(φ) = 1.

3. The unitary matrices Ωp(φ) depend only on the phase φ of the background field, which
is proportional to the light-front coordinate x+ = φ/ω, where ω is frequency of the
background wave field.

4. Ωp(φ) depends only on three components of momentum p+,p⊥.

Thus, writing these dependencies explicitly as Ωp+,p⊥
(x+) ≡ Ωp(φ) in the following, the proof

becomes simple when using light-front coordinates for the integrations in (B.34) and (B.35),
i.e. using d4x = dx+dx−d2x⊥/2 and d4p = dp+dp−d2p⊥/2, as well as the light-front delta
distributions δ3(p− q) = δ(p+ − q+)δ2(p⊥ − q⊥).

Proof of orthogonality∫
d4xĒp(x)Eq(x) =

∫
d4x Ω̄p+,p⊥

(x+)Ωq+,q⊥
(x+) ei(p−q) ·x

= 1
2

∫
dx+dx−d2x⊥ Ω̄p+,p⊥

(x+)Ωq+,q⊥
(x+)

× ei
x+
2 (p−−q−)+ix

−
2 (p+−q+)−(p⊥−q⊥) ·x⊥

= (2π)3δ3(p− q)
∫
dx+ Ω̄p+,p⊥

(x+)Ωq+,q⊥
(x+) ei

x+
2 (p−−q−)

= (2π)3δ3(p− q)
∫
dx+ Ω̄p+,p⊥

(x+)Ωp+,p⊥
(x+) ei

x+
2 (p−−q−)

= (2π)3δ3(p− q)
∫
dx+ei

x+
2 (p−−q−)

= (2π)4δ4(p− q) . (B.36)

Proof of completeness∫
d4pEp(x)Ēp(y) =

∫
d4pΩp+,p⊥

(x+)Ω̄p+,p⊥
(y+) e−ip · (x−y)

= (2π)δ(x+ − y+)
∫
dp+d2p⊥Ωp+,p⊥

(x+)Ω̄p+,p⊥
(y+)

× e−i
p+
2 (x−−y−)+ip⊥ · (x⊥−y⊥)

= (2π)δ(x+ − y+)
∫
dp+d2p⊥e

−i p
+
2 (x−−y−)+ix⊥ ·p⊥

= (2π)4δ4(x− y) . (B.37)

This concludes the proof of the completeness and orthogonality of the Volkov matrix functions
Ep(x), where the light-front structure of the unitary matrices Ω(φ) was employed.
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Appendix C

The weak-field and IPW limits of
one-photon Compton scattering

The weak-field limit of the one-photon Compton matrix element was concisely discussed
at the end of Section 3.2, where the starting point was the final result for the non-linear
Compton S matrix. Here, in Section C.1, a more detailed derivation is presented, based

on an iterative solution of the Lippmann-Schwinger equation (2.56) for the Volkov state. In
the following sections, the limit of infinite monochromatic plane waves is presented, providing
important relations for the discussion in Chapter 3. The Appendix closes with a discussion
of the numerical convergence in the limit of long pulses and the relation between long pulses
and monochromatic infinite plane waves.

C.1 Weak-field expansion of the non-linear Compton matrix element
A systematic expansion of the non-linear Compton matrix element can be achieved by
employing the iterative solution of the Lippmann-Schwinger equations (2.56) for the Volkov
state Ψp and the adjoint Volkov state Ψ̄p. Using a symbolic notation (where the spacetime
integrations are not noted explicitly), the expansion reads

Ψp = ψp +G0e /Aψp +G0e /AG0e /Aψp + . . . , (C.1)
Ψ̄p′ = ψ̄p′ + ψ̄p′e /AG0 + ψ̄p′e /AG0e /AG0 + . . . , (C.2)

where ψp and ψ̄p′ denote the respective free Dirac wave functions, G0 stands for the free
Dirac propagator and e /A is the interaction with the laser field. Using these expansions, the
non-linear Compton matrix element is decomposed as

S = Ψ̄p′/ε
′Ψp = ψ̄p′/ε

′ψp

+ ψ̄p′/ε
′G0e /Aψp + ψ̄p′e /AG0/ε

′ψp

+ ψ̄p′/ε
′G0e /AG0e /Aψp + ψ̄p′e /AG0/ε

′G0e /Aψp + ψ̄p′e /AG0e /AG0/ε
′ψp

+O(a3
0) . (C.3)

The diagrammatic representation of this expansion of the S matrix element (3.4) in the
interaction with the laser field, i.e. in powers of a0, is given in Figure C.1. Each laser-electron
vertex (red dot) corresponds to a factor e /A and is proportional to a factor of a0.

The zeroth-order term [the first line in (C.3)] is exactly the free electron-photon vertex
which is known to vanish due to momentum conservation. The laser vector potential describes
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Figure C.1: Expansion of the non-perturbative non-linear Compton matrix element in
the Furry picture (cf. Figure 3.1) in powers of the interaction with the laser
background field. The black box denotes the two leading-order Feynman
diagrams that lead to the Klein-Nishina formula, eventually.

both the absorption (e−ik ·x) and emission (eik ·x) of laser photons. From the first order [the
second line of (C.3)], only the diagrams with the absorption of a laser photon (in the black
box) are non-vanishing. These give rise to the perturbative matrix element which eventually
yields the Klein-Nishina cross section.

Before showing the equivalence of the expanded Volkov matrix elements with usual
perturbation theory, some comments on the higher order terms seem necessary. From the
12 possible second order terms in the second and third line of Figure C.1 [each term in the
third line of Eq. (C.3) corresponds to 22 diagrams], only the three ones in the second line
are non-vanishing, where both laser photons are absorbed. All the other ones are zero due
to momentum conservation. From the third order, only the non-vanishing contributions are
shown. The terms in the first pair of brackets in the last line of Figure C.1 provide the lowest
order terms of the third harmonic. The terms in the second pair of brackets contain the
absorption and re-emission of a laser photon, giving the same energy-momentum conservation
as the first harmonic. Thus, these terms have to be considered as a correction to the first
harmonic of order a3

0. Consequently, one could identify further corrections of higher order in
a0 all contributing to the same harmonic.

Turning now to the evaluation of the lowest non-vanishing contribution of the S matrix,
which is linear in the background field, the Volkov wave functions in the matrix element in
Eq. (3.4) have to be expanded up to terms linear in Aµ. To make contact with standard
perturbation theory, the background field is assumed to be monochromatic, i.e. g = 1 in this
section. Reintroducing the integrations, the linearized Volkov wave functions read

Ψp(x) = ψp(x) +
∫
d4yG0(x− y)e /Aψp(y) , (C.4)

Ψ̄p′(x) = ψ̄p(x) +
∫
d4yψ̄p(y)e /A(y)G0(x− y) , (C.5)

yielding the s- and u-channel terms if the expansion is plugged into the matrix element (3.4),



C.1 Weak-field expansion of the non-linear Compton matrix element 129

namely S = S(s) + S(u) with

S(s) =− ie
∫
d4x ψ̄p′(x)/ε′∗

∫
d4yG0(x− y)e /A(y)ψp(y)eik′ ·x , (C.6)

S(u) =− ie
∫
d4x

∫
d4y ψ̄p′(y)e /A(y)G0(x− y)/ε′∗ψp(x)eik′ ·x . (C.7)

As discussed above, only the parts of the laser field describing the absorption of laser photons
(∝ e−ik ·x) lead to an energy momentum conservation that can be satisfied. The s-channel
contribution is

S(s) =−iema0
2

∫
d4xd4yei(k

′+p′) ·xūp′/ε′∗G0(x− y)/ε+upe
−i(p+k) · y (C.8)

=−i(2π)4ema0
2 δ4(k′ + p′ − k − p)ūp′/ε′∗G0(p+ k)/ε+up (C.9)

with the Fourier transformed free electron propagator∫
d4ye−i(p+k) · yG0(x− y) =e−i(p+k) ·xG0(p+ k) . (C.10)

For the u-channel one obtains

S(u) =−iema0
2

∫
d4xd4yei(k

′−p) ·xūp′/ε+G0(x− y)/ε′∗upe−i(p
′−k) ·x (C.11)

=−i(2π)4ema0
2 δ4(k′ + p′ − k − p)ūp′/ε+G0(p′ − k)/ε′∗up . (C.12)

In total one finds

S = −ie(2π)4ma0
2 δ4(k + p− k′ − p′)

[
ūp′/ε

′∗G0(p+ k)/ε+up + ūp′/ε+G0(p′ − k)/ε′∗up
]
,

(C.13)

which is, apart from the global normalization, exactly the matrix element for linear Compton
scattering, leading eventually to the Klein-Nishina formula [Itz80]. Using for the prefactor
the definition of a0 = eA0/m one finds

−iema0
2 = −ie2A0

2 → −ie
2 (C.14)

upon choosing A0 = 2. With the chosen normalization for the single-particle states |kλ〉, the
perturbative photon wave functions are normalized to 2ωk particles per unit volume [Itz80].
Comparing this with the normalization of the background field, for which the energy density
is w̄ = m2a2

0ω
2/(2e2) = ω2A2

0/2, one notes that upon choosing A0 = 2 both normalizations
would coincide: w̄ = ω (2ω), i.e. the energy density w̄ is given by the energy of one photon ω
times 2ω photons per unit volume.
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C.2 The limit of infinite plane waves1

The first goal is to derive the S matrix in the limit of infinite plane waves using the previous
result for arbitrary laser pulse envelopes g. It is clear that only the phase integrals An (3.19)
in M (3.21) need to be modified as the other terms do not depend on the pulse envelope g
at all.

The case of an infinite monochromatic plane wave laser field is obtained formally by taking
the limit g → 1. The numerical convergence of the phase integrals in the limit ∆φ→∞ is
not so straightforward and discussed below in Section C.4 of this Appendix. In the case of an
infinite plane wave, the carrier envelope phase φ̂ becomes insignificant. Therefore, it will be
set to zero from the beginning in this Appendix.

The non-linear phase exponent in the phase integrals An in Eqs. (3.19) becomes in the
monochromatic limit, where the integrals in (3.7) have been evaluated and a irrelevant
constant phase has been dropped,

sφ− f(φ) = (s− β)φ− ᾱ sin(φ+ φ0)− β

2 cos 2ξ sin 2φ = (s− β)φ− f̃(φ) (C.15)

with the geometric mean ᾱ = √α+α− = |α±| [for the definition of α± see Eq. (3.8)],
such that α+ = ᾱe−iφ0 and α− = ᾱeiφ0 with the complex argument φ0 = arg (α−) =
arctan2(−α2 sin ξ, α1 cos ξ). The oscillating part of the exponential in (C.15) can be expanded
into a Fourier series over the interval of periodicity [−π, π] according to

e−if̃ = e−iᾱ sin(φ+φ0)−iβ2 cos 2ξ sin 2φ =
∞∑

`=−∞
B`e

−i`φ , (C.16)

with the Fourier coefficients

B` = 1
2π

+π∫
−π

dφ′ei`φ
′−if̃(φ′) , (C.17)

which is a generalization of the Jacobi-Anger expansion [Erd53]. The signs in the exponent
of (C.16) are chosen such that terms with ` > 0 can later be interpreted as absorption of
laser photons. In the general case of arbitrary elliptical polarization, the coefficients are
two-variable one-parameter Bessel functions [Kor06], defined as

B` ≡ J`(ᾱ, β cos 2ξ /2;φ0) =
∞∑

n=−∞
J`−2n(ᾱ)Jn(β cos 2ξ /2)e−i(`−2n)φ0 , (C.18)

where J` are ordinary Bessel functions of the first kind [Wat22]. A particularly simple and
well known limit for the coefficients is obtained for circular polarization, where cos 2ξ = 0 and

B`(circular) =
∑
n

J`−2n(ᾱ)Jn(0)e−i(`−2n)φ0 = J`(ᾱ)e−i`φ0 . (C.19)

The case of linear laser polarization has been extensively studied in [Löt09c, Leu11]. For
example for ξ = 0 the coefficients read

B`(linear) =
∞∑

n=−∞
J`−2n(α1)Jn(β/2) . (C.20)

1The presentation in this and the following section is partly based on the publication [Hei10b].



C.2 The limit of infinite plane waves 131

With these expansions, the φ integrals in (3.19) become∫
dφei(s−β−`)φ = 2πδ(s− β − `) , (C.21)

yielding delta distributions δ(s− `− β). This means that for infinite plane waves the variable
s cannot be arbitrary anymore. Instead s = s(`) = `+ β with integer ` corresponding to the
`th harmonic, i.e. the absorption of ` photons from the background field. The extra term
β = βp − βp′ is absorbed into the definition of the quasi-momenta. Multiplying the argument
of the delta distribution with k− and writing the expression explicitly one has

k−(s− β − `) =
(
p′− + βp′k

−)− (p− + βpk
−)+ k′− − `k− ≡ q′− − q− + k′− − `k−

(C.22)

where the terms in brackets are the minus components of the electron quasi-momenta
q = p+ βpk and q′ = p′ + βp′k, respectively. Note that only p−, the conjugate momentum
to the laser phase φ, is modified by an intensity dependent contribution, i.e. the light-front
transverse components of momentum and quasi-momentum are equal q+ = p+, q⊥ = p⊥,
abbreviated as q = p. The energy-momentum conservation can now be written in the form

q + `k = q′ + k′ , ` ∈ N . (C.23)

As a consequence, the frequency of the scattered photons becomes in an IPW

ω′` = ω′(s(`)) = `k · q
(q + `k) ·n′ (C.24)

with again ` ∈ N, giving rise to the notion of discrete harmonics with a strict correlation
ω′`(θ) for each `. Writing the scalar products explicitly for the important case of a head-on
collision of the electron with the laser beam, −p ‖ n, one arrives at

ω′`(θ) = `ωe2ζ

1−v cos θ
1−v +

[
` ωme

ζ + a2
0
4

]
(1 + cos θ)

(C.25)

with the electron rapidity ζ = arccosh γ and velocity v = tanh ζ. Defining the total momentum
P = q+ `k, the formula for the frequency of the scattered photon (C.25) can be reformulated
as

ω′` = `ω

1 + κ`(a0) e−ζ (1 + cos θ) (C.26)

with

κ`(a0) ≡ `ω/m− sinh ζ + 1
4a

2
0 e
−ζ ≡ −P ·n 1

m
(C.27)

being the projection of the total momentum onto the optical axis, n = k/ω, measured in units
of m. The vanishing of the latter, n ·P = −mκ` = 0, defines an intensity and ` dependent
centre-of-mass frame in which the scattered frequencies are precisely the harmonic multiples,
ω′` = `ω [Har09]. For κ` < 0 one is in the inverse Compton regime where the electrons transfer
energy to the emitted photons, ω′` > `ω, thus causing an overall blue-shift, and the emission
is into directions θ < 90◦, i.e. most of the radiation is backscattered. (This is of course the
physical basis for Compton generated X-rays.) For κ` = 0, the direction of emission is very
sensitive to the details of the longitudinal electron dynamics. It has been supposed to use
this parameter regime for precise tests of radiation reaction [DP09]. In the inverse Compton
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regime, the maximum scattered frequency, i.e. the Compton edge, occurs upon backscattering
(θ = 0) and is given by

ω′`,max = `ωe2ζ

1 + 2` ωmeζ + a2
0/2
' 4`γ2ω

1 + a2
0/2
≡ 4`γ2

?ω . (C.28)

The approximation above holds for small electron energies γ and large intensities, more
precisely when

4γ` ω
m
� 1� a2

0 , (C.29)

which is very well satisfied for the parameters envisaged at the HZDR (γ = 100, ω = 1.55 eV,
a0 = 10) but was not so for the SLAC E-144 experiment (γ = 105, ω = 2.35 eV, a0 = 1).
As γ2

? = γ2/(1 + a2
0/2) < γ2 the linear (` = 1) Compton edge is red-shifted, ω′`,max < 4γ2ω,

by a factor of 1/(1 + a2
0/2) in a strong laser pulse. Hence, if one is primarily interested in

up-shifting the laser frequency (e.g. for X-ray generation), the intensity a0 should certainly
not exceed unity.

Having discussed the kinematics of the process now, the focus is turned back to the
calculation of the S matrix. The phase integrals (3.19) read in the limit of infinite plane
waves

A0(s)→ 2π
∞∑

`=−∞
δ(s− `− β)B` ,

A±(s)→ 2π
∞∑

`=−∞
δ(s− `− β)B`∓1 ,

A2(s)→ 2π
∞∑

`=−∞
δ(s− `− β)

[
B` + cos 2ξ

2 (B`+2 +B`−2)
]
, (C.30)

where they have support on a delta comb. Using these results in the (3.20), the general
expression for the scattering matrix in a monochromatic plane wave field reads

S = (2π)4∑
`

δ4(k′ + q′ − `k − q)M (`) , (C.31)

M (`) =
[
T0 + T2

]
B` + T+B`−1 + T−B`+1 + T2

2 cos 2ξ
[
B`−2 +B`+2

]
. (C.32)

The gauge invariance of the matrix elements M (`) is ensured automatically by recursion
relations of the generalized Bessel functions (cf. also Appendix D). For a circularly polarized
laser, the partial amplitudes M (`) acquire the particularly simple form

M (`) = e−i`φ0
[
(T0 + T2)J`(ᾱ) + T+e

iφ0J`−1(ᾱ) + T−e
−iφ0J`+1(ᾱ)

]
, (C.33)

which coincides with textbook results (e.g. [Ber80]).
The S matrix element (C.31) with the partial amplitudes (C.33) for circular polarization

is readily translated into an emission rate [Ber80]. The differential rate per incoming electron
for emitting a single photon of frequency ω′ in an infinite monochromatic laser wave with
frequency ω per incident electron is given by [Nar65]

dẆ

dx
=
∞∑
`=1

dẆ`

dx
,

dẆ`

dx
= e2m2

16π
1
q0
a2

0
2

J`(z`(x))
(1 + x)2 , (C.34)
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where the spin and polarization summations have been performed. The non-trivial part of
the rate is encoded in the function J`, which reads for circular laser polarization

J`(z`) ≡ −
8
a2

0
J2
` (z`) +

(
2 + x2

1 + x

)[
J2
`−1(z`) + J2

`+1(z`)− 2J2
` (z`)

]
. (C.35)

The J` are Bessel functions of the first kind depending on the invariant argument

z`(x) ≡ 2`

√
a2

0/2√
1 + a2

0
2

√√√√ x

y?`

(
1− x

y?`

)
(C.36)

which is composed of two further invariants, namely

x ≡ k · k′

k · p′
, y?` ≡ `y?1 ≡

2` k · p
m2
?

, (0 ≤ x ≤ y?` ) . (C.37)

Note that z` = 0 when x acquires its minimum or maximum value. For linear laser polarization
the function I` involves generalized two-parameter Bessel functions [cf. Eq. (C.20)]. The
corresponding expressions can be found e.g. in [Iva04]. The rate (C.34) is readily transformed
into a cross section upon dividing by the flux factor [Iva04],

j ≡ k · q
ωq0 %̄ω , (C.38)

with the photon density %̄ω, which is related to the laser intensity as

a2
0 = 2e

2%̄ω
m2ω

. (C.39)

One thus ends up with the differential cross section

dσ`
dx

= πr2
e

m2

k · p
J`(z)

(1 + x)2 , (C.40)

which indeed has the correct dimensions of an area. With re = α/m ' 2.8 fm as the classical
electron radius, one gets πr2

e = 25 fm2 = 250 mb. Expanding J`(z) for small a0 one recovers
again the Klein-Nishina cross section [Nar65, Ber80].2

For what follows, the rates and cross sections will be needed in the laboratory frame
where a head-on collision between laser and electron beam is assumed. The frequency of the
scattered photon is then given by (C.26), and the invariants (C.37) become

x =
ω′

m (1 + cos θ)
eζ − ω′

m (1 + cos θ)
, (C.41)

y?1 = 2eζ

1 + a2
0
2

ω

m
. (C.42)

This yields the following differential cross sections

dσ`
dω′

= r2
eπ

n ·P
m2

k · p
J`(z`) ,

dσ`
dΩ = r2

e

2`

(
ω′

ωeζ

)2
J`(z`) . (C.43)

2Note that in [Ber80] Gaussian units are used rather than Heaviside-Lorentz which amounts to a reshuffling
of factors of 4π.
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Figure C.2: Partial differential cross sections for the first few harmonics ` = 1, 2, 3 and 4
in non-linear Compton back-scattering (head-on collision) of monochromatic
waves (solid curves) as a function of the photon frequency ω′. In the summed
cross section labelled by Σ, terms up to n = 1000 are included. For comparison,
the Klein-Nishina cross section [Ber80] is shown as dotted curve. Left panel:
HZDR like parameters a0 = 10, γ = 100, ω = 1.55 eV. Right panel: SLAC
like parameters a0 = 1, γ = 105, ω = 2.35 eV.

The individual harmonic cross sections (C.43) are plotted in Figure C.2. One clearly sees that
the contribution of each harmonic has its own frequency range given by `ω ≤ ω′` ≤ ω′`,max,
cf. (C.28), with the individual supports overlapping to some extent. The contributions of
higher harmonics, ` > 1, become more and more suppressed in amplitude. These features
are sufficient to guarantee the convergence of the cross section summed over all harmonics
[Har09],

dσ ≡
∞∑
`=1

dσ` . (C.44)

The result of the summation (up to n = 1000) is shown in Figure C.2 as red solid curve
labelled by Σ. Two main features can be seen to arise, in particular in the left panel of
Figure C.2. First, as discussed above, the linear Compton ’edge’ is red-shifted by a factor
of 1 + a2

0/2 from about 4γ2ω ' 60 keV down to 1 keV. This is a rather drastic effect and it
should be straightforward to verify experimentally. Second, higher harmonics show up as
additional peaks in the summed cross section with the peak heights decreasing rapidly with `.
From the properties of the Bessel functions J`(z) for large argument and large index one can
assert that the Bessel functions with ` > a3

0 are exponentially suppressed. Thus, harmonics
with ` > a3

0 will contribute only marginally to the spectrum and the sum in (C.44) can be
truncated at values of the order of ` = a3

0.

C.3 The classical low energy limit: Non-linear Thomson scattering
In this section, the results for non-linear Compton scattering from the previous section
are compared with the results for non-linear Thomson scattering considered, for instance,
in [Sar70, Esa93]. As stated in [Nik64b, Nar65] and further analysed in [Har09, Hei10b]
the Thomson limit is obtained when the invariant y?` defined in (C.37) becomes small. In
what follows, explicit relations between the general Compton expressions and their classical
(Thomson) limit are to be found. To this end the quantum corrections are separated off from
the purely classical results. A proper starting point is the momentum projection (C.27) which
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may be rewritten as

κ` = κ0 + 1
2y

?
`

(
1 + a2

0
2

)
e−ζ , (C.45)

where κ0 is obtained by setting ` = 0. Replacing κ` → κ0 in the scattered frequency (C.26)
for head-on collisions straightforwardly yields the (non-linear) Thomson limit

ω′`,Th = `ω

1 + κ0e−ζ(1 + cos θ) ≡ `ω
′
1,Th . (C.46)

This suggests that the general formula for arbitrary collision geometry is obtained by setting
` = 0 in the denominator of (C.24) which yields

ω′`,Th = `ω n ·u

n′ ·u+ a2
0

4n ·u n ·n
′

(C.47)

meaning that the frequencies ω′`,Th are indeed integer multiples of a fundamental frequency
ω′1,Th, with pµ = muµ, k′µ = ω′n′µ and kµ = ωnµ. At this point it is instructive to compare
with the low-intensity (“linear”) limit (or proper Thomson limit), where ` = 1, a0 → 0 and
(C.47) condenses to

ω′ = k ·u
n′ ·u

ω . (C.48)

This is the Doppler shift in disguise upon noting that for a head-on collision and backscattering
n ·u = γ(1 + v) = eζ and n′ ·u = γ(1− v) = e−ζ . Expressing the invariant x from (C.37) in
terms of the scattering angle θ it becomes explicitly `-dependent [Har09], x ≡ x` = `x1, with

x1 =
ω
me
−ζ(1 + cos θ)

1 + κ0e−ζ(1 + cos θ) . (C.49)

Comparing with (C.46) one finds the relation

ω′` =
ω′`,Th
1 + x`

. (C.50)

As x` is bounded by y?` the Thomson limit implies x` → 0 so that Compton and Thomson
expressions should generically differ by terms of order x` as in (C.50). Moving on to the
emission rates, again, all terms depending on x` are to be isolated. Following [Har09, Hei10b]
the ratio r = x1/y

?
1 is defined with 0 ≤ r ≤ 1, and z` from (C.36) is rewritten as

z` = `z1 =
√

2` a0√
1 + a2

0
2

√
r(1− r) , (0 ≤ z1 < 1) . (C.51)

It is important to take the Thomson limits, x1 → 0 and y?1 → 0, in such a way that the ratio
r stays fixed as a result of which z` remains unchanged. One may therefore decompose the
spectral function (C.35) into a classical (Thomson) part and an x` dependent correction,

J`(z`) = K`(z`) + x2
`

1 + x`
L`(z`) , (C.52)

where (suppressing the overall argument z`)

L` ≡ J2
`−1 + J2

`+1 − 2J2
` , and K` ≡ −8J2

` /a
2
0 + 2L`. (C.53)
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Figure C.3: Differential intensity as a function of ω′ in non-linear Compton scattering for
a Gaussian pulse envelope with ∆φ = 20 (left), 50 (centre) and 100 (right) for
linear polarization and a0 = 1.5. Further parameters are γ = 1000, θ = 1/γ
and ϕ = π/2.

This yields the Thomson limit of the cross section (C.43),
(
dσ`
dΩ

)
Th

= r2
e

2`

(
ω′

ωeζ

)2
K`(z`) , (C.54)

where only the classical part, K`, of J` contributes. Factoring K` out from (C.43) the Compton
to Thomson ratio may calculated explicitly,

dσ`
dΩ

/(
dσ`
dΩ

)
Th

= 1
(1 + x`)2 + x2

`

2(1 + x`)3

(
1 + 8

a2
0

J2
`

K`

)
= 1 +O(x`). (C.55)

Again, Compton and Thomson results differ by terms of order x`.

C.4 The relation between long pulses and monochromatic infinite plane
waves

In this section, the contact is made between long but finite laser pulses and the limit of infinite
plane waves as discussed above. As an example, increasing the pulse length parameter ∆φ
(cf. Appendix A.3) from 20 to 50 to 100 does not lead to an accumulation of spectral weight
at the non-linear Compton frequencies ω′`(θ) as could be expected naively, see Figure C.3.
The number of sub-peaks increases but the average shape of the harmonic bunch is more or
less the same for ∆φ = 20, 50 and 100 with the same spectral width. In fact, to obtain the
limit of infinite plane waves in the sense of the preceding sections, it is not efficient to take
simply the limit ∆φ→∞.

Taking the naive limit ∆φ→∞, i.e. keeping the shape of the pulse envelope unchanged,
would correspond to switching on the laser infinitely slowly, i.e. an infinitely slow increase
of the output power of the laser. This, however, will certainly not be a good description
of a real laser. Realistically, the laser will reach its full amplitude within a few cycles
of the carrier wave and then persist on that level. Thus, the single parameter model for
laser pulses has limitations for very long pulse duration ∆φ → ∞. For long laser pulses
it is necessary to introduce a more detailed model for the laser pulse with more than one
parameter, where one of the parameters describes the switching on and off of the pulse and
a second parameter describes the length that the laser stays on its maximum, described
by a flat-top pulse. The total pulse length now consists of the rise ”time” ∆φr and the
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Figure C.4: Same as Figure C.3, but for a pulse with a central flat-top section as described
in Eq. (C.56). The pulse length parameters are ∆φf = 10 (left), 20 (centre)
and 50 (right). The edges of the pulse are sections of the Gaussian envelope
with ∆φr = 20.

flat-top ”time” ∆φf . The flat-top part of the pulse is parametrized as a box-shaped pulse
gflat(φ) = Θ(φ+ ∆φf )Θ(∆φf − φ) = u∆φf (φ), with the Heaviside step function Θ(φ). The
rising and trailing edges of the pulse use the shifted single parameter pulses. Thus, the
complete pulse is parametrized as

g(φ; ∆φr,∆φf ) = g(φ−∆φf )Θ(φ−∆φf ) + u∆φf (φ) + g(φ+ ∆φf )Θ(−φ−∆φf ) .
(C.56)

The spectrum converges rather fast to sharp peaks centred at the non-linear Compton
frequencies ω′`(θ) upon increasing ∆φf from 10 to 20 and 50, as recognized in the three panels
of Figure C.4, while keeping ∆φr = 20 constant.





D
Appendix D

Gauge invariance of the matrix elements

Here, the gauge invariance of the matrix elements M for one- and two-photon Compton
scattering is studied. A quantum gauge transformation is carried out by the transformation
εi → εi + Λiki, where εi is the polarization vector of any external photon line, ki is the

corresponding four-momentum and Λi is an arbitrary c-number. Writing the matrix element,
involving n external photons from the quantized radiation field, as

M = Mµ1µ2···µnε
µ1
1 εµ2

2 · · · , (D.1)

one can reformulate the gauge invariance of the matrix element as

0 = Mµ1µ2···k
µ1
1 εµ2

2 · · · = Mµ1µ2···ε
µ1
1 kµ2

2 · · · = · · · . (D.2)

These relations allow for a gauge invariant definition of non-convergent phase integrals, which
appear in the calculation of the strong-field one-photon and two-photon S matrix elements.
One can also turn the argumentation around and use some prescription [Boc09, Sei11b] to
make these integrals convergent and then check whether this procedure leads to a gauge
invariant result. In either way, the gauge invariance of the matrix element is a strong
constraint providing a sensitive test for the matrix elements since subtle cancellations occur.

There is another gauge transformation related to the external laser field via the transfor-
mation

ε+ → ε+ + Λk , (D.3)

where ε+ denotes the polarization vector of the background laser field. Replacing ε+ by k,
the transformed Volkov matrix functions Ep(x) read

Ep(x; ε+ → k) = exp{−ip ·x− ima0Re
∫
dφg(φ)ei(φ+φ̂)} , (D.4)

where the non-linear phase function fp becomes independent of p. Thus, differences such as
fp − fp′ = 0, which always appear in the matrix elements, vanish. All matrix elements are
invariant under the transformation (D.3) [Löt08].
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D.1 One-photon Compton scattering
The photon polarization vector of the outgoing photon ε′ appears only in the Dirac coefficients
Tn. In the transformed Dirac coefficients, abbreviating Tn(ε′ → k′) ≡ T .

n , one has to
massively utilize (i) momentum conservation k′ = sk+ p− p′, (ii) the fact that the spinors up
are eigenvectors of /p with eigenvalue m, /pup = mup, and (iii) the anticommutation relations
of the Dirac matrices to obtain

T .
0 = ūp′/k

′
up = ūp′(/p+ s/k − /p′)up = sūp′/kup , (D.5)

T .
± = ūp′

[
dp′/ε±/k(/p− /p′)− dp(/p′ − /p)/k/ε±

]
up = −α±2 ūp′/kup , (D.6)

T .
2 = m2a2

0
4

k · k′

k · p k · p′
ūp′/kup = −βūp′/kup . (D.7)

In summary, the transformed matrix element reads

M .(s) = ūp′/kup

[
sA0(s)− α+

2 A+(s)− α−
2 A−(s)− βA2(s)

]
!= 0 (D.8)

and vanishes if and only if, for s 6= 0, the term in the square brackets vanishes. Thus, the
phase integrals An(s) need to be related as

sA0(s) = α+
2 A+(s) + α−

2 A−(s) + βA2(s) , (D.9)

which is precisely the relation (3.23). The requirement of gauge invariance leads to an
unambiguous definition of the phase integral A0 in terms of the other phase integrals A±
and A2, thus reducing the number of independent integrals by one.

D.2 Two-photon Compton scattering
The transformation will be considered only for photon “2”; for the other photon one proceeds
analogously. In the following, the commutators

[/p,Xp] = [X̄p, /p] = ma0/ε − αp/k , (D.10)
[X̄p, /p]Xp′ = X̄p′ [/p,Xp] = 2βp′/k = X̄p/pXp′ , (D.11)

will be useful, where αp = ma0(ε · p)/(k · p), βp = m2a2
0/(4 k · p) and Xp = /k/ε ma0/(2 k · p)

with the properties X̄p′Xp = XpX̄p′ = 0 and X̄p = −Xp. As an example, the transformation
will be shown for the coefficient U00 of the direct channel (the left Feynman diagram in
Figure 4.1), where the transformed quantities are again denoted as U .

00 ≡ U00(ε2 → k2) etc.,

U .
00 = ūp′/k2G1/ε

∗
1up = ūp′(/Q1 − /p

′ + (s− `1)k)G1/ε
∗
1up

= (s− `1)ūp′/kG1/ε
∗
1up (D.12)

employing the energy momentum conservation k2 = p + sk − p′ − k1 in the form k2 =
Q1 + (s − `1)k − p′ and introducing the abbreviation Q1 ≡ P1 + `1k for the on-shell value
of the propagator momentum, /Q2

1 = Q2
1 = m2, which has the property that /Q1G1 = mG1,

where G1 = /Q1 +m. A more complicated example is the transformation of U20

U .
20 = ūp′X̄p′/k2XP1G1/ε

∗
1up

= ūp′X̄p′(/P 1 − /p′ + s/k)XP1G1/ε
∗
1up

= ūp′
(
X̄p′ /P 1XP1 − X̄p′/p

′XP1

)
G1/ε

∗
1up

= 2(βp′ − βP1) ūp′/kG1/ε
∗
1up , (D.13)
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using the fact that XP1 = XQ1 , which can be verified by a direct evaluation. One notices that
the Dirac structures which remain in U .

00 and U .
20, are equal, allowing for a possible mutual

cancellation. The same statement holds true for U .
10. The coefficient V0 transforms as

V .
0 = ūp′/k2/k/ε

∗
1up

= ūp′(/Q1 + (s− `1)/k − /p′)/k/ε∗1up
= ūp′(/Q1 −m)/k/ε∗1up
= −ūp′/kG1/ε

∗
1up + 2k ·P1ūp′/ε

∗
1up . (D.14)

This term transforms inhomogeneous, i.e. extra an term appears, which is not proportional
to ūp′/kG1/ε

∗
1up. With the definitions for the direct channel Un and the exchange channel U×n

U0 = ūp′/kG1/ε
∗
1up , U×0 = ūp′/ε

∗
1G1/kup ,

U1 = ūp′/kG1(XP1/ε
∗
1 + /ε∗1Xp)up , U×1 = ūp′(XP1/ε

∗
1 + /ε∗1Xp)G1/kup ,

U2 = ūp′/kG1XP1/ε
∗
1Xp up , U×2 = ūp′ XP1/ε

∗
1XpG1/kup , (D.15)

one can summarize the transformed coefficients

U .
0n = (s− `1)Un , U .×

0n = `2U
×
n ,

U .
1n = (αp′ − αP1)Un , U .×

1n = (αP2 − αp)U×n ,
U .

2n = 2(βp′ − βP1)Un , U .×
2n = 2(βP2 − βp′)U×n (D.16)

and

V .
0 = −U0 + 2k ·P1ūp′/ε

∗
1up , V .×

0 = U×n − 2k ·P2ūp′/ε
∗
1up ,

V .
1 = −U1 + 2k ·P1ūp′(X̄p′/ε

∗
1 + /ε∗1Xp)up , V .×

1 = U×1 − 2k ·P2ūp′(X̄p′/ε
∗
1 + /ε∗1Xp)up ,

V .
2 = −U2 + 2k ·P1ūp′X̄p′/ε

∗
1Xpup , V .×

2 = U×2 − 2k ·P2ūp′X̄p′/ε
∗
1Xpup . (D.17)

For the transformed matrix element (4.23), as the sum of the direct and the exchange channel
one finds

M . = 1
2k ·P1

∑
n=0,1,2

Un

[
− Cn(s)− i

{
(s− `1)B0n(s, `1) + (αp′ − αP1)B1n(s, `1)

+ 2(βp′ − βP1)B2n(s, `1)
}]

+ 1
2k ·P2

∑
n=0,1,2

U×n

[
Cn(s)− i

{
`2Bn0(s, `2) + (αP2 − αp)Bn1(s, `2)

+ 2(βP2 − βp )Bn2(s, `2)
}]
, (D.18)

where the inhomogeneous parts of the transformed coefficients Vn and V ×n have cancelled
mutually between the direct and the exchange channel. The transformed matrix element is
zero if and only if the all terms in square brackets vanish individually. With a similar result
for the gauge transformation with respect to photon “1”, one obtains the following relations
between the phase integrals

(s− `i)B0n(s, `i) = iCn(s) + (αPi − αp′)B1n(s, `i) + 2(βPi − βp′)B2n(s, `i) , (D.19)
`iBn0(s, `i) = −iCn(s) + (αp − αPi)Bn1(s, `i) + 2(βp − βPi)Bn2(s, `i) . (D.20)

This defines the non-convergent phase integrals which involve an index zero in a unique and
gauge invariant way. In this way, the number of independent phase integrals is reduced from
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12 to 6 in each channel. In particular, the definition of B00 requires two steps and is possible
in two different ways, either B00 → B0l → Bnl or B00 → Bn0 → Bnl, which are equivalent
if additionally

sC0(s) = (αp − αp′)C1(s) + 2(βp − βp′)C2(s) (D.21)

holds. It should be noted that a regularization in the spirit of [Boc09], where a convergence
factor is introduced before the non-convergent integrals are integrated by parts to extract the
divergence, gives exactly the same results (D.19) – (D.21).



E
Appendix E

The infrared behaviour of two-photon
Compton scattering

It is well known that the emission probabilities for soft photon Bremsstrahlung ω → 0
diverges logarithmically as [Jau76]

∫
dω

ω
∼ lnω . (E.1)

The physical origin of this unfavourable behaviour of the perturbative iteration of the S
matrix is the separation of the emission of real Bremsstrahlung photons and soft virtual loop
corrections to the same order in the coupling constant α, which become indistinguishable in
the long-wavelength limit. It is indeed the case that the infrared divergences in soft photon
Bremsstrahlung and loop corrections cancel mutually. The Kinoshita-Lee-Nauenberg theorem
[Mut87] states that the complete standard model is free of infrared divergences to arbitrary
orders in perturbation theory. In quantum electrodynamics, the cancellations of infrared
divergences are known as Bloch-Nordsieck theorem or Bloch-Nordsieck cancellations. (Note
that the Bloch-Nordsieck cancellations fail in non-Abelian gauge theories due to additional
collinear singularities [Mut87].) In the following it will be shown how these cancellations
emerge in strong-field processes in the Furry picture when working with dressed electron
states and propagators. In particular the two-photon Compton process will be discussed
when one of the two emitted photons becomes soft. These soft photons have to be treated
properly when calculating the inclusive two-photon spectra.

The general solution of the soft-photon divergence problem has been given by Bloch and
Nordsieck very early [Blo37]: In any scattering process there is the possibility that a certain
number of low energy photons escapes undetected, leading to an observable energy loss ∆E.
Typically, ∆E is identified with an experimental resolution scale or low-energy threshold
of the detectors. The number of these low-energy photons is unobservable since real and
virtual photons cannot be distinguished in the soft-photon limit. Rather it appears as a
collective soft-photon effect, which vanishes as ∆E → 0. The method of Bloch and Nordsieck
includes the emission of an arbitrary amount of low-energy photons of frequencies ωr such
that

∑
r ωr ≤ ∆E. They showed that the average number of emitted photons is infinite. So

there is a reinterpretation of the divergent emission probability of a single low-frequency
photon as the emission of infinitely many soft photons.
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E.1 Extracting the divergent part
In the following, the cancellation of infrared divergences will be exemplified for the two-photon
Compton process. It is assumed that ω1 is the soft photon ω1 → 0 and ω2 is the hard photon.
Since it will be necessary to compare the S matrix expression for two-photon Compton
scattering and one-photon Compton scattering with radiative corrections, it will be useful to
introduce the notation S(m,n), where m denotes the number of emitted photons and n stands
for the number of loops. The S matrix for the two-photon process reads [see Eq. (4.13)]

S(2,0) = −ie2(2π)2
∫

[ds][dφ]δ(p′ + k1 + k2 − p− (s1 + s2)k)eis1φ1+is2φ2

× ūp′fε2p′,P1
(φ2)G0(P1 + s1k)fε1P1p

(φ1)up + (1 ↔ 2) , (E.2)

where the abbreviation [ds] means integration over all remaining sj ; the same holds for φ.
The quantities fεP,p(φ) denote the dressed vertices, e.g.

fε1P1,p
(φ1) = Ω̄P1(φ1)/ε∗1Ωp(φ1) . (E.3)

In the soft photon limit, ω1 → 0, one can safely take the limit P1 = p− k1 → p everywhere,
except in the denominator of the propagator G0. Thus, in the dressed vertex at which the
soft-photon ω1 is emitted, the non-linear phases fP1 − fp cancel exactly, yielding

eis1φ1fε1pp(φ1) = (1 + X̄pa(φ1))/ε∗1(1 +Xpa(φ1))eis1φ1

= eis1φ1/ε∗1 + eis1φ1a(φ1)[X̄p/ε
∗
1 + /ε∗1Xp] + eis1φ1a2(φ1)X̄p/εXp . (E.4)

Upon integrating over φ1, a term ∝ δ(s1) is generated together with the Fourier transforms
of a and a2, which have support in the vicinity of s1 = ±1. The propagator has the structure

G0(P1 + s1k)→ /p+ s1/k +m

−2p · k1 − 2s1k · p+ iε
, (E.5)

where one sees that the soft-photon divergence for ω1 → 0 is screened by finite values of s1.
Hence, only for s1 = 0 there is a contribute to the infrared-divergent part of the amplitude,
singling out the delta contribution δ(s1). The other contributions have vanishing measure at
s1 = 0. As a consequence, the dressed soft vertex turns into the free vertex

fε1P1p
(φ1)→ /ε∗1 . (E.6)

As a result, the S matrix for the emission of a soft photon with ω1 → 0 reads

S(2,0) = −ie2(2π)3
∫
ds2dφ2δ(p′ + k2 − p− s2k)eis2φ2

× ūp′fε2p′,P1
(φ2) /

p+m

−2p · k1
/ε∗1up + (1 ↔ 2) . (E.7)

With the (anti)-commutation relations for slashed expressions and the definitions of the
spinors up one finds (/p+m)/ε∗1up = 2(p · ε∗1)up. With a similar result from the second Feynman
diagram [denoted as (1 ↔ 2)], where the vertex with soft photon emission ω1 → 0 is the
second vertex next to the spinor ūp′ (see Figure E.1), the total result for the S matrix
factorizes as

S(2,0) = β(k1)S(1,0)(p→ p′k2) (E.8)
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= β(k1)×

2

Figure E.1: Diagrammatic representation of the factorization of the soft-photon emission
current. The label “1” is for the soft photon with momentum k1 and ω1 → 0.
Soft virtual photon lines are depicted as red long-wavelength wavy lines. The
dashed blobs denote the laser dressed vertices (cf. Figure 4.2)

with

β(k1) = e

(
p′ · ε∗1
p′ · k1

− p · ε∗1
p · k1

)
= βµ(k1) εµ∗1 , (E.9)

and the S matrix for one-photon Compton scattering S(1,0) using the above introduced
notation. Thus, the infrared divergent part is factored out of the two-photon S matrix as a
gauge invariant classical current expression, which is quantified by the relation kµ1βµ(k1) = 0.
A diagrammatic representation is given in Figure E.1. The appropriate emission probability
diverges when one integrates over the phase space of k1 with the Lorentz invariant measure
d3k1/(2π)22ω1, yielding the logarithmic singularity of Eq. (E.1). The first and second term
in the brackets of β(k1) in Eq. (E.9) can be interpreted [Pes95, Jau76] as final state and
initial state Bremsstrahlung corrections to one-photon Compton scattering, respectively.

E.2 Radiative corrections to one-photon Compton scattering
The infrared divergent parts encountered in the two-photon emission probability in the
preceding subsection stemming from the divergent soft-photon phase space element are
cancelled by soft virtual loop integrals, i.e. loop corrections of order α to one-photon Compton
scattering. The corresponding Feynman diagrams are collected in Figure E.2. In particular,
the vertex correction (a) and the external state self-energy corrections (b) and (c) contribute
to the cancellation. In general, loop diagrams are infrared divergent if both ends of the
photon line are attached to external charge lines [Yen61]. The vacuum polarization diagram
of the outgoing hard photon does not contribute to the infrared divergence.

The vertex correction to the one-photon Compton scattering reads

S
(1,1)
(a) = e3

∫
d4xd4yd4zΨ̄p′(z)γµG(z, y|A)/ε∗2G(y, x|A)γνΨp(x)Dµν(x− z)eik2 · y (E.10)

with the free photon propagator

Dµν(x− z) =
∫

d4k1
(2π)4

gµν
k2

1 + i0+ e
ik1 · (x−z) . (E.11)

Performing the spacetime and momentum integrations in the same manner as above one finds

S
(1,1)
(a) = e3

∫
d4k1
k2

1

[ds][dφ]
(2π)3 δ4(p− p′ − k2 + (s1 + s2 + s3)k) ei(s1φ1+s2φ2+s3φ3)

× gµν ūp′fνp′,p′−k1(φ3)G0(p′ − k1 − s3k)fε1p′−k1,p−k1
(φ2)

× G0(p − k1 + s1k)fµp−k1,p
(φ1)up (E.12)
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2
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(b)
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(c)

Figure E.2: Feynman diagrams for the radiative loop corrections of order α to one-photon
Compton scattering which contribute to the cancellation of the infrared
divergence in two-photon Compton scattering, namely the vertex correction
(a) and the external state self-energy corrections (b) and (c). Soft virtual
photon lines are depicted as red long-wavelength wavy lines.

with the dressed vertex functions

fµp−k1,p
(φ1) ≡ Ω̄p−k1(φ1)γµΩp(φ1) , (E.13)

etc. If one is only interested in the contributions from soft virtual photons with ω1 → 0,
then, as discussed above, one may neglect k1 with respect to the electron momenta p′ and p
everywhere except for the denominators of the propagators. As a consequence (see discussion
above), the two soft-photon dressed vertices turn into free vertices

fµp−k1,p
(φ1)→ γµ , (E.14)

fνp′,p′−k1(φ3)→ γν , (E.15)

which are independent of φ1 and φ3, respectively, such that these integrations yield delta
distributions 2πδ(s1) and 2πδ(s3). Using the equalities

G0(p− k1)γµup = − pµ

k1 · p
up , (E.16)

ūp′γµG0(p′ − k1) = −
p′µ

k1 · p′
ūp′ (E.17)

the vertex correction factorizes as

S
(1,1)
(a) = ie2

(2π)4

∫
d4k1

k2
1 + i0+

p · p′

(k1 · p)(k1 · p′)
S(1,0) . (E.18)

A direct calculation of the terms (b) and (c), which contribute to the wave function renor-
malization, would lead to undetermined expressions [Jau76]. These parts are calculated by
using the cancellation of spurious charge renormalization [Yen61], that is

S
(1,1)
(b) = −1

2S
(1,1)
(a) (p′ → p) , S

(1,1)
(c) = −1

2S
(1,1)
(a) (p→ p′) . (E.19)

In the complete result for the one-loop one-photon Compton matrix element

S(1,1) = V (k1)S(1,0) (E.20)

one factors out the contribution from soft virtual photons

V (k1) = −1
2
ie2

(2π)4

∫
d4k1

k2
1 + i0+

(
p′µ

k1 · p′
− pµ
k1 · p

)2

. (E.21)
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Performing the integral over the time component k0
1 first yields, by closing the contour in the

lower half plane to pick up the pole at k0
1 = |k1| = ω1 by means of the residue theorem

V (k1) = 1
2

e2

(2π)3

∫
d3k1
2ω1

(
p′µ

k1 · p′
− pµ
k1 · p

)2

. (E.22)

The cancellation of the infrared divergent parts occurs when taking into account the soft real
and virtual photons together by calculating

∣∣∣S(1,0) + S(1,1)
∣∣∣2 +

∑
λ1

∫
d3k1

(2π)22ω1

∣∣∣S(2,0)
∣∣∣2

=
∣∣∣S(1,0)

∣∣∣2 + 2Re
[
S∗(1,1)S(1,0)

]
+
∑
λ1

∫
d3k1

(2π)32ω1

∣∣∣S(2,0)
∣∣∣2

=
∣∣∣S(1,0)

∣∣∣2 [1 + 2V (k1)−
∫

d3k1
(2π)32ω1

βµβ
µ

]
, (E.23)

where the term in square brackets has exactly the same structure as in perturbative QED
where the cancellation is ensured by the Bloch-Nordsieck theorem [Jau76]. It was shown
that the laser dressed vertices of strong-field QED turn into the usual free vertices /ε∗i , if the
frequency of the photon emitted at that particular vertex goes to zero. This completes the
discussion of the cancellation of infrared divergent parts of the two-photon Compton process
in strong-field QED.
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Appendix F

Focused laser beams and finite electron
distributions

It is the objective of the present Appendix to evaluate the effects of realistic experimental set
ups, such as focused laser beams instead of plane waves, and electron distributions instead
of single electrons. This is necessary in view of a possible experimental verification of the

predicted short pulse effects in the non-linear Compton spectra. The aim is to study the
principal mechanisms due to the aforementioned non-ideal circumstances and their influence
on the spectra.

An important non-linear finite-size effect is the appearance of substructures in the one-
photon Compton frequency spectrum. An experimental verification of these substructures
would be of interest. Non-ideal conditions will lead to a reduction of the contrast of these
sub-peaks in the energy spectrum of non-linear Compton scattering. The parameters used
for numerical simulations are primarily for the combination ELBE linac [ELB] and DRACO
laser [Deb09] at the HZDR. This means, in all simulations the energy of the initial electrons
will be on the order of 40 MeV, thus, one is in the Thomson limit s −m2 � m2, where s
is the relevant centre-of-mass energy squared, and the study can be based on the classical
dynamics.

F.1 Trajectories and optimized form of the current
The trajectories of electrons in plane electromagnetic waves have been discussed in Section 2.1,
where an analytical expression for the particle orbits has been given in Eqs. (2.7) and (2.8).
For general field configurations which are not plane waves, the trajectories are determined by
solving the eight coupled differential equations

dt

dτ
= γ(τ) , dγ

dτ
= eu(τ) ·E

(
x(τ), t(τ)

)
,

dx

dτ
= u(τ) , du

dτ
= e

[
γ(τ)E

(
x(τ), t(τ)

)
+ u(τ)×B

(
x(τ), t(τ)

)]
(F.1)

with initial conditions uµ(τ = τ0) = uµ0 , xµ(τ = τ0) = xµ0 yielding the particle orbits xµ(τ),
uµ(τ). These differential equations are solved numerically using the differential equation solver
odeint from the scipy.integrate package. The orbits are used afterwards to calculate the
photon spectral density (see Section 3.5)

ρ(k′) = − ω′

16π3 j
∗(k′) · j(k′) = ω′

16π3 |n
′ × j(k′)|2 . (F.2)
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For numerical evaluations of the radiation spectrum, the definition of the current (3.49)
over the pre-exponential velocity is not the best choice. The constant velocity outside the
interaction region contributes to the current and therefore also to the radiation spectrum,
making the numeric integrations unstable.

An integration by parts, using a factor e−ε|τ | to ensure convergence at τ → ±∞ [Jac83],
leads to a suitable form of the radiation integral, i.e. of the Fourier transformed current,
which is proportional to the proper acceleration u̇µ:

jµ(k′) = ie

∫
dτ

(
d

dτ

uµ

k′ ·u

)
eik
′ ·x = ie

∫
dτ

[
u̇µ

k′ ·u
− uµ k′ · u̇

(k′ ·u)2

]
eik
′ ·x , (F.3)

which is only non-zero if the electron acceleration is non-zero. The prefactor i ensures the
property jµ(k′)∗ = jµ(−k′); the transversality k′ · j(k′) = 0 is manifest in this expression.

F.2 Gaussian beams as model for focused laser beams
One is seeking a solution of the wave equation for the vector potential

�Aµ(x) = 0 , (F.4)

fulfilling the Lorenz gauge condition ∂µA
µ = 0, which incorporates a transverse profile

describing a focused laser beam. This is taken into account by choosing the complex vector
potential Aµ = (Φ,A) with1

A = A0εΨ(x⊥, z) g(φ) eiφ , (F.5)

where the z-axis is designated as optical axis and the laser phase is φ = k ·x = ω(t+ z). The
scalar potential Φ is determined via the Lorenz gauge condition ∂µAµ = 0. Thus, the Lorenz
gauge condition is fulfilled by construction [Dav79]. The polarization three-vectors are given
by

ε ∈
{
{ex, ey} for linear polarization ,
{e+, e−} = { 1√

2(ex + iey), 1√
2(ex − iey)} for circular polarization , (F.6)

and the transverse distance is x⊥ ≡ (x2 + y2)1/2. Plugging the ansatz (F.5) in to the wave
equation �A(x) = 0 for the spatial parts of the vector potential, one obtains an equation for
the transverse profile Ψ(x⊥, z)

(∂2
z +4⊥)Ψ + 2ω(∂zΨ)

[
i+ g′

g

]
= 0 (F.7)

with the transverse Laplacian 4⊥ = ∂2
x + ∂2

y ; primes denote derivatives with respect to the
laser phase φ. The paraxial approximation of this equation is obtained under the assumption
that Ψ changes only slowly along the z direction, such that |∂2

zΨ| � |∂zΨ|/λ [Trä07]. This
assumption is equivalent to the assertion that all modes of the laser beam are propagating
almost parallel, i.e. that the transverse momentum component (k⊥, see below) is much smaller
than the longitudinal momentum. One obtains the paraxial equation for the transverse profile
Ψ as [Trä07]

4⊥Ψ + 2iω(∂zΨ)
[
1− ig

′

g

]
= 0 . (F.8)

1The physical fields are the real parts of the complex fields.
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The standard Gaussian beam solution reads for g = 1, g′ = 0 [Cha05, Dav79]

Ψ0 = 1
1 + iζ

exp
{
− x2

⊥
w2

0(1 + iζ)

}
, (F.9)

where a dimensionless longitudinal coordinate ζ = z/zR is introduced. The Rayleigh length is
defined as zR = w2

0ω/2 with focal spot radius (“waist”) w0. A more descriptive representation
of the transverse profile reads

Ψ0(x⊥, z) = w0
w(z) exp

{
− x⊥

2

w(z)2

}
exp

{
iφG − i

ωx⊥
2

2R(z)

}
, (F.10)

when introducing the beam radius w(z) = w0
√

1 + z2/z2
R, the curvature of the wave fronts

R(z) = z(1 + z2
R/z

2) and the Guoy phase φG = arctan z/zR. The Gaussian profiles Ψ0(x⊥, z)
(F.9) and (F.10) are solutions of the paraxial equation (F.8) supposed that the term containing
the derivative of the pulse envelope is negligibly small [McD97]:∣∣∣∣g′g

∣∣∣∣� 1 . (F.11)

A Gaussian envelope function g(φ) = exp(−φ2/2∆φ2) does not fulfil this condition, since
g′/g = −φ/∆φ2 is unbounded. For a hyperbolic secant pulse, g(φ) = 1/ cosh(φ/∆φ), the
condition can be fulfilled for long pulses ∆φ� 1, as |g′/g| = ∆φ−1 tanh(φ/∆φ) < ∆φ−1 is
bounded [Dav79, McD97]. But the situation is not as bad as suspected also for Gaussian
envelopes, as g′/g is small at the important centre of the pulse |φ| < ∆φ, and the condition
(F.11) is violated only at the periphery of the pulse which is rather insignificant. The Gaussian
beam solution for Aµ can be derived in an alternative way, propagating the spectral field
distribution Ãµ(ω, k⊥, z = 0) from a given plane z = 0 to the whole spacetime [Har02]. In
this approach, the vector potential at an arbitrary point xµ is given by the application of the
propagation operator

Aµ(x) =
∫
dk⊥dω

(2π)3 Ãµ(ω, k⊥, z = 0)eik ·x (F.12)

with the photon mass shell condition k2 = k · k = 0 implying kz =
√
ω2 − k2

⊥. The spectral
field distribution Ãµ(ω, k⊥, z = 0) is obtained by Fourier transformation the local field
distribution in the plane z = 0

Ãµ(ω, k⊥, z = 0) =
∫
dtdx⊥e

−i(ωt−kxx−kyy)Aµ(t, x⊥, z = 0) . (F.13)

Equations (F.12) and (F.13) provide an exact solution for the wave equation (F.4) but the
integral (F.12) is hard to solve in general.2 The paraxial approximation in this formalism is
implemented by approximating the mass shell condition k2 = 0 as a Taylor expansion up to
second order around k⊥ = 0 (i.e. expanding around parallel modes), yielding

√
ω2 − k2

⊥ ≈

2To ensure the validity of a gauge condition in these calculations and the approximations done it must be
implemented manifestly. For instance, for Coulomb gauge, ∇ ·A = 0, one should require A = ∇×G with an
auxiliary field G such that the gauge condition is automatically fulfilled since ∇ · (∇×G) ≡ 0. Since the wave
operator � commutes with the curl, it is clear that the vector potential A is a solution of the wave equation
(F.7) if G satisfies the wave equation �G = 0. The above mentioned evaluation of the propagation integral
(F.12) and approximations thereof should be performed for the auxiliary field G [Har02]. For Lorenz gauge
∂µA

µ = 0, one should choose Aµ = 1
2 εµνκλ∂

νGκλ with the auxiliary field Gκλ.



152 Appendix F Focused laser beams and finite electron distributions

ω − k2
⊥/(2ω). A decoupling of the ω and k⊥ integrations is achieved upon approximating to

leading order ω ' ω0 in the denominator, where ω0 is the central frequency of the frequency
distribution. With these approximations one obtains an equivalent Gaussian beam solution
as provided in (F.9) and (F.10), but the condition ω ' ω0 implies now ∆φ� 1, which is less
restrictive than condition (F.11) since it only sets limits on frequency bandwidth of the pulse.
A conclusion of these considerations is that ultra-short laser pulses in the single cycle regime
with a large frequency bandwidth cannot be described appropriately within this paraxial
approximation; more sophisticated approaches are needed.

The Gaussian beams Ψ0(x⊥, z) in (F.9) and (F.10) represent the lowest order approxima-
tion in the diffraction angle θD ≡ w0/zR = 2λ/w0, for θD � 1, where λ = 1/ω is the (reduced)
laser wavelength. Making Eq. (F.7) dimensionless by introducing the scaled variables z → ζ
and x⊥ → ξ⊥ = x⊥/w0 (x→ ξ = x/w0, y → ν = y/w0) one finds [Dav79]

4ξ⊥Ψ + 4i∂ζ + θ2
D∂

2
ζΨ = 0 (F.14)

with the dimensionless transverse Laplacian 4ξ⊥ = ∂2
ξ +∂2

ν . The paraxial equation is obtained
as leading order in the expansion in θD � 1, i.e. for w0 � λ. For a strongly focused beam,
such that θD ∼ O(1), the intensity profile Ψ0 has to be approximated by an expansion in
powers of θ2

D [Dav79, Sal02]

Ψ = Ψ0 +
∞∑
n=1

θ2n
D Ψ2n , (F.15)

which yields an iteration series

4ξ⊥Ψ2n+2 + 4i∂ζΨ2n+2 = −∂2
ζΨ2n , n = 0, 1, 2, . . . (F.16)

if (F.15) is plugged into (F.14). Although the higher order terms Ψ2,Ψ4 are crucially important
in some cases, such as for the vacuum acceleration of electrons [Sal02], no relevant corrections
for the electron trajectories or the non-linear Compton photon spectrum associated with the
(almost) head-on collisions of electrons with the laser pulse were found. Finally, the electric
and magnetic fields are listed up to terms O(θ4

D) and the condition (F.11) imposed3

Ex/F = εx + θ2
D

[
εx

(
f2ξ2 − f3ξ2

⊥
4

)
+ εyf

2νξ

]
, (F.17)

Ey/F = εy + θ2
D

[
εy

(
f2ν2 − f3ξ2

⊥
4

)
+ εxf

2ξν

]
, (F.18)

Ez/F = −i(ξεx + νεy)
(
θDf − θ3

D

[
f2

2 − f
3ξ2
⊥ + f4ξ4

⊥
4

])
, (F.19)

Bx/F = εy + θ2
Dεy

[
f2ξ2
⊥

2 − f3ξ4
⊥

4

]
, (F.20)

By/F = −εx − θ2
Dεx

[
f2ξ2
⊥

2 − f3ξ4
⊥

4

]
, (F.21)

Bz/F = i(εxν − εyξ)
(
θDf + θ3

D

[
f2

2 + f3ξ2
⊥

2 − f4ξ4
⊥

4

])
(F.22)

with F = −iωA0ge
iφΨ0, f = (1 + iζ)−1 and the projections εx,y = ε · ex,y. This concludes

the discussion of Gaussian beams as model for focused laser beams.
3These results have been obtained in collaboration with Thorger Sünert in 2009.
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Figure F.1: Sketch of geometrical relations and the orientation of the coordinate system.
The initial electron velocity is denoted by u, while n is the direction of the
laser and n′ is the direction of the outgoing photon γ′.

F.3 Electron phase space distributions
In collisions of a relativistic electron beams with the laser pulse, the frequency of a scattered
photon reads ω′` = `χω, where

χ(u, n′, a0) = n ·u

n′ ·u+ a2
0

4n ·un′ ·n
(F.23)

is the relativistic Doppler up-shift factor. It depends on three four-vectors: the laser
propagation direction n = (1,n), the direction of the outgoing photon n′ = (1,n′) and the
four-velocity of the incoming electron u = (γ,u), which can be parametrized as4

n = (0, 0,−1), (F.24)
n′ = (sin θ cosϕ , sin θ sinϕ , cos θ ) , (F.25)
u = γv (sinϑu cosϕu , sinϑu sinϕu , cosϑu ) , (F.26)

where n is kept fixed and defines the orientation of the coordinate system. Here, the angles
(ϑu, ϕu) and (θ, ϕ) measure the direction of incoming electrons and outgoing photons with
respect to the z-axis, respectively. These geometric relations are exhibited in Figure F.1.
With these definitions, the scalar products in (F.23) become

n ·n′ = 1 + cos θ , (F.27)
n ·u = γ(1 + v cosϑu) = κ/ω , (F.28)
n′ ·u = γ(1− v cos ϑ̄u) , (F.29)

cos ϑ̄u = cosϑu cos θ + sinϑu sin θ cos(ϕu − ϕ) . (F.30)

An electron bunch consists of Ne electrons, associated with individual photon spectra
ρi(ω′, n′;x(i),u(i)), emitted by the i-th electron into the direction n′ with energy ω′, which
have to be added incoherently to obtain the total incoherent spectral density

ρW (ω′, n′) =
Ne∑
i=1

ρi(ω′, n′;x(i),u(i)) . (F.31)

4With v =
√
γ2 − 1/γ being the electron velocity.
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Following [Har02], this quantity is denoted “warm spectral density” ρW , referring to the
finite energy distribution in an electron bunch.5 The electrons of the bunch have a certain
distribution in phase space f(x(i),u(i), t0), describing the distribution at a time t0 prior to
the interaction with the laser beam. The positions x(i) and velocities u(i) of the electron can
be obtained as the output of an electron accelerator code (like PARMELA [You03, Har10] or
TREDI [Gia99]) or can be modelled otherwise. Test particles or macroparticles can be used
to sample the distribution functions, where the sum in Eq. (F.31) runs over an ensemble of
macroparticles, each representing a certain number of real electrons [Fon09]. Assuming the
factorization f(x(i),u(i)) = fx(x(i))fu(u(i)), i.e. neglecting intra-beam correlations, the spatial
distribution fx(x(i)) will be described by longitudinal and transverse distributions, e.g. by a
Gaussian distribution with longitudinal (Lb) and transverse (rb) beam size, respectively. The
distribution in momentum space fu(u(i)), however, is parametrized in terms of an energy
spread and transverse emittance. According to [Har02] the former may be modelled by a
distribution of the Lorentz factor γ of width ∆γ, centred at the nominal value γ0, while the
emittance measures the transverse phase space volume of the beam via the correlator

εx = γ0v0

√
〈x2〉〈π2

x〉 − 〈xπx〉2 ' γ0v0 rb ∆ϑu (F.32)

for one transverse dimension. The expectation values 〈. . .〉 refer to the transverse phase space
distribution of the electron ensemble, usually taken to be as Gaussian as well. In addition, the
normalized transverse momentum is defined as πx = |px/pz| = tanϑu ≈ ϑu, which basically
coincides with the injection angle ϑu with respect to the beam axis.

For a large number of electrons, it is more efficient to work with smooth electron phase
space distribution functions [Har02]. The summation over an ensemble of test particles (F.31)
is replaced by an integral over the distribution functions f as

ρW (k′) = Ne

∫
d3xdγdϑudϕ fx(x)fu(γ, ϑu, ϕu) ρ(k′;x,u(γ, ϑu, ϕu)) . (F.33)

Here, the normalized distribution functions in momentum space are parametrized in a
factorized form as fu(γ, ϑu, ϕu) = f1(γ) f2(ϑu) f3(ϕu), to be taken as a product of a Gaussian
distribution being a function of γ, a χ-distribution (with 2 degrees of freedom) for the ϑu
dependence and a uniform distribution with respect to ϕu:

f1(γ) = 1√
2π∆γ

exp
{
−(γ − γ0)2

2(∆γ)2

}
,

f2(ϑu) = ϑu
(∆ϑu)2 exp

{
− ϑ2

u

2(∆ϑu)2

}
,

f3(ϕu) = 1
2π . (F.34)

Hereby, the electron beam is assumed to be axially symmetric with both transverse components
ux0 and uy0 being normally distributed and uncorrelated. For the distributions it is required
that the inequalities γ0 � 1, ∆γ � γ0 and ∆ϑu � π/2 hold; these constraints are usually
fulfilled for relativistic electron beams.

F.4 Ponderomotive scattering
An important effect of the transverse beam profile is the ponderomotive force F p = −∇Up
with the ponderomotive potential Up = e2A2/2m2 pushing the electrons away from regions of

5In [Har02], the warm and cold spectral brightness is discussed, which is proportional to the spectral density.
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Figure F.2: Left panel: The effect of the ponderomotive force: A bunch of trajectories
colliding head-on with the laser pulse, i.e. zero injection angle, are ejected
with an angle αout after the interaction with the laser pulse depending on the
impact parameter b. Right panel: The scattering angle αout as a function of
b for different focal waists w0. For laser parameters see the text.

high intensity as they gain transverse momentum [McD86]. (For the theory of ponderomotive
scattering in intense laser fields see also [Sal97, Nar00, Nar05].) For an estimate of the effect,
the momentum space distribution is taken now as fu = δ(γ − γ0)δ(ϑu)δ(ϕu). Accordingly,
all electrons have velocities u0 ‖ ez before the interaction with the laser beam. They will
leave the interaction region under angles αout with respect to the z axis. For fixed total
laser pulse energy Wtot and laser pulse length6 T0, the magnitude of the ponderomotive force
scales as |F p| ∝ Wtot/(T0w

3
0) ∝ max (αout). This is since A2 is proportional to the energy

density Wtot/V in the typical volume V ∝ T0w
2
0, and the transverse gradient is ∝ 1/w0. That

means, the ponderomotive force leads to significant effects only for small waist size w0, with
a dependence ∝ w−3

0 .
To quantify the effect, electron trajectories corresponding to head-on collisions for different

impact parameters b = x⊥ have been simulated by solving numerically the system of differential
equations (F.1). Several trajectories are exhibited in the left panel of Figure F.2, showing
the dependence of the deflection angle αout on the impact parameter b. In the right panel of
Figure F.2, the deflection angle αout is shown as a function of the impact parameter b for
different values of w0. For w0 = 5 µm the maximum deflection angle for 40 MeV electrons
(total pulse energy Wtot = 3 J, T0 = 20 fs and laser frequency ω = 1.5 eV) is about 1 mrad.
For 10 µm the maximum of αout is roughly one order of magnitude lower [Hei10b, DP12] and
it further decreases for increasing values of w0. This is small compared to the typical angular
scale of the emitted radiation which is of order 1/γ0 ∼ 12 mrad. The numerically calculated
values of the maximum scattering angle agree well with the scaling max (αout) ∝ w−3

0 .

F.5 Photon spectrum in pulsed focused laser fields: beam size effects
Now, the interplay of the spatial size of the electron bunch and laser focus is to be studied.
Again, the laser pulse is taken to have a total energy of Wtot = 3 J and pulse length of
T0 = 20 fs with a central frequency of ω = 1.5 eV with different values of the focal waist w0
determining the values of the parameter a0. These parameters refer to the DRACO laser
[Deb09] at the HZDR. The electron bunch — in this section the momentum space distribution

6In this Appendix the definition of T0 is specified as ωT0 ≡
∫∞
−∞ g(φ)dφ = ν1[g]∆φ, see Table A.1 for the

explicit values of ν1[g] for various pulse shapes.
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Figure F.3: Left: Contour plot of the normalized warm spectral density ρW (ω′, θ)/Ne
as a function of the frequency ω′ and scattering angle θ. A dilute electron
bunch (represented by Ne = 1000 test particles) collides head-on with a
strongly focused (w0 = 5 µm) and linearly polarized laser pulse. Right: The
warm spectral density ρW (ω′, θ)/Ne as a function of ω′ for constant values θ.
The coloured curves are cuts through the contour plot at the corresponding
scattering angle. The black curves in each panel correspond to a second
calculation with a larger set of Ne = 10000 test particles.
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Figure F.4: Same as Figure F.3 but for w0 = 50 µm.
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Figure F.5: Same as Figure F.3 but for linear laser polarization.
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Figure F.6: Same as Figure F.3 but for linear laser polarization and w0 = 50 µm.
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is taken to be f = δ(γ − γ0)δ(ϑu)δ(ϕu) as in the previous Section F.4 — is modelled by a
Gaussian with a bunch length of Lb = 300 µm and a transverse beam size of rb = 5 µm and
energy mγ0 = 40 MeV corresponding to the ELBE linac [ELB, Arn08, Deb09]. The bunch is
approximated by Ne = 1000 test particles.

Figure F.3 (Figure F.5) shows the spectrum ρW (ω′, θ) of Compton scattered photons
for ϕ = 0 for a circularly (linearly) polarized and tightly focused laser with w0 = 5 µm
and a corresponding Rayleigh length of zR ' 100 µm. Given the total pulse energy Wtot,
pulse length T0 and focus waist w0, the peak value of the laser intensity is calculated as
I = 1.5× 1020 W/cm2 yielding the normalized amplitude a0 = 8.6, which is clearly in the
non-linear regime. The associated red-shifted non-linear Compton edge is approximately at
1 keV, cf. (F.23). The normalized spectral density is shown as a function of the frequency
ω′ and scattering angle θ in the left panel. The dead cone for circular polarization, i.e. the
lack of radiation in the backscattering direction θ = 0 above 40 keV, is clearly visible in
Figure F.3. In the right panels, cuts through the spectrum ρW /Ne as a function of ω′ are
exhibited for various scattering angles θ = 0 (top), 5 (middle) and 10 mrad (bottom). Due to
the strong field gradients of the laser beam in both transverse and longitudinal directions, the
spectrum is fairly broad for the parameter values chosen. The individual harmonics can not
be recognized since the individual spectral lines are overlapping. It seems fair to describe the
scattered photons as a broad continuum. The fluctuations are due to the rather small number
of test particles; they would vanish upon increasing Ne. Indeed, the black curves in the right
panels, corresponding to a larger set of Ne = 10000 test particles, are much smoother than
the coloured curves for Ne = 1000 test particles.

In comparison, Figure F.4 (Figure F.6) shows the backscattered spectrum for the same
pulse as before (3 J, T0 = 20 fs) for circular (linear) polarization, but with a larger focal
radius of w0 = 50 µm corresponding to a Rayleigh length of zR ' 10 mm. The maximum
value of the normalized amplitude is a0 = 0.86 in this case, which corresponds to a peak
laser intensity of I = 1.5× 1018 W/cm2. The corresponding non-linear Compton edge is at
27.5 keV. The electron beam has the same transverse beam size rb and bunch length as
above, so that the electron bunch exclusively probes the very centre of the focus where the
laser intensity is almost constant. In fact, at rb = 5 µm = w0/10 the field intensity is only
1% lower than at the centre of the focus. In contrast to Figure F.3, the harmonics are now
well-separated and clearly visible and also the sub-peaks in the harmonics are observable.

The result of this section is two-fold: To achieve a possible observation of the harmonics in
non-linear Compton scattering in the energy spectra, (i) the spatial ponderomotive scattering
must be minimized and (ii) all electrons in the bunch contributing to the radiation need
to experience the same intensity. As a consequence, it is necessary to have a large focus
with low field gradients which scale as 1/w0 [to fulfil condition (i)], and the transverse
electron bunch radius rb should be much smaller than the laser beam waist w0 to fulfil (ii).
The possibility to fulfil (i) is directly limited by the available energy per laser pulse since
a2

0 ∼Wtot/(T0w
2
0), but in order to observe the harmonics and their sub-peaks one needs high

intensity, i.e. a0 ∼ 1, and a suitable value for the ponderomotive phase shift determining the
number of sub-peaks NS−P ∝ T0a

2
0. Condition (ii) implies that the radiation process can be

described by a plane-wave model for the laser pulse.

F.6 A scaling law for the spectral density

For the following it is assumed that the laser waist size w0 is much larger than the electron
beam radius, w0 � rb, so that the electron beam interacts only with the central part of
the laser focus. In this case, the laser beam may be reasonably described by a pulsed plane
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wave in the relevant interaction region [Tom05] and it is not necessary to model the spatial
distribution of the electron bunch. One may thus concentrate on energy spread and emittance.
In line with this, the momentum space distribution fu will be denoted simply by f from now
on.

According to (F.2) and (F.3) the one-particle spectral density ρ(ω′;n′, u0) depends on the
initial conditions u0 through the orbit xµ(τ ;u0) and the velocity uµ(τ ;u0). The posed problem
is how the spectral density changes when changing the initial conditions u0 = u0(γ0, ϑu0, ϕu0)
to different initial conditions, e.g. u(γ, ϑu, ϕu). This change of initial conditions can be
mediated by a Lorentz transformation Λ applied to u0 [Hei10b]. As a motivation, consider
the most simple case first, namely backscattering and a head-on collision u ‖ u0 ‖ n′ ‖ n,
implying a change only in the electron energy, γ0 to γ (as ϑu = ϕu = θ = ϕ = 0). This means
that uµ0 = (γ0, 0, 0, v0γ0) changes to uµ = (γ, 0, 0, vγ). In this case, the spectral density obeys
the scaling relation

ρ(ω′, γ) = ρ(ω′/h, γ0) (F.35)

with a rescaled frequency ω′/h where h = χ(u, n′, a0)/χ(u0, n
′, a0) with the Doppler boost

factor χ from Eq. (F.23).
If one also allows for a change of the direction of u, the height of the spectral peak will

certainly change, since the radiated intensity is peaked in the direction of u. Thus, one has
to use the modified scaling ansatz ρ(ω′;n′, u) = M(u, u0)ρ(ω′/h;n′, u0) with a transition
function M(u, u0) depending on both sets of initial conditions. The transition function M is
derived from the electron current j in the limit a0 � 1. Afterwards, the result is continued
to arbitrary a0 ∼ 1 by substituting the appropriate Doppler shift factors χ. The initial
conditions enter the spectral density ρ via the current

j(k′) = e

∫
dτ u(τ ;u0)eik′ ·x(τ ;u0) . (F.36)

Linearizing the orbit expressions uµ(τ) and xµ(τ) [cf. Eqs. (2.7) and (2.8)] in the gauge field
aµ = eAµ/m,

uµ(τ ;u0) = uµ0 − a
µ + nµ

a ·u0
n ·u0

, (F.37)

xµ(τ ;u0) = xµ0 + uµ0τ −
τ∫

0

dτ ′aµ(τ ′) + nµ
τ∫

0

dτ ′
a(τ ′) ·u0
n ·u0

, (F.38)

the linearized electron current (F.36) becomes, to O(a),

j(ω′, n′, u0) = e

∫
dτ

a(τ) ·u0
n ·u0

n− a(τ)

+iu0

k′ ·n τ∫
0

dτ ′
a(τ ′) ·u0
n ·u0

−
τ∫

0

dτ ′a(τ ′) · k′
 eik′ ·u0τ . (F.39)

Since this expression is linear in the vector potential aµ, one can work with a complex-valued
vector potential with a = (0,a) and a = a0εe

−iφg(φ) with polarization vectors ε as in (F.6).
The inner integral over τ ′ in (F.39) yields, after an integration by parts,

τ∫
dτ ′aµ(τ ′) = i

κ
aµ(τ)

(
1 +O(∆φ−1)

)
, (F.40)



160 Appendix F Focused laser beams and finite electron distributions

where κ = k ·u0 is the light-cone variable (see Section 2.1). For sufficiently long pulses,
∆φ � 1, the contribution O(∆φ−1) can be neglected. Within these approximations, the
result for the electron current reads

j(ω′) = − ea0
n ·u0

g̃

(
ω − ω′

χ(u0, n′, 0)

)
j0 (F.41)

with g̃ being the Fourier transform

g̃ =
∫
dφ g(φ)e

−iφ
(
ω−ω′ n

′ ·u0
n ·u0

)
, (F.42)

where the proper time integration has been replaced by an integration over the laser phase φ
employing the relation φ = κτ = ω(n ·u0)τ . The constant vector part of the current reads

j0 = ε+ nε ·u0
n ·u0

+ tu0
{
ε ·n′(n ·u0)− n ·n′(ε ·u0)

}
(F.43)

with t = ω′

ω(n ·u0)2 . Using (F.2) the spectral density becomes

ρ(ω′, n′;u0) = e2a2
0

16π3
ω′

(n ·u0)2
∣∣g̃ (χ(u0, n

′, 0)ω − ω′
)∣∣2 ∣∣n′ × j0

∣∣2 . (F.44)

Upon evaluating the two-fold cross product |n′ × j0|2 one arrives at an expression which is
cumbersome and therefore not noted here explicitly for general geometries. One particularly
interesting limit for |n′ × j0|2 is the backscattering geometry with n′ ·n = −1 and n′ · ε = 0,
yielding, with (n′ × a) · (n′ × b) = a · b− (n′ ·a)(n′ · b),∣∣n′ × j0

∣∣2 = 1 + 4t2|ε ·u0|2(u2
0 − (n ·u0)2)− 4t|ε ·u0|2 , (F.45)

which is discussed also in [Hei10b]. Another limit is the case where the photon is scattered
into the direction of the incoming electron, i.e. n′ ‖ u. The latter case yields the particularly
simple result

|n′ × j0|2 = 1 + |ε ·n′|2
{
ν2 − (1 + νn ·n′)2

}
(F.46)

with

ν = v

1 + v cosϑu
. (F.47)

The high symmetry of this special case is the reason for this short expression. The form
of g̃ in (F.44) lends support to the scaling behaviour of the frequency adopted in (F.35).
On changing the geometry, u0 → u, n′0 → n′ and simultaneously replacing the frequency,
ω′ → hω′, with h = χ(u, n′, 0)/χ(u0, n

′
0, 0), the function g̃ remains invariant. With this, the

scaling relation is found to be

ρ(ω′;n′, u) =M(u, u0;n′, n′0)ρ(ω′/h;n′0, u0) (F.48)

with the transition function

M(u, u0;n′, n′0) = h
(n ·u0)2

(n ·u)2
|n′ × j0(hω′, n′;u′)|2

|n′0 × j0(ω′, n′0;u0)|2 , (F.49)

where j0 is given by the expression (F.43) and h = χ(u, n′, 0)/χ(u0, n
′
0, 0). Equations (F.48)

and (F.49), together with the definition of j0, represent a general formulation of the scaling
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law for the spectral distribution of photons emitted by an electron in a plane electromagnetic
wave, i.e. for Thomson/Compton scattering. In the form given in (F.48), the scaling law
is strictly valid for a0 � 1. To include the non-linear case, a0 & 1, one substitutes the
Doppler factor χ(u, n′, 0) → χ(u, n′, a0) in the definition of h, i.e. h is modified to h =
χ(u, n′, a0)/χ(u0, n

′
0, a0). In the non-linear regime where a0 ∼ 1, the scaling law perfectly

accounts for changes in the electron’s initial energy γ0 → γ. However, changes of the incidence
angles, in particular ϑu, are accurate only for ϑu � 1. Nevertheless, for the present purposes,
the scaling law is sufficiently accurate to account for the typical angular divergence of focused
electron beams. The validity of the scaling law was demonstrated in [Sei11c] by comparing
a direct numerical calculation of the spectral density ρ(ω′, n′, u′) with an application of the
scaling law where ρ(ω′, n′0, u′0) was calculated numerically and ρ(ω′, n′, u′) was determined
by application of the scaling law. The special case of the head-on geometry characterized
by u0 = (γ0, 0, 0, γ0v0) as a reference, and a second, different geometry characterized by
u(γ, ϑu, ϕ) (cf. Figure F.1), and staying strictly in the backscattering geometry n′ = −n, i.e.
n′0 = n′, was discussed in [Hei10b].

F.7 Discussion of electron phase space distribution effects
To discuss the effects of the electron phase space distribution on the non-linear Compton
spectra one has to fold the one-photon spectrum ρ(ω′, n′, u) with an electron phase space
distribution f(γ, ϑu, ϕu)

ρW (ω′, n′) = Ne

∫
dγdϑudϕuf(γ, ϑu, ϕu) ρ(ω′,n′, u) . (F.50)

Exploiting the scaling law (F.48), where the observation direction n′ is kept fixed, the warm
spectral density ρW can be reformulated as

ρW (ω′, n′) = Ne

∫
dγdϑudϕuf(γ, ϑu, ϕu)M(u, u0)ρ(ω′/h, n′;u0) , (F.51)

where the arguments n′ are omitted in the transition function, M(u, u0) ≡M(u, u0;n′, n′).
Thus, instead of calculating the one-electron spectral density ρ for all the different initial
conditions u, it is sufficient to calculate ρ for a single set of parameters u0 for all relevant
frequencies ω′. To conveniently define the distribution functions f , a new coordinate system
is introduced, which is aligned with the mean initial velocity u0. The unit vectors of this
rotated system read

ex′ = − cosϑu0 cosϕu0ex − cosϑu0 sinϕu0ey + sinϑu0ez ,

ey′ = sinϕu0ex − cosϕu0ey ,

ez′ = sinϑu0 cosϕu0ex + sinϑu0 sinϕu0ey + cosϑu0ez , (F.52)

i.e. in the new coordinate system u′0 = (0, 0, v0γ0) and ϑ′u0 = ϕ′u0 = 0. The distribution
functions are defined in the primed coordinate system via f(γ, ϑ′u, ϕ′u) = f1(γ)f2(ϑ′u)f3(ϕ′u),
where the fi are defined in (F.34).

As a first example, the results for the warm spectral density ρW (ω′;n′) in the linear Thom-
son scattering regime are compared to the cold spectral density ρC(ω′;n′) = ρ(ω′;n′, u0),
which is Ne times the spectral density for a single electron with velocity u0 [i.e. the correspond-
ing phase space distribution would be fC = δ(γ−γ0)δ(ϑu−ϑu0)δ(ϕu−ϕu0)] in Figure F.7 for
different incidence angles of the electron in the linear regime, i.e. a0 = 0.01. The observation
direction is the mean direction of the incoming electron in each case, i.e. n′ ‖ u0. The



162 Appendix F Focused laser beams and finite electron distributions

Figure F.7: Cold spectral density (dotted curves) vs. warm spectral density (solid curves)
as a function of scaled frequency ω′/4γ2

0ω at low intensity, a0 = 0.01, and
a laser pulse length parameter of ∆φ = 18. The observation is assumed in
the direction of the incoming electron bunch n′ ‖ u0, i.e. θ = ϑu0, ϕ = ϕu0,
for various electron incidence angles ϑu0, as depicted. The spectral densities
have been calculated for an energy of mγ0 = 40 MeV with an energy spread
of ∆γ/γ0 = 0.001 and an angular spread of ∆ϑu = 2.5 mrad.

inherent width and shape of the peaks of the cold spectral density are determined by the
width and shape of the laser envelope function g(φ). The effects of energy and angular spread
of the incoming electron bunch are (i) a broadening of the peaks and (ii) a reduction of the
peak heights. Dominantly, the peaks are shifted to the low-energy side due to the effects of
angular spread. The relative bandwidth is the same for each geometry; also the integrated
value

∫
ρ(ω′)dω′ is the same for the three spectra exhibited.

F.8 Head-on backscattering geometries

In this section, some available sources of ultrarelativistic electron beams for the detection of
the sub-peaks in non-linear Compton scattering are discussed, proposing optimal experimental
parameters. A common source for ultrarelativistic electron beams are linacs, such as the ELBE
accelerator at the HZDR [ELB, Arn08]. It is capable of producing electron bunches with a low
energy spread of ∆γ/γ0 = 10−3 and transverse emittance of about εx = 1.5 mm mrad. On
the other hand, new laser based acceleration schemes like laser wake field acceleration (LWFA)
report the production of electron bunches with ∆γ/γ0 = 3.5% and angular divergence of
∆ϑu = 0.68 mrad at γ0 = 400 [Ost08]. The numerical results for the warm spectral densities
using both ELBE and LWFA electron beam parameters are shown in Figure F.8 which also
includes a comparison with the respective cold spectral densities for head-on backscattering
set-ups. Clearly, the harmonic sub-peaks are smeared out for ELBE parameters and even
more so for the LWFA set-up [Ost08]. For ELBE it is the emittance which is too high for
the observation of the sub-peaks. A LWFA electron bunch, on the other hand, has too large
an energy spread — despite of its low angular divergence. It is concluded that in order to
resolve the sub-peaks both energy spread and emittance need to be sufficiently small. Very
low values for both the energy and angular spread are needed for a possible observation of the
sub-peaks. In Table F.1, a suitable set of parameters which allows to observe the harmonic
sub-peaks with a 100 TW laser is listed. For petawatt lasers, the strong constraint on the
emittance may be relaxed because they are capable to achieve non-linear peak intensities
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Figure F.8: The warm spectral density (solid curves) for ELBE parameters [Arn08] (left
panel), LWFA electrons [Ost08] (centre panel) and optimal parameters (right
panel, see Table F.1) in combination with a 100 TW laser. For comparison
the cold spectral density is shown also in each plot as grey dotted curve.

a2
0 & 1 across larger spot sizes w0 such that larger electron beam radii rb can be tolerated.

The essential quantity in the integral (F.51) is ∆ϑu ∝ εx/rb and not the emittance itself.
However, the emittance characterizes the transverse momentum distribution of an electron

beam and is a conserved quantity. That means, when focusing an electron beam to smaller
spot sizes the angular spread increases since εx ∝ rb∆ϑu = const. Thus, the larger the
laser spot size w0, the easier the emittance constraints can be fulfilled with the present
specifications of the ELBE accelerator. Therefore, the application of petawatt lasers for
the observation of the sub-peaks seems advisable. Furthermore, the REGAE electron gun
[REG] provides promising parameters for a detection of the harmonic peaks including their
substructure in combination with a 200 TW laser [Har12].

Table F.1: Proposed optimal laser and electron beam parameters required for observing
the sub-peaks in the fundamental harmonic of non-linear Thomson scattering
employing a 100 TW laser or a 1 PW laser.

parameter 100 TW 1 PW

laser frequency ω [eV] 1.5 1.5
laser amplitude a0 1.0 1.0
laser pulse length T0 [fs] 25 25
laser focal radius w0 [µm] 50 150
electron beam radius rb [µm] 5 15
electron energy γ0 80 80
electron energy spread ∆γ/γ0 0.001 0.001
angular spread ∆θu [mrad] 1.75 1.75
electron transverse emittance εx [mm mrad] 0.7 2.2
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Figure F.9: Dependence of the warm spectral density (solid curves) on the scaled photon
frequency for different electron incidence angles ϑu0 = 10◦, 45◦ and 90◦. The
spectrum is observed in the direction of the primary electron bunch n′ ‖ u0
as in Figure F.7. For comparison, the respective cold spectral densities are
also shown as fat dotted lines. The results for ϑu0 = 0◦, which correspond
to the right panel of Figure F.8, are also shown in each panel as thin grey
solid and grey dotted curves. Parameters are a0 = 1.0, ∆φ = 18, ω = 1.5 eV,
mγ0 = 40 MeV, ∆γ/γ0 = 10−3 and ∆ϑu = 1.75 mrad.

F.9 Non-head-on scattering
The previous analysis is extended here to allow for non-head-on collisions of the electron
beam with the laser pulse which is much closer to an actual experimental situation, e.g. the
interaction angle in the SLAC E-144 experiment was ϑu = 17◦ [Bam99]. To uncover a large
range of possible conditions, the incidence angles ϑu0 = 10◦, 45◦ and 90◦ are considered.
(Thomson scattering with an incidence between 0◦ < ϑu < 180◦ is discussed, e.g. in [Deb10].)
The numerical results are exhibited in Figure F.9, where one observes a decrease in the
frequency of the scattered radiation (e.g., for ϑu0 = 90◦ the maximum Doppler shift reaches
half the value of the Doppler shift at ϑu0 = 0◦). The contrast of the minima and maxima,
however, stays the same in all cases. Such geometries, where the spectrum is observed in
the forward direction of the electron, turn out to be equally well suited for an experimental
observation of the substructures with the beam parameters of Table F.1, as for head-on
collisions.

Going one step further, the dependence of the warm spectral density on the observation
direction n′ is considered, if n′ slightly deviates from the forward direction of the primary
electrons. The radiation scattered off an ultrarelativistic electron forms a cone with its axis
given by the direction of the electron velocity u with a typical opening angle ϑ̄u ∼ 1/γ
[cf. Eq. (F.30)], where ϑ̄u is the angle between u and n′. Expanding the Doppler shift function
χ(ϑ̄u) for small opening angles, ϑ̄u � 1, one obtains

χ(ϑ̄u) = χ(0)
(

1− νχ(0)
2 ϑ̄2

u +O(ϑ̄4
u)
)

(F.53)

with ν defined in Eq. (F.47) and

ϑ̄u '
√

(ϑu − θ)2 + (ϕu − ϕ)2 sin2 ϑu , (F.54)

where both |ϑu − θ| � 1 and |ϕu − ϕ| � 1. (Note that ϑu denotes the angle between u and
ez, while θ is the angle between n′ and ez.) This accounts for both the changes in the initial
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Figure F.10: Warm spectral density for an electron incidence angle ϑu0 = 10◦ relative to
the laser beam (cf. left panel of Figure F.8) for the observation direction
given by the angles δθ = θ − ϑu0 and ϕ = ϕu0 = 0. The results for the
respective cold spectral density are also shown as grey dotted curves in each
panel for comparison. All other parameters are the same as in Figure F.9.

electron direction due to the emittance and the changes in the observation direction. The
typical cone opening, where the Doppler factor changes its value significantly, is set by the
scale ϑ̄u ∼ 1/γ0, which is for the chosen ELBE parameters γ0 ≈ 100, ϑ̄u ∼ 10 mrad. For
ϑ̄u � 1/γ0, the Doppler shift is almost constant. This explains the good visibility of the
sub-peaks in the geometries studied so far (cf. Figures F.8 and F.9): Because the typical
angular spread due to the beam emittance is much smaller than 1/γ0, all electrons of the
bunch provide approximately the same Doppler up-shift for the spectrum observed in the
direction of u0.

However, if the radiation is observed in a different direction, one cannot expect to have
the same situation, since the Doppler up-shift strongly depends on the direction of each
electron. Indeed, the numerical simulations show that the contrast of the sub-peaks vanishes
rapidly for off-axis observation directions. The numerical results are exhibited in Figure F.10
for ϑu0 = 10◦ and an observation direction θ = ϑu0 + δθ, which slightly deviates from the
direction of the incoming electron by less than one degree. The contrast of the sub-peaks
vanishes completely for δθ ≥ 0.4◦.

F.10 Finite detectors size

Until now, it was always assumed that the scattered radiation is observed at a fixed direction
n′. However, any real detector will have a finite size spanning a certain range of observation
directions or have a finite angular resolution. It has been shown in the previous section
that the observed spectrum strongly depends on the observation direction, i.e. changes of
the observation direction of the order of tenths of degrees drastically change the observed
photon spectrum. Thus, it is necessary to consider the effect of a finite-size detector by
integrating the spectrum over a certain range of angles θ and ϕ of the direction of the outgoing
photons. The detector should cover only a cone around the direction of u0 with an opening
angle δθ � 1/γ0. One now has to allow a change in the direction of the outgoing photon
n′0(θ0, ϕ0)→ n′(θ, ϕ) in the scaling law (F.48). Employing the general scaling, the spectrum
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Figure F.11: Photon spectrum for a finite detector size. The solid curves correspond to a
detector geometry as described below Eq. (F.55) with diameter D = 4 mm
(left panel), 7 mm (centre panel) and 10 mm (right panel) at a distance of
L = 1 m from the interaction point in the mean direction of the primary
electron beam for an electron incidence angle ϑu0 = 10◦. For comparison,
the spectra of an idealized pointlike detector ρpD normalized to the same
effective size are also plotted as grey dotted curves in each panel.

measured by a finite detector reads

ρD(ω′) = Ne

∫
dΩd(γ, ϑu, ϕu)f(γ, ϑu, ϕu)S(θ, ϕ)M(u, u0;n′, n′0)ρ(ω′/h;n′0, u0),

(F.55)

where S(θ, ϕ) is the detector acceptance function, which is, in an ideal case, 1 on the surface
of the detector and 0 otherwise, e.g. SD(θ, ϕ) = Θ(θD − θ) with tan θD = D/2L for an active
circular detector spot of diameter D placed at a distance L away from the interaction region
in the direction of u0. Examples of photon distributions are exhibited in Figure F.11. There,
the detector spectral density ρD for an electron incidence angle ϑu0 = 10◦ is contrasted
with an approximation, where the spectrum of an idealized point-like detector is multiplied
by the respective real detector size, i.e. ρpD = ρW (ω′, n′0)

∫
dΩS(θ, φ), which is an integral

mean value approximation of (F.55). Naturally, a larger detector collects more photons,
but at the price that the contrast of the sub-peaks is also reduced. For L = 1 m and the
parameters of Table F.1, the active detector area should be much smaller than 10 mm in
diameter, corresponding to a cone opening angle δθ � 5 mrad.

F.11 Concluding remarks
In the strong-field domain a0 ∼ 1 two prominent effects appear in the frequency spectra of
Compton backscattering of pulsed laser fields: (i) the emergence of broad higher harmonics
and (ii) each harmonic itself is distributed into a sequence of sub-peaks (for certain parameters
the harmonics are overlapping). There is still no clear-cut experimental verification of these
effects, in particular with respect to (ii). In this section, the several realistic set-ups have
been considered to find optimal experimental parameters for an experimental verification of
these strong-field effects in the frequency spectra of non-linear Compton scattering, including
focused laser pulses and electron phase space distributions. The effect of electron phase space
distributions was incorporated by a folding of the single-electron spectral density with the
electron distribution function using a scaling property of the spectral density. An electron
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beam with parameters as in Table F.1 should be adequate to allow for an experimental
verification of the substructures in combination with a petawatt laser. The petawatt laser
should be weakly focused, such that a0 ∼ 1 is achieved in a large spatial volume, minimizing
the ponderomotive scattering. High-quality electron beams such as the ones provided by
ELBE or REGAE should probe the central region of the laser focus with the electron beam
radius much smaller than the laser focal size. A detector should cover a sufficiently narrow
cone around the direction of the incoming electron beam with an opening angle much smaller
than the inverse Lorentz factor. In this analysis, opening angles of 2− 3 mrad (for a 40 MeV
electron beam) yield good results with suitable contrast of minima and maxima, thus offering
the conditions for an experimental set-up appropriate for verifying the predicted substructures
in non-linear Compton scattering.





List of Publications

Results obtained in the course of elaborating this thesis are published in

• T. Heinzl, D. Seipt and B. Kämpfer:
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Glossary

APOLLON 10 PW high-power laser project at the Institut de
Lumière Extrême.

BNL-ATF Brookhaven National Laboratory – Accelerator Test
Facility, www.bnl.gov/atf.

BRST Becchi-Rouet-Stora-Tyutin.

CODATA Committee on Data for Science and Technology,
physics.nist.gov/cuu/Constants.

CPA chirped pulse amplification.
CUOS Center for Ultrafast Optical Science,

www.engin.umich.edu/research/cuos.

DESY Deutsches Elektronen-Synchrotron, www.desy.de.
DRACO Dresden laser acceleration source, www.hzdr.de.

ELBE Electron Linac for beams with high Brilliance and low
Emittance, www.hzdr.de.

ELI Extreme Light Infrastructure,
www.extreme-light-infrastructure.eu.

FACET Facility for Advanced Accelerator Experimental Tests,
facet.slac.stanford.edu.

FWHM full width at half maximum.
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[Hei10b] T. Heinzl, D. Seipt and B. Kämpfer: Beam-shape effects in nonlinear Compton
and Thomson scattering, Phys. Rev. A 81, 022125 (2010).

[Hei11] T. Heinzl: Strong-Field QED and High Power Lasers (2011), arXiv:1111.5192
[hep-ph].

[Her72] J. Herrmann and V. C. Zhukovskii: Compton Scattering and Induced Compton
Scattering in a Constant Electromagnetic Field, Ann. Phys. (Leipzig) 482, 349
(1972).



XIX

[Her79] H. Herold: Compton and Thomson scattering in strong magnetic fields, Phys.
Rev. D 19, 2868 (1979).

[Hew70] A. Hewish: Pulsars, Annu. Rev. Astron. Astr. 8, 265 (1970).

[HIP] HiPER project homepage, http://www.hiper-laser.org.

[Hu10] H. Hu, C. Müller and C. H. Keitel: Complete QED Theory of Multiphoton
Trident Pair Production in Strong Laser Fields, Phys. Rev. Lett. 105, 080401
(2010).

[Hu11] H. Hu: Multi-photon creation and single-photon annihilation of electron-positron
pairs, Ph.D. thesis, University of Heidelberg (2011).

[Ild10] A. Ilderton, J. Lundin and M. Marklund: Strong Field, Noncommutative
QED, SIGMA 6, 41 (2010).

[Ild11a] A. Ilderton: Trident pair production in strong laser pulses, Phys. Rev. Lett. 106,
020404 (2011).

[Ild11b] A. Ilderton, P. Johansson and M. Marklund: Pair annihilation in laser
pulses: optical vs. XFEL regimes, Phys. Rev. A 84 (2011).

[Itz80] C. Itzykson and J.-B. Zuber: Quantum Field Theory, McGraw-Hill, 1980.

[Iva04] D. Y. Ivanov, G. L. Kotkin and V. G. Serbo: Complete description of
polarization effects in emission of a photon by an electron in the field of a strong
laser wave, Eur. Phys. J. C 36, 127 (2004).

[Iva05] D. Y. Ivanov, G. L. Kotkin and V. G. Serbo: Complete description of
polarization effects in e+e− pair production by a photon in the field of a strong
laser wave, Eur. Phys. J. C 40, 27 (2005).

[Jac83] J. D. Jackson: Klassische Elektrodynamik, Walter de Gruyter, Berlin, New York,
1983, 2nd edition.

[Jau76] J. M. Jauch and F. Rohrlich: The Theory of Photons and Electrons, Springer-
Verlag, Berlin, Heidelberg, New York, 1976.

[Joh11] P. Johansson: Pair annihilation in laser pulses, Master’s thesis, Ume̊a University
(2011).

[Kak93] M. Kaku: Quantum Field Theory, Oxford University Press, 1993.
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[Sch08] R. Schützhold, G. Schaller and D. Habs: Tabletop Creation of Entangled
Multi-keV Photon Pairs and the Unruh Effect, Phys. Rev. Lett. 100, 091301 (2008).
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