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Kurzdarstellung

Die Zustandsgleichung und die Scher- und Volumenviskositäten des SU(3) Yang-Mills Plas-

mas werden untersucht im Rahmen der AdS/CFT Korrespondenz. Das holographische

Modell besteht aus der Einstein‘schen Gravitationstheorie in 5 Dimensionen gekoppelt an

ein Skalarfeld mit einem nicht-trivialen Potential. Die neuesten Präzisionsdaten der Git-

tereichtheorie für die Zustandsgleichung des SU(3) Yang-Mills Plasmas werden benutzt,

um die Parameter des von Gubser benutzten Potentials zu fitten. Verschiedene Parame-

tersätze reproduzieren die Zustandsgleichung des SU(3) Yang-Mills Plasmas in den jew-

eiligen Temperaturbereichen 1 ≤ T/Tc ≤ 2, 2.5 ≤ T/Tc ≤ 100, 10 ≤ T/Tc ≤ 1000

mit einer sehr guten Genauigkeit. Es wird festgestellt, dass eine Modifikation des Po-

tentials von Gubser nötig ist, um die Zustandsgleichung im gesamten Temperaturbereich

1 ≤ T/Tc ≤ 1000 quantitativ genau zu reproduzieren. Die Scher- und Volumenviskositäten

werden anschliessend durch eine holographische Auswertung der Kubo-Formeln ermit-

telt. Das Verhältnis der Scherviskosität η zur Entropiedichte s saturiert die KSS Grenze,

η/s = 1/4π. Das Verhältnis der Volumenviskosität ζ zur Entropiedichte zeigt einen starken

Anstieg für Temperaturen T → T+
c , wobei Tc die Deconfinement Temperatur ist.

Abstract

The equation of state and the shear and bulk viscosities of the SU(3) Yang-Mills plasma

are studied within the AdS/CFT correspondence. The holographic model employs five

dimensional Einstein gravity coupled to a scalar field with a non-trivial potential. The

recent high precision lattice gauge theory data of the SU(3) Yang-Mills theory equation

of state is used to optimize the parameters of the potential employed by Gubser. Distinct

parameter sets are found to very well reproduce the SU(3) Yang-Mills equation of state in

the respective temperature ranges 1 ≤ T/Tc ≤ 2, 2.5 ≤ T/Tc ≤ 100, 10 ≤ T/Tc ≤ 1000. It

is found that for the quantitatively accurate reproduction of the whole temperature range

1 ≤ T/Tc ≤ 1000 the potential of Gubser has to be modified. Subsequently, the shear and

bulk viscosities are computed via a holographic evaluation of the Kubo formulae. The shear

viscosity η to entropy density s ratio is found to saturate the KSS bound, η/s = 1/4π. The

bulk viscosity ζ to entropy density ratio exhibits a sharp rise for temperatures T → T+
c ,

where Tc stands for the deconfinement temperature.
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1. Introduction

The fundamental theory of strong interactions is Quantum Chromodynamics (QCD), which

describes the interactions among quarks and gluons. As such it also describes composite

quark-gluon systems, i.e. hadrons and their interactions. An important aspect of QCD

refers to the thermodynamics of strongly interacting matter. There, the phase diagram

of QCD and its peculiarities are of utmost importance. Due to the strong coupling at

low energies, genuine non-perturbative mechanisms are at work. Lattice QCD became an

important numerical tool to cope with such non-perturbative effects. In the last decade,

however, the AdS/CFT correspondence has been used to access basic features of QCD in

the non-perturbative regime. The advantage of the AdS/CFT method is that it provides a

tool to analytically study the strongly coupled regime of QCD. It is the goal of the thesis

to employ the duality of a five-dimensional gravity theory and a quantum field theory to

understand basic features of the latter one. To be specific, we are going to use the duality to

model QCD properties at nonzero temperatures. In particular, we exploit the idea that the

breaking of the conformal invariance of the pure gluon plasma due to quantum fluctuations

is translated by the gauge/gravity duality into the deformation of the conformally invariant

AdS space due to a non-trivial scalar field profile. This correspondence stems from the

fact that the gauge theory energy momentum tensor is dual to the gravity theory metric

tensor, and the gauge theory operator Tr
(
FµνF

µν
)

is dual to a scalar field φ in the gravity

theory. This duality allows one to map the potential of the scalar field onto the gauge

theory equation of state. We focus on the pure gluon plasma and, after a quantitative

reproduction of its equation of state, proceed to compute the shear and bulk viscosities

which cannot be directly accessed via lattice calculations.

Outline of the thesis

The thesis is organized as follows. We begin with a few definitions and describe properties

of QCD and Yang-Mills theory in chapter 2. We focus in particular on the thermodynam-

ics, mention the relevant experiments and discuss the results and limitations of standard

theoretical methods. In chapter 3, we gather the necessary preliminaries and sketch the

derivation of the AdS/CFT correspondence. We review its variants and establish the map-
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1 Introduction

ping between the gauge theory and the gravity theory. We also discuss how the AdS/CFT

correspondence can be applied to describe, in particular, the equation of state and the

viscosities of the SU(3) Yang-Mills theory, mentioning the limitations and the advantages

of the method. In chapter 4, we introduce the holographic model of the Yang-Mills plasma

thermodynamics, describe the underlying ideas and discuss its general features. We in-

troduce two approaches to the solution of the model by Huang et al. [1] and by Gubser

et al. [2]. In chapter 5, we focus on the equation of state, concentrating on the approach

by Gubser et al. After analyzing the specific ansatz made in [2], we proceed to fit the

parameters of the model to the equation of state of the SU(3) Yang-Mills theory plasma in

various temperature intervals. In chapter 6, we review the calculation of the shear and bulk

viscosities via a holographic evaluation of the Kubo formulae and subsequently compute

the viscosities for the optimum parameter values found in the preceding chapter. Finally,

in chapter 7, we discuss our results, mention the possible improvements to the holographic

model and point the directions of future work.

Appendix A is devoted to a brief review of the Einstein field equations of the general theory

of relativity and to the AdS space. Appendix B briefly introduces the thermodynamics of

black holes and collects standard thermodynamic relations and quantities used throughout

the thesis. Appendix C describes how the parameters of the model can be fixed using input

from the SU(3) Yang-Mills theory. Appendix D collects some reviews of the AdS/CFT

correspondence.
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2. Quantum Chromodynamics and

Yang-Mills theory

2.1. Definition and properties

We begin with a few definitions and describe some properties of Quantum Chromodynamics

and Yang-Mills theory.

2.1.1. The Lagrange densities

Quantum Chromodynamics is a quantum field theory invariant under local gauge trans-

formations of the SUc(3) gauge group. QCD is based on the lagrangian density

LQCD =

Nf∑
f=1

ψ
c

f (iγµDµ −mf )ψ
c
f −

1

4
F µν
a F a

µν + Lfix + Lgh + Lct, (2.1)

where

Dµ = ∂µ + igAµ (2.2)

is the gauge-covariant derivative with gauge coupling g, and the gauge field strength tensor

F µν
a is defined by

F µν
a = ∂µAνa − ∂νAµa − gfabcA

µ
bA

ν
c . (2.3)

The quark bi-spinors ψcf of color charge c (c = 1 . . . 3) and flavor f are in the fundamental

representation of SUc(3), while the gauge fields Aµa , representing gluons, of color charge a

(a = 1 . . . 8) are in the adjoint representation of SUc(3). The group SU(3) has 8 generators

Ga, which can be represented as 3× 3 Gell-Mann matrices. The gauge field Aµ is decom-

posed in the Ga basis by Aµ = AµaGa. The quantities fabc, defined by [Ga, Gb] = ifabcGc,

are the structure constants of SU(3). In general mf → mff ′ is a matrix, which may mix

quarks of different flavor. Here, we suppose a diagonal form of mff ′ . Up to now, 6 quark

flavors are known, i.e. Nf = 6. The terms in (2.1) not stated explicitly are: Lfix, the gauge

fixing term; Lgh, the ghost term; Lct, the counterterms.
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2 Quantum Chromodynamics and Yang-Mills theory 2.1 Definition and properties

The last term in the field strength tensor (2.3), quadratic in the gauge fields, is absent in

Quantum Electrodynamics (QED), which is an abelian U(1) gauge theory with fabc ≡ 0.

In QCD, fabc 6= 0, causing self-interactions of gluons. In perturbation theory there are

3-gluon vertices and 4-gluon vertices. This is in contrast to QED, where photons interact

with electrons, but not with each other. It is this nonlinear term ∝ AµAν that leads to

a qualitatively different behavior and a richness of phenomena, but also to computational

difficulties, which to this day have not been satisfactorily overcome. In contrast to QED,

the QCD coupling g may become large (for energy scales µ . 100 GeV, g & 1), rending the

standard method of perturbation theory - a Taylor expansion in the coupling - inefficient

or even inapplicable.

In the holographic thermodynamics model, section 4, we will concentrate entirely on the

gauge fields, also called pure glue sector or Yang-Mills theory, defined by

LYM = −1

4
F µν
a F a

µν + Lfix + Lgh + Lct, (2.4)

with F µν
a given by (2.3). The Yang-Mills theory is classically scale invariant. It can be

obtained from (2.1) in the limit of infinite quark masses mf →∞, meaning that the quarks

no longer participate in the dynamics. Quantum fluctuations break the scale invariance

leading to the trace anomaly, as discussed below.

2.1.2. The β function

Like any other quantum field theory, QCD and Yang-Mills theory have to be regularized

and renormalized to obtain finite observables. Regularization introduces an energy scale

µ into the theory. Observables should be invariant under a change of the energy scale

µ→ µ′. The β function describes the dependence of the coupling g on the energy scale µ

(often called “running of the coupling”); it is defined by

β(g) = µ
dg

dµ
. (2.5)

For a quantum field theory with a SUc(N) gauge group and Nf massless quarks the β

function to 2-loop order1 is given by [4]

β(g) = −(11N − 2Nf )
g3

48π2
−
(

34N2 − 13NNf + 3
Nf

N

) g5

768π4
. (2.6)

1The β function has been calculated to 4-loop order in [3].
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2 Quantum Chromodynamics and Yang-Mills theory 2.1 Definition and properties

For QCD, N ≡ Nc = 3 and assuming Nf = 3 active flavors, equation (2.6) gives

βQCD(g) = − 9

16π2
g3 − 67

256π4
g5. (2.7)

For Yang-Mills theory, i.e. for Nf = 0, one obtains from (2.6)

βYM(g) = − 11

48π2
Ng3 − 17

384π4
N2g5, (2.8)

and for Nc = 3

βYM(g) = − 11

16π2
g3 − 51

128π4
g5. (2.9)

Note that βQCD < 0. The coupling g decreases with increasing values of the energy scale µ.

This is an important observation. For large energies, the quarks and gluons within QCD

are asymptotically free (this fact is usually referred to as “asymptotic freedom“), while for

low energies the coupling becomes large and the interaction between quarks and gluons is

strong (this fact being sometimes called “infrared slavery“). As is evident from equation

(2.8) the same discussion applies to Yang-Mills theory.

Due to the introduction of the energy scale µ the classical scale invariance of the Yang-Mills

theory is broken by quantum fluctuations, as expressed by the following equation:

T µµ =
β(αS)

8πα2
S

Tr
(
FµνF

µν
)
, (2.10)

where T µµ is the trace of the Yang-Mills theory energy momentum tensor T µν and αS ≡
g2/(4π).

Due to renormalization not only the coupling g(µ) becomes scale dependent. Other param-

eters of the model, such as the quark masses mf , but also the classical scaling dimensions

∆0 of field operators and Green’s functions become functions of the energy scale. Hereby,

the scaling dimension ∆ of an operator O is defined as

∆ = −O−1µ
d

dµ
O. (2.11)

The classical scaling dimension ∆0 is determined by the dimensional analysis of the un-

renormalized lagrangian. After renormalization one has

∆ = ∆0 + γ, (2.12)
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2 Quantum Chromodynamics and Yang-Mills theory 2.2 Thermodynamics

where ∆ is the actual (renormalized) scaling dimension and the quantity γ, which arises

due to renormalization, is called the anomalous dimension. For an operator O with renor-

malization constant ZO, γ is defined as

γ = −Z−1
O µ

d

dµ
ZO. (2.13)

In perturbation theory, γ has the following schematic form:

γ = γ1g
2 + γ2g

4 +O(g6), (2.14)

where the coefficients γi are computed at the respective order.

2.2. Thermodynamics

2.2.1. The QCD phase diagram

The ultimate goal of studying the thermodynamics of QCD is the complete understanding

of the QCD phase diagram, figure 2.1.

Figure 2.1.: The QCD phase diagram, reproduced from [5], showing different phases
of strongly interacting matter in dependence of the temperature T and
the baryochemical potential µB. See the text for explanations.
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2 Quantum Chromodynamics and Yang-Mills theory 2.2 Thermodynamics

Two phases are regarded as established:2,3

� Low T and low µB (lower left region of figure 2.1): The confined hadronic phase,

in which quarks and gluons exist only as color-neutral bound states. The relevant

degrees of freedom are hadrons, i.e. bound states of quarks held together by gluons,

and glueballs, i.e. bound states consisting purely of gluons. For increasing T and µB,

i.e. closer to the (phase) transition, this phase can be modelled by a gas of hadrons,

the model being usually referred to as hadron resonance gas.

� High T and/or high µB (upper right region of figure 2.1): The deconfined quark-gluon

plasma (QGP) phase in which quarks and gluons are the relevant degrees of freedom.

They are free, i.e. unconfined, but still interact strongly. Recent experiments suggest

that the QGP is a strongly coupled near-ideal liquid.

The deconfinement transition between the hadronic and the QGP phase is thought to be

a strong crossover for low µB (with Tc ≈ 170 MeV computed for two light quarks and

Tc ≈ 150 MeV for three light quarks), whereas for higher µB a first order phase transition

is thought to occur, which presumably starts in a (tri)critical point (see figure 2.1).

The chiral phase transition, during which the chiral symmetry, broken explicitly by the

quark masses mf , and spontaneously by the non-vanishing quark-antiquark vacuum ex-

pectation value (the latter is usually referred to as condensate) 〈q̄q〉 6= 0 is for increasing

T restored.4 It is thought to occur close to the deconfinement phase transition.

Many questions remain unsettled and are topics of current research. The exact loca-

tion of the (tri)critical point (if it exists at all) is not known, as well as the exact location

of the confinement-deconfinement transition curve for T > 0 and µB > 0. It is not yet

settled how close the chiral symmetry restoration is to the deconfinement transition and

whether they are correlated or not. Also, the mechanisms of chiral symmetry breaking and

of confinement, although being studied with effective models, are not fully understood as

following from the lagrangian (2.1). It is also an open question in which phase the QCD

matter exists for low T and high µB.

2More exotic phases have been proposed, among them the quarkyonic phase (in the region marked as
”Deconfinement and chiral transition” in figure 2.1), the color superconducting phase (CSC) and the
color-flavor-locked (CFL) phase (both in the lower right region of figure 2.1), see [5].

3The baryochemical potential µB is a measure for the net baryon density defined as n ≡ nB −nB̄ , where
nB and nB̄ are, respectively, the number of baryons and anti-baryons.

4The restoration of the chiral symmetry χs is actually not exact: while the quark-antiquark condensate
melts, 〈q̄q〉 = 0, the quark masses mf are still present. However, for light quarks mf � TχSR

and one
can regard χs as restored to a good accuracy.
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2 Quantum Chromodynamics and Yang-Mills theory 2.2 Thermodynamics

Since gauge bosons do not obey particle number conservation, their chemical potential

is µ ≡ 0. For pure Yang-Mills theory, one thus would not have the rich structure ex-

hibited in figure 2.1, as the “phase diagram” would collapse to the T axis. Still, the

confinement-deconfinement transition at the temperature Tc ≈ 265 MeV remains.5 For

low temperatures T < Tc, the relevant degrees of freedom are color-neutral glueballs, while

for high temperatures T > Tc, the gluons are deconfined and form a strongly interacting

plasma. The SU(3) Yang-Mills confinement-deconfinement phase transition is known to

be weakly first order [7]. In the holographic model we will concentrate entirely on the

SU(3) Yang-Mills plasma, i.e. on the deconfined phase.

2.2.2. Heavy-Ion Collisions

The main experimental tool for studying the thermodynamics of QCD are heavy-ion colli-

sions performed at SPS, LHC, RHIC6 and other facilities. Heavy nuclei are accelerated to

energies up to 200 AGeV at SPS (fixed target experiments), or up to 100 AGeV at RHIC

(collider experiments), or up to 2.5 ATeV at LHC (collider experiments) and brought to

collision. The typical sequence of the relevant stages in the course of a heavy-ion collision

is as follows:

After the first collisions of leading-edge nucleons, the constituents of the nuclei interact

strongly to very rapidly thermalize and to form a hot and dense QGP “fireball“ in (or

nearby) thermal equilibrium. The fireball expands and cools. When the deconfinement

transition area as in figure 2.1 is reached, the previously free quarks and gluons confine

to form a gas of hadron resonances. After further cooling the resonances freeze out of

thermal equilibrium and decay. The decay products are emitted either into the detectors

or into the still cooling fireball. In the final stage only hadrons, which interact weakly or

electromagnetically among themselves, are left. They may decay, and the decay products

are detected. In the course of the collision, also weakly and electromagnetically interacting

particles are emitted (the so called direct probes of the fireball).

It might seem to be a surprising fact that the evolution of the fireball from the point

of the formation of the thermalized QGP through the phase transition down to the freeze-

out of hadronic species can be well described by relativistic hydrodynamics.7 After the

5Note the rather large difference to TQCDc ≈ 170 MeV. Both numerical values are taken from [6].
6The acronyms stand for Super Proton Synchrotron, Large Hadron Collider (both at CERN) and Rela-

tivistic Heavy Ion Collider (at the Brookhaven National Laboratory), respectively.
7This at first glance contra-intuitive insight can be resolved by noting that lQCD � RQGP : the typical

range lQCD of strong interactions is much smaller than the size RQGP of the QGP fireball. Thus, the
criterion for the applicability of hydrodynamics is satisfied.
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2 Quantum Chromodynamics and Yang-Mills theory 2.2 Thermodynamics

successes of the model of ideal hydrodynamics the analysis was later on refined to first-

and second-order viscous hydrodynamics. Hydrodynamics, being an effective theory of

long-wavelength excitations, needs input from the microscopic theory of the matter one

wants to describe. For ideal hydrodynamics the equation of state p(e) or equivalently p(T )

must be supplied.8 Here, p denotes the thermodynamic pressure and T stands for the

temperature. First-order viscous hydrodynamics needs in addition the input of first order

transport coefficients; they are the shear viscosity η(T ), the bulk viscosity ζ(T ), the heat

conductivity κ(T ) and charge diffusion coefficients. Second order viscous hydrodynamics

requires additional second order transport and charge diffusion coefficients.

In heavy ion collisions, the transverse 2-dimensional shape of the fireball is not an ideal

sphere. An arbitrary 2-dimensional shape can be decomposed into Fourier modes describ-

ing its ellipticity, ”triangularity“, etc. By determining the Fourier coefficients and fitting

the model of viscous hydrodynamic expansion to data, the transport coefficients of the

QGP can in principle be ”measured” in heavy ion collisions, as they affect the expansion

dynamics of the fireball. That means, the equation of state and the transport coefficients

of the QGP are important input parameters for the hydrodynamical description of the

evolution of the QGP fireball.

2.2.3. Perturbative methods

The QCD β function

Consider the QCD β function (2.7). One recognizes a problem. Ordinary perturbation

theory, i.e. a Taylor expansion in the coupling g, is applicable to QCD only at large energies,

where the coupling g is supposed to be small. In this regime, perturbation theory has been

successfully applied to describe, e.g., deep inelastic scattering, the Drell Yan process etc.

At small energies, however, the coupling becomes large and usual perturbation theory

is no longer applicable.9 Thus, low-energy phenomena of strong interactions like hadron

spectra and hadron interactions, stability of hadrons and atomic nuclei, the confinement-

deconfinement and chiral phase transitions and the QCD phase diagram can, if at all, only

poorly be described by perturbative QCD. Successful effective low-energy models do exist.

8Actually p(T, µB) is needed, the same applies to transport coefficients. In the following we drop µB , as
in the Yang-Mills theory, relevant for us, µB ≡ 0 holds.

9Some improvements can be achieved by a reorganized perturbation theory.
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2 Quantum Chromodynamics and Yang-Mills theory 2.2 Thermodynamics

Results and limitations of perturbation theory applied to QCD thermodynamics

For the details of the following discussion we refer the reader to chapter 8 of [6]. Much

effort has been put into the computation of the equation of state of QCD, p(T ), using

perturbation theory at finite temperature. To zeroth order in the coupling, p(T ) is given

by the Stefan-Boltzmann limit of the Yang-Mills pressure (B.10) plus the ideal gas con-

tribution of the quarks. The first correction to p(T ) comes from Feynman diagrams ∝ g2;

subsequent corrections are of order g3 and g4 ln g2. In evaluating these corrections one

encounters overlapping ultraviolet as well as infrared divergences. Special resummation

techniques are used to overcome the latter problem: by resumming diagrams effective elec-

tric and magnetic screening masses of gluons are introduced, which regularize the infrared

divergences.

It might seem that, in principle, one could calculate p(T ) to any desired order in g. How-

ever, at order g6 a problem arises [8]. Consider the (l + 1)-loop gluon diagram exhibited

in figure 2.2.

Figure 2.2.: Gluon loop diagram, contributing to p(T ).

One can schematically examine its degree of divergence by

g2l
(
T

∫
d3p
)(l+1)

p2l(p2 +m2)−3l, (2.15)

where the g2l and p2l factors come from the vertices, the
(
T
∫
d3p
)(l+1)

factor from the loop

integrations, and the (p2 + m2)−3l factor stems from the propagators, where an explicit

infrared cutoff m was introduced, which will be identified with one of the screening masses

introduced above. Place an ultraviolet cutoff equal to the temperature T on the momentum

integration to obtain the order of divergence

g2lT 4 for l = 1, 2, (2.16)

g6T 4 ln(T/m) for l = 3, (2.17)

g6T 4(g2T/m)l−3 for l > 3. (2.18)

10
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For l ≥ 3 and m → 0 the diagram is infrared divergent. Consider the magnetic screening

mass mmag ∝ g2T at two-loop order and evaluate (2.18) to obtain g6T 4 for all l > 3. This

implies that at order g6 all loops with l > 3 contribute to the diagram in figure 2.2. Since

it is not known how to sum such diagrams, we conclude that it is impossible to analytically

calculate the complete g6 order correction term to p(T ). Thus, the perturbation theory

approach to calculating the equation of state p(T ) breaks down at O(g6) which is the so

called perturbation horizon. We show in figure 2.3 the results of perturbative calculations

at subsequent orders in g for the pure SU(3) Yang-Mills plasma. One sees that the

O(g3) and O(g4) curves are for T → ΛMS qualitatively wrong.10 The constant in the

last calculable order g6 ln(1/g) was chosen to best reproduce the lattice data.

Figure 2.3.: Results of perturbative calculations of the pure Yang-Mills theory equa-
tion of state p(T ), normalized to the Stefan-Boltzmann limit of the pres-
sure (B.10). Reproduced from [6]. Note that within perturbation theory
any deviation from the Stefan-Boltzman behavior (B.10) is a purely quan-
tum effect.

Conclusions

As is evident from the above discussion, perturbation theory applied to QCD and Yang-

Mills theory thermodynamics describes well the high-temperature behavior of the theory. It

10The quantity ΛMS is the energy scale of the MS regularization scheme. It is of the order of the
deconfinement temperature.
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reproduces to some extent the lattice calculations of the QGP equation of state in the region

T/TQCDc & 4, while for the pure gluon plasma, (forgetting the semi-phenomenological

result of the g6-order) naive perturbation theory is a good description for T/T YMc & 100.

However, close to the deconfinement transition, T ≈ Tc, neither the QGP nor the pure

Yang-Mills plasma can be well described within perturbation theory. Thus, to understand

the mechanism of the confinement-deconfinement transition and the origin, as well as the

quantitative form of the trace anomaly, a different description is needed.

2.2.4. Lattice Gauge Theory

Lattice gauge theory has become the standard tool for computations in the strongly cou-

pled regimes of QCD and Yang-Mills theory and is by now a field of science for itself. The

basic concept is simple: the spacetime is discretized and the partition function is directly

evaluated on a now finite number of the spacetime points. A Wick rotation is performed

to ensure the convergence of the path integral. Computing e.g. a Green’s function between

two spacetime points x1 and x2, all11 paths from x1 to x2 are considered. The weighting

factor e−S then ensures that shorter paths give a larger contribution. To improve the

convergence behavior, the action S is often improved, see chapter 10 of [6]. Finite tem-

perature T is introduced in the usual way by integration of the Wick rotated time τ from

0 to βτ = 1/T . After calculating the relevant observables on different lattice sizes, the

continuum extrapolation is carried out to obtain the final prediction.

Lattice gauge theory yields robust results for the equation of state of the Yang-Mills theory,

as well as for the QCD phase diagram in the direct vicinity of the T axis. The extraction

of viscosities is more difficult since, to employ the Kubo formulae (see section 6.1), an

analytic continuation of the Euclidean correlator must be performed. This procedure is

ambiguous for a correlator that is computed on a finite number of frequencies. Thus, with-

out additional assumptions, no accurate lattice gauge theory prediction for the viscosities

exists up to now.

2.3. The AdS/QCD correspondence

In sections 2.2.3 and 2.2.4 two standard theoretical approaches to the thermodynamics

of QCD and Yang-Mills theory were described: the resummed perturbation theory and

lattice gauge theory. As discussed in section 2.2.3, perturbation theory suffers from the

conceptual problem that contributions of the order g6 and higher cannot be completely

11Often not all paths are considered, but rather those with a given maximum length.
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computed, thus pointing at a manifestly non-perturbative behavior of the theories, which

is important already for temperatures T/Tc ≈ 4 and T/Tc ≈ 100 for QCD and Yang-Mills

theory, respectively. Lattice QCD, although being able to compute some observables in the

non-perturbative regime, is an unsatisfactory approach in the sense that the mechanisms

underlying in particular confinement and chiral symmetry restoration remain obscured. In

addition, lattice QCD has its own problems, most notably the difficulties in calculations

with a finite baryochemical potential µB of the order of the temperature µB ∝ T , and,

as mentioned in section 2.2.4, the extraction of the transport coefficients of the QGP and

Yang-Mills plasma. It is thus desirable to find a theoretical method, which would allow

for analytic calculations in the strongly coupled regime. One such method, the AdS/CFT

correspondence, was indeed recently discovered by Maldacena [9]. Maldacena conjectured

that a certain kind of string theory is dual (i.e. equivalent) to a special quantum field

theory. While the full conjecture is certainly theoretically interesting by itself, a simpler

version of it provides a valuable new tool for the understanding of strongly coupled field

theories. In essence, the statement is that a strongly coupled large-N field theory can be

described by a classical theory of gravity, the latter being provided by Einstein’s general

theory of relativity. The drawback of this method is the N → ∞ (meaning large-N)

limit, which has to be taken to obtain classical instead of quantized string theory, while,

in QCD, N = 3. Nevertheless, Maldacena’s conjecture sparked a by now vast field of

research in purely theoretical, as well as in phenomenological physics. We now proceed to

sketch the ideas leading to the correspondence, review its “canonical“ version and estab-

lish the mapping between the gravity and the gauge theories. After briefly discussing the

applicability to ”realistic” theories like QCD, we will employ the correspondence to un-

derstand the equilibrium and near-equilibrium properties of the SU(3) Yang-Mills theory

thermodynamics.
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3. The AdS/CFT correspondence

It is beyond the scope of this thesis to give a rigorous introduction to superstring theory,

within which the AdS/CFT correspondence was derived. We will thus mention the nec-

essary basic facts and give a sketch of the derivation. Readers interested in string theory

are referred to [10–12]. In appendix D we list a number of reviews of the correspondence.

The following discussion is mainly based on [13].

3.1. String theory and branes

3.1.1. String theory

String theory is one of the candidate theories for quantum gravity.1 The fundamental

concept of string theory is that elementary particles are not pointlike as in todays Standard

Model, but are instead 1-dimensional objects: open and closed strings. It is thought that,

on energy scales, and thus spatial resolutions available today, the elementary particles

appear pointlike and their extended nature can not yet be probed. The basic action

principle of string theory is the generalization of the action principle for a pointlike particle

in curved space. While the pointlike particles minimizes its world-line (i.e. moves along

a geodesic), the string minimizes its, now 2-dimensional, world-sheet. The action can

straightforwardly be further generalized to membranes, usually called p-branes, (higher

dimensional objects of dimension p > 1, p < d, where d is the space-time dimension)

minimizing their world-volume. The Polyakov (also called sigma model) action for a string

is given by

S = −1

2
Ts

∫
dσdτ

√
−hhαβ∂αXµ∂βX

µ, (3.1)

where Xµ(σ, τ), µ = 1, . . . , d are the functions embedding the string world-sheet into a

curved background spacetime of dimension d, and hαβ(σ, τ), α = 1, 2 is the world-sheet

metric. The dimensionful constant Ts = (2πα′)−1 is the string tension, where α′ = l2s and

1Since the 4-dimensional Newton constant G4 is a dimensionful quantity (as seen from (A.1) in 4 di-
mensions), Einstein’s general theory of relativity is non-renormalizable and is thus thought to be a
low-energy effective theory of a more fundamental as yet unknown theory of quantum gravity.
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3 The AdS/CFT correspondence 3.1 String theory and branes

ls denotes the string length. To solve the equations of motion for Xµ(σ, τ) following from

(3.1), boundary conditions need to be specified. For the closed string, one requires period-

icity of Xµ in σ; for the open string one can require Neumann boundary conditions for all

µ (no momentum flowing through the ends of the string) or Dirichlet boundary conditions

for some µ = 1, . . . , d − p − 1 (the two ends of the open string are fixed in p − 1 spatial

directions) and Neumann boundary conditions for the remaining d−p spatial coordinates.

Neumann boundary conditions respect Poincaré invariance, while Dirichlet boundary con-

ditions break it. The Dirichlet boundary conditions correspond to the ends of the string

being attached to an extended dynamical object called Dp-brane, which is a special type

of a p-brane mentioned above. With the boundary conditions specified, the equations of

motion for Xµ can then be solved in terms of mode expansions of left/right-moving and

standing waves for closed and open strings, respectively. With the mode expansion at hand

the theory can be quantized, in analogy to the field theory quantization in terms of the

plane wave expansion.2 One has to make sure to retain only the physical states. They are

then labeled by their mass m and angular momentum s, to be identified with a particle of

mass m and spin s. Every string theory has a massless spin-2 particle in its closed string

spectrum, which is identified with the graviton. String interactions are governed by the

string coupling parameter gs.

The condition of physical states fixes the spacetime dimension to d = 26, i.e. 1 time di-

mension and 25 space dimensions.3 Introduction of supersymmetry4 reduces the spacetime

dimension of the critical string theory to d = 10, which is referred to as superstring theory.

The spectrum has to be truncated to ensure consistent supersymmetry. There are different

possibilities, depending on the chosen different superstring theories (IIA superstring the-

ory or IIB superstring theory) arise.5 Their low-energy effective theories6 are type IIA and

type IIB supergravity, respectively, which are supersymmetric generalizations of Einstein‘s

classical theory of general relativity. Dp-branes can be consistently added to type IIA or

IIB superstring theories. The possible dimensions p of the branes are constrained.

2From the Poisson brackets of Xµ and its canonical momentum conjugate the Poisson brackets for the
Fourier coefficients of the modes are obtained. The Poisson brackets are then replaced by commutators.
Note that, in string theory, this is the ”first” quantization.

3String theory in d = 26 dimensions is called critical string theory. There is a possibility for a consistent
formulation in d < 26, which is called non-critical string theory. This possibility is however often not
considered.

4We will not explain supersymmetry in detail, but just note that it is a symmetry which interrelates
bosons and fermions.

5IIA and IIB superstring theories are two of the five different superstring theories. They are distinguished
by their string content (open and/or closed), their treatment of left- and right-moving modes (equivalent
or non-equivalent) and the chirality of massless fermions (chiral symmetry present or not), see e.g. [12].

6One integrates out the massive modes to retain only the massless ones. Then, the limit α′ → 0 is taken.
See also section 3.2.
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3 The AdS/CFT correspondence 3.2 A sketch of the derivation

3.1.2. p-branes and Dp-branes

The holographic duality of a theory of quantum gravity and a quantum field theory can

be traced back to two different possibilities to describe p-branes.

p-branes in supergravity

On the one hand, p-branes are known as solutions of supergravity theories. They can

be viewed as generalizations of the Reissner-Nordström black hole, which is the spheri-

cally symmetric solution of the Einstein equations with the energy momentum tensor of

electrodynamics. Analogously to the electrically charged Reissner-Nordström black hole, p-

branes can carry charge of the non-Abelian fields present in supergravity. The dimension

of p-branes is not constrained to two, (as the horizon of the four-dimensional Reissner-

Nordström black hole) but is determined by the maximum dimension and type of the

supergravity theory under consideration. They can also have planar instead of spherical

geometries. As the Reissner-Nordström black hole, p-branes can be “extremal”, i.e. have

zero Hawking temperature (B.1).

Dp-branes in superstring theory

On the other hand, Dp-branes can be consistently defined in superstring theory as hy-

persurfaces on which open strings can end. Their dimension is again determined by the

type of superstring theory under consideration. One can consider the dynamics of just

the strings attached to one or more Dp-branes; as we will see these are closely related to

super-Yang-Mills theory.

It was realized by Polchinski [14] that both viewpoints are actually describing the same

object. As we will see, the AdS/CFT correspondence will emerge when we consider D3-

branes in IIB string theory and supergravity and compare the appropriate limits on both

sides, that is of the 3-brane metric on the supergravity side and of the superstring theory

containing D3-branes.

3.2. A sketch of the derivation

The AdS/CFT correspondence, also called gauge/gravity or holographic duality, was first

conjectured by Maldacena in [9] for type IIB string theory on AdS5 × S5 and N = 4

super-Yang-Mills (SYM) theory in 4 dimensions.7

7The quantity N is the number of supersymmetry generators, see e.g. [15].
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3.2.1. Supergravity side

Consider the 3-brane solution to the IIB supergravity equations of motion, (see section

1.3.1 of [13] for the derivation) given by the following infinitesimal line element squared

ds2 = f−1/2
(
− dt2 + dx2

1 + dx2
2 + dx2

3

)
+ f 1/2

(
dr2 + r2dΩ2

5

)
, (3.2)

f = 1 +
R4

r4
, (3.3)

where R is a parameter which determines the ”size” of the 3-brane. Here, t, x1, x2, x3 are

the coordinates on the 3-brane; r is the ”radial” coordinate perpendicular to the brane,

and Ω5 is a 5-sphere. Consider the limit of the geometry far from the branes, r � R; in

this case, f ≈ 1. Then one has

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3 + dr2 + r2dΩ2

5, (3.4)

i.e. a 10-dimensional Minkowski space. Now consider the limit r � R, i.e. close to the

branes (this region is referred to as the “throat region“). In this case f ≈ R4/r4 and one

gets

ds2 =
r2

R2

(
− dt2 + dx2

1 + dx2
2 + dx2

3

)
+
R2

r2
dr2 +R2dΩ2

5. (3.5)

The metric (3.5) is AdS5 × S5, i.e. a product of a 5-dimensional anti-deSitter space in

Poincaré coordinates and a 5-sphere. Both have the ”radius” R. Perform a coordinate

transformation r/R = R/z to transform into Fefferman-Graham coordinates:

ds2 =
R2

z2

(
− dt2 + dx2

1 + dx2
2 + dx2

3 + dz2
)

+R2dΩ2
5. (3.6)

Return to the metric given by (3.2) and consider low-energy excitations with respect to

an observer at infinity, i.e. at r =∞. These can be massless excitations in the Minkowski

region (3.4) or, due to the redshift factor f−1/4, excitations of any energy Er in the throat

region (3.5).8 One thus has superstring theory in the throat region and supergravity in the

Minkowski region. The two theories decouple: The low-energy excitations of the Minkowski

region cannot be absorbed by the brane as their wavelength is much greater than the ”size”

R of the brane; the excitations close to the brane are confined to the throat region due to

the gravitational potential.

One has thus two decoupled theories: IIB supergravity theory in Minkowski space (3.4)

and IIB superstring theory on AdS5 × S5 (3.5) close to the branes.

8Denoting by E the energy of the latter ones measured at infinity one has E = f−1/4Er.
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3.2.2. String theory side

It is possible to consistently define the limit of N coincident D3-branes. Type IIB super-

string theory in 10 dimensions with N coincident D3-branes extended in 4 dimensions (one

time, three spatial) contains open strings with ends on the D3-branes and closed strings.

The open strings describe the excitations of the branes, and the closed strings describe the

excitations of empty space. Integrating out the massive string modes one obtains the effec-

tive low-energy theory which contains only massless strings. The action of the low-energy

theory is given schematically by

S = Sbulk + Sbrane + Sint, (3.7)

with

Sbulk = SIIB Sugra + Sc,corr, (3.8)

Sbrane = SSYM + So,corr. (3.9)

Here, Sbulk is the action describing the closed string dynamics in empty space; it contains

SIIB Sugra, i.e. IIB supergravity, and higher derivative closed strings corrections Sc,corr. The

action on the branes Sbrane gives rise to a N = 4 SU(N)9 super-Yang-Mills theory SSYM

with higher derivative corrections So,corr due to open string dynamics. The corrections

Sc,corr and So,corr, as well as the interaction between the branes and the bulk, Sint, are

proportional to powers of α′. Take the limit α′ → 0 keeping fixed all dimensionless pa-

rameters, including gs and N . The corrections terms as well as the bulk-brane interaction

terms vanish and one is left with two decoupled theories: the 4-dimensional SYM theory

on the branes and the IIB supergravity theory.

3.3. The correspondence

We have seen that, from the point of view of supergravity as well as from the point of

view of superstring theory, one obtains two decoupled theories when considering the low-

energy limit of the 3-brane theories. In the first case, one has free IIB supergravity in the

Minkowski region and the full IIB superstring theory on AdS5×S5; in the second case one

has free IIB supergravity in the bulk and the SYM theory on the branes. The free theory

9Actually, the gauge group of the SYM theory is U(N), which is locally equivalent to a free U(1) vector
multiplet times a SU(N) gauge theory. The U(1) multiplet describes the center of mass motion of the
branes and one generally regards it as decoupled. See however the discussion on page 58 of [13].
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in both cases is supergravity in flat space. Maldacena’s conjecture was to identify the two

theories close to and on the branes. The statement is thus [9]:

Type IIB superstring theory on AdS5 × S5 is equivalent (i.e. dual) to N = 4 SU(N)

super-Yang-Mills theory in 4 dimensions.

3.3.1. Regimes of validity

The parameter R in the IIB supergravity 3-brane solution (3.2) is related to the superstring

theory parameters by

R4 = 4πgsα
′2N. (3.10)

The string coupling gs is related to the SYM coupling constant by

g2
YM = 4πgs (3.11)

which gives with (3.10)

R4 = α′2g2
YMN. (3.12)

The conjecture stated above was in its strongest form: The full quantized IIB superstring

theory is dual to N = 4 SU(N) super-Yang-Mills theory for any value of the respective

parameters. By taking appropriate limits one can deduce its weaker forms.

Keep gsN fixed and take the limit gs → 0. This corresponds to the large-N (called t’Hooft)

limit of quantum field theory and yields classical instead of quantized10 superstring theory.

The quantum field theory coupling (often called t’Hooft coupling) in the large-N limit is

λ ≡ g2
YMN . The conjecture now becomes:

Type IIB classical superstring theory on AdS5×S5 is equivalent (i.e. dual) to the large-N

limit of N = 4 SU(N) super-Yang-Mills theory in 4 dimensions.

To obtain the supergravity limit from classical string theory let further be α′/L2 → 0,

where L denotes the typical curvature scale of a spacetime. Equation (3.12) yields

α′2

R4
=

1

g2
YMN

→ 0, (3.13)

10The parameter N in equation (3.10) is actually a quantum of charge of a 5-index antisymmetric field F5,
appearing in IIB superstring theory (see section 1.3.1 of [13] and references therein). It is not known
how to quantize IIB string theory on a curved spacetime with F5 6= 0.
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and consequently

λ = g2
YMN →∞. (3.14)

The correspondence becomes now:

Type IIB supergravity on AdS5 × S5 is equivalent (i.e. dual) to the large-N , strongly

coupled limit of the N = 4 SU(N) super-Yang-Mills theory in 4 dimensions.

From (3.13) one learns an important fact: The supergravity approximation is valid when

the super-Yang-Mills theory is strongly coupled. Supergravity thus yields a new method

to do calculations in super-Yang-Mills theory. The big advantage is the fact that the su-

pergravity description is valid at strong coupling. In this sense, it is complementary to

perturbation theory and provides a tool for the solution of large-N quantum field theory

in a regime where no analytical methods were previously known. One could also use the

conjecture the other way around to describe strongly coupled string theory by means of a

weakly coupled quantum field theory. Equation (3.13) is also the reason why the conjec-

ture is called a duality: strong coupling of one theory translates into weak coupling of the

other.11 This fact makes the conjecture difficult to test: when one side is weakly coupled

and calculable, the other side is strongly coupled and difficult to compute.

Looking at equation (3.13) one might be tempted to keep N fixed and let gs ∝ g2
YM →∞,

i.e. perform a limit, which would be better suited for QCD. In this limit however a weakly

coupled supergravity approximation is not possible, see page 60 of [13].

Note that in the strongest form of the conjecture, the spacetime is required to be AdS5×S5

only asymptotically. This is the analogue of the condition of asymptotic flatness.

3.3.2. Tests of the correspondence

Here, we briefly summarize the evidences for the validity of the correspondence. As the

foregoing discussion suggests, one should compare properties that do not depend on the

coupling, since it is not clear how to compare a gauge theory quantity calculated on the

one hand within perturbation theory at weak coupling and on the other hand within the

supergravity theory at strong coupling. We list two properties and refer the reader to [13]

for further properties and details.

11On the gravity side, weak coupling means that the curvature of the spacetime is small. In the context
of string theory this means that, as expressed by equation (3.13), the string corrections to the Einstein
gravitational theory are negligible.

20



3 The AdS/CFT correspondence 3.3 The correspondence

� The global symmetry groups of both theN = 4 SYM theory and the IIB supergravity

on AdS5 × S5 coincide. In addition to Poincaré symmetry, AdS5 × S5 is invariant

under the full conformal symmetry group.12 On the gauge theory side this is reflected

by the vanishing of the β function of the N = 4 SYM theory.

� Some supersymmetric SYM operators are ”protected” from renormalization as their

masses and spins are exactly related to invariants of the supersymmetry group. The

spectra of these on both sides were successfully matched.

3.3.3. AdS5/CFT4 correspondence

One can conformally compactify the d-dimensional AdSd space. The boundary is then

a (d − 1)-dimensional space, identical to the conformal compactification of a (d − 1)-

dimensional Minkowski space.13 This identity leads to the picture that, in the context of

the AdS/CFT correspondence, the 4-dimensional SYM theory ”lives” on the boundary of

AdS5. It is thus natural to decompose the fields on the whole AdS5 × S5 spacetime into

spherical harmonics on S5. This procedure (referred to as ”Kaluza-Klein compactifica-

tion”) introduces effective masses (dependent on the harmonic) of fields, which now ”live”

only on AdS5. This leads to an important variant of the duality: Gravity on AdS5 is dual

to a 4-dimensional conformal field theory, the latter ”living” on the boundary of AdS5 in

the sense just described. This form of the conjecture can be viewed as a manifestation of

the holographic principle.14 It can further be motivated by

� Non-critical string theory on AdS5.

� ”Geometrizing” the renormalization group (RG) flow [17]. The 5th (often referred to

as ”radial” or ”holographic”) coordinate of the AdS5 is viewed as the inverse of the

RG energy scale µ, the latter introduced in 2.1.2. One merges the ordinary spacetime

dynamics with the RG dynamics of a gauge theory into a unified description. This

unification is manifest on the gravity side, since the gravity equations of motion

treat all coordinates equally. A concrete ansatz for the metric will however reflect

the special role of the holographic coordinate.

12The conformal transformations include the Poincaré transformations and in addition the scalings and
special conformal transformations.

13The compactified Minkowski space is invariant under the full conformal group, see e.g. [16].
14See the last paragraph of appendix B.1 and references therein.
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3.4. Mapping between AdS and CFT

The mapping between the gravity theory and the field theory can be formulated without

the use of string theory or supersymmetry. We will thus only consider “standard“ field

theory operators and correlators; in particular the operators Tr
(
FµνF

µν
)
, Jµ and T µν ,

where F µν is the gauge field strength tensor, Jµ is a conserved gauge theory current and

T µν is the gauge theory energy momentum tensor. The gravity theory relevant for us will

be the general theory of relativity, see appendix A.1.15

3.4.1. Field-Operator Correspondence

The general prescription

From the discussion of section 3.1.2 and from the analogy with the Reissner-Nordström

black hole it is straightforward to motivate the prescription that the gravity field dual to a

given field theory operator is its conjugated field. When constructing the correlators in the

next section we will explicitly make use of this prescription. The gauge theory operator

has to be local and gauge invariant. One thus has:

� T µν is dual to the gravity theory metric tensor gµν ,

� Tr
(
FµνF

µν
)

is dual to a scalar field φ in the gravity theory,16

� Jµ is dual to a gauge field Aµ in the gravity theory.

When considering other fields than the metric gµν within the gravity theory one has two

options:

1. The fields interact with the metric and thus change the geometry of spacetime.

2. The metric is static and the fields ”live” on the fixed background spacetime.

Within Einstein’s general theory of relativity the first possibility amounts to including the

desired fields into the energy momentum tensor and solving the Einstein equations, whereas

the second possibility does not require a solution of the Einstein equations but, instead,

changes the equations of motions of the fields in question. For example, the differential

operator in the Klein-Gordon equation for a scalar field φ will depend on the metric via

DµD
µφ = (

√
−g)−1∂µ

(√
−g∂µφ

)
. It depends on the application which of the two options

should be used, see also section 3.5.2.

15In some applications classical strings are used, see e.g. section 7.1 of [17].
16Every string theory contains a scalar field in its spectrum, usually referred to as dilaton. It plays the

role of the string coupling constant gs, where a non-trivial dilaton profile leads to a variable string
coupling gs.

22



3 The AdS/CFT correspondence 3.4 Mapping between AdS and CFT

3.4.2. A massive scalar field Φ on AdS5

Consider for the purpose of illustration a free scalar field Φ(X) = Φ(z, xµ) of mass M in

AdS5. For definiteness, we use the Fefferman-Graham coordinates for AdS5. The action

for Φ is given by

S = −1

2

∫
d5X
√
−g
[
∂NΦ∂NΦ +M2Φ2

]
. (3.15)

Introduce the Fourier transform Φ(z, kµ) with respect to the xµ-coordinates by

Φ(z, kµ) =

∫
d4x

(2π)4
e−ikxΦ(z, xµ), (3.16)

where kx ≡ ηµνk
µxν is the scalar product in Minkowski space and kµ = (ω,~k). The

equation of motion for a Fourier mode Φ(z, kµ) ≡ Φk(z), following from the action (3.15)

is

z5∂z
(
z−3∂zΦk

)
+ µ2z2Φk −M2L2Φk = 0, (3.17)

where we have defined the 4-dimensional invariant mass µ2 ≡ −kµkµ and L is the ”radius”

of AdS5. The solution of (3.17) is given by

Φk(z) = C1(k)z2Yν(µz) + C2(k)z2Jν(µz), (3.18)

where Jν and Yν are Bessel functions of respectively the first and second kind, C1(k) and

C2(k) are integration constants and

ν =
√

4 +M2L2. (3.19)

Expanding equation (3.18) around z = 0 one obtains17,18

Φk(z) = A(k)z2−ν +B(k)z2+ν , (3.20)

where A(k) and B(k) are combinations of C1(k) and C2(k). Fourier transforming back

into position space one has for z → 0

Φ(z, xµ) = A(x)z2−ν +B(x)z2+ν . (3.21)

17The expansion in (3.20) is valid for ν /∈ Z. For ν ∈ Z, the expansion of Yν contains terms ∝ ln z. See
e.g. [18].

18Equation (3.20) can also be obtained directly by solving the equation (3.17) after neglecting the µ2z2Φk
term.
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3 The AdS/CFT correspondence 3.4 Mapping between AdS and CFT

Define

∆± = 2± ν = 2±
√

4 +M2L2 (3.22)

to rewrite equation (3.22) as

∆(∆− 4) = M2L2, (3.23)

where ∆+ and ∆− are the respective larger and smaller roots of (3.23). We define ∆ as

∆ ≡ ∆+. (3.24)

Equation (3.21) can be rewritten as

Φ(z, xµ) = A(x)z4−∆ +B(x)z∆. (3.25)

Equation (3.22), or equivalently (3.23), is referred to as mass-dimension relation. The form

stated is valid only for scalar fields; for the mass-dimension relations of vectors, tensors,

etc., see page 85 of [13].

The limit Φ(z→ 0,x) = Φ0(x)

Note from equation (3.25) that, in order to have a well-defined constant value Φ0(x) ≡ A(x)

on the boundary z = 0, one has to modify the boundary conditions to

Φ0(x) ≡ Φ(0, x) = lim
z→0

z∆−4Φ(z, x). (3.26)

For a massless scalar field, equation (3.19) yields ∆ = 4 and the limit of (3.26) becomes

trivial.

Breitenlohner-Freedman bound

It is evident from equation (3.19) that the exponents of equation (3.21) are real if

M2L2 ≥ −4. (3.27)

The inequality (3.27) is known as the Breitenlohner-Freedman (BF) bound. It was shown

in [19,20] that, as long as the scalar field Φ of mass M satisfies the bound (3.27), the theory

is stable (i.e. it does not contain modes which grow exponentially with time). Thus, M2 < 0

is allowed, as long as (3.27) is satisfied.
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3 The AdS/CFT correspondence 3.4 Mapping between AdS and CFT

Normalizable and non-normalizable modes

Define the scalar product in AdS5 by

〈Φ1Φ2〉 = −i
∫
Σt

d5X
√
−ggtt

(
Φ∗1∂tΦ2 − Φ2∂tΦ

∗
1

)
, (3.28)

where Σt is a constant time slice. Inserting the asymptotic behavior (3.25) one sees that

� for ∆ > 2 the solution ∝ B(x) is normalizable, while the solution ∝ A(x) is non-

normalizable,

� for 1 ≤ ∆ ≤ 2 both solutions are normalizable.

Since a non-normalizable mode should not correspond to a physical state, one concludes

(due to the lack of other options) that it acts as a source for the dual operator O of the

boundary gauge theory. One thus has

SGAUGE → SGAUGE +

∫
d4xA(x)O(x), (3.29)

where

A(x) ≡ Φ0(x) = lim
z→0

z∆−4Φ(z, x), (3.30)

as defined by equation (3.26).

The normalizable mode ∝ B(x) is an element of the AdS5-theory Hilbert space. Since,

if the gauge theory is to be equivalent to the gravity theory, their Hilbert spaces should

be isomorphic (see section 3.4 of [13]), one concludes that the mode ∝ B(x) describes a

state of the boundary theory. In fact, (see appendix C of [17] and references therein) B(x)

determines the expectation value of the operator O dual to Φ in the presence of a source

Φ0 as

〈O(x)〉Φ0 = 2νB(x). (3.31)

For A(x) ≡ Φ0(x) = 0, equation (3.31) yields the expectation value 〈O(x)〉. With equations

(3.30) and (3.31) one can now rewrite equation (3.25) as

Φ(z, x) =
〈O(x)〉Φ0

2ν
z∆ + Φ0(x)z4−∆. (3.32)

Equations (3.29), (3.31) and (3.32) imply that ∆ is the scaling dimension of the operator

O, see section 5.1.5 of [17], thus justifying the term “mass-dimension relation” for equation

(3.23).
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3 The AdS/CFT correspondence 3.4 Mapping between AdS and CFT

In the case when 1 ≤ ∆ ≤ 2, both modes of Φ are normalizable. In this case, either of the

modes can be used to build the Hilbert space of the boundary theory [21]. We will not

consider this case and assume instead that ∆ > 2.

3.4.3. Correlators

The general prescription

The holographic calculation of the correlators was established in [22, 23]. The correlators

are constructed within the path-integral formulation of quantum field theory. We assume

the AdS5/CFT4-form of the correspondence (see section 3.3.3), and perform a Wick ro-

tation to work in Euclidean AdS space. We use Fefferman-Graham coordinates for AdS5.

The partition functions of the string theory and of the gauge theory are identified:

Z[Φ(z, x); lim
z→0

Φ(z, x) = Φ0(x)]STRING = Z[Φ0(x)]GAUGE. (3.33)

Here, Φ0(x) stands for a source of the corresponding gauge theory operator O, the limit

limz→0 Φ(z, x) = Φ0(x) is to be understood as in (3.26) and

Z[Φ0]GAUGE =

∫
DOe−S[O]+

∫
d4xΦ0O. (3.34)

From (3.34) n-point correlation functions Gn of O are obtained via

Gn(x1, . . . , xn) ≡
∫
DOe−S[O]O(x1) . . .O(xn)

=
δn

δΦ0(x1) . . . δΦ0(xn)
Z[Φ0]GAUGE

∣∣∣
Φ0(xi)=0

. (3.35)

In the weakest form of the correspondence, the quantized string theory becomes a classical

gravity theory, and the steepest descent approximation is used to obtain

Z[Φ]STRING ≈ Z[Φ]GRAV,cl = e−SGRAV [Φcl(z,xi);Φ0(xi)], (3.36)

where SGRAV [Φcl(z, xi); Φ0(xi)] is the action of the gravity theory evaluated on the classical

solution Φcl(z, x) with the boundary condition Φcl(z → 0, xi) = Φ0(xi). Insert (3.36) into

(3.35) using the identification (3.33) to obtain19

Gn(x1, . . . , xn) =
δn

δΦ0(x1) . . . δΦ0(xn)
e−SGRAV [Φ(Xi);Φ0(xi)]

∣∣∣
Φ0(xi)=0

. (3.37)

19From now on, we drop the subscript, Φ ≡ Φcl.
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3 The AdS/CFT correspondence 3.4 Mapping between AdS and CFT

Equations (3.33) and (3.37) have a nice heuristic interpretation exhibited in figure 3.1. A

correlation between two spacetime points of the 4d boundary field theory (i.e. along the

circle in figure 3.1) can be calculated in the 5d bulk gravity theory (i.e. in the interior of

the circle in figure 3.1). A quantum gravity correction to the correlator would correspond

to a closed loop in an interior line or in a vertex in figure 3.1.

Figure 3.1.: Witten diagrams: empty AdS, tree-level 2-point, 3-point, and two 4-point
correlators (from left to right). Reproduced from [15].

Evaluation of SGRAV

The action SGRAV [Φ] is evaluated as follows:

1. The equations of motion following from SGRAV [Φ,Φ0] are solved. The boundary

conditions that need to be imposed are:

� close to the boundary, i.e. for z → 0, Φ(z, x) → Φ0(x) as defined by equation

(3.26),

� in the interior of AdS5, i.e. for z →∞, Φ(z, x) is to be regular.

The solution Φ(z, x) can be obtained in two equivalent ways:

� Define the bulk-to-boundary propagator K(z, x;x′) by

lim
z→0

DΦK(z, x;x′) = δ(4)(x− x′), (3.38)

where DΦ denotes schematically the differential operator following from the

Euler-Lagrange equations of SGRAV [Φ,Φ0]. Calculate K(z, x;x′). The solution

is given by

Φ(z, x) =

∫
d4x′K(z, x;x′)Φ0(x′). (3.39)

� Determine the general solution of the equations of motion. The integration

constants are fixed by the boundary conditions.
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3 The AdS/CFT correspondence 3.5 Application to Yang-Mills theory

2. Using integration by parts SGRAV [Φ,Φ0] is rewritten as a sum of terms vanishing upon

the use of the equations of motion, and total derivatives vanishing in all directions

except in the direction of the radial coordinate. Since the AdS5 metric diverges

at the boundary, a cutoff ε is introduced for the radial coordinate, i.e. one replaces

z → 0 with z = ε. The resulting expression is evaluated using (3.39) and keeping only

leading terms in ε. The correlator is then given by employing (3.37) and subsequently

taking the limit ε→ 0.

3. When performing the second step one potentially encounters divergences which, in

general, have to be regularized using the procedure of ”holographic renormalization“,

see [24]. Local counterterms are added to obtain the renormalized action S
[ren]
GRAV =

SGRAV + Sct, where S
[ren]
GRAV is now free of divergences in the limit z → 0.

Remarks

� See appendix C of [17] and section 4.4 of [25] for a calculation of 〈O(x)O(y)〉, where

O is dual to a scalar field Φ.

� Note that, within the path-integral formalism, the expectation value of an operator

in the presence of a source Φ0 is given by

〈O(x)〉Φ0 ≡
δS

[ren]
GAUGE[Φ0]

δΦ0

= lim
z→0

z4−∆ δS
[ren]
GRAV [Φ(z, x),Φ0]

δΦ(z, x)
. (3.40)

Thus, one concludes that, as one might intuitively expect from equation (3.25) or

(3.32), given the source Φ0, i.e. the leading behavior of Φ(z, x) for z → 0, one can

obtain the expectation value 〈O(x)〉Φ0 , i.e. the sub-leading z → 0 behavior of Φ(z, x),

by functional differentiation as defined by (3.40).

3.5. Application to Yang-Mills theory

3.5.1. Limitations

The AdS/CFT correspondence, though conceptually interesting by itself, cannot be di-

rectly applied to QCD or Yang-Mills theory. The limitations arise from the correspondence

and from the specific properties of the N = 4 SYM theory.

Two limitations arise from the correspondence itself:

1. To perform calculations within classical string theory or gravity the N →∞ limit of

the gauge theory is needed, while in QCD one has N = Nc = 3.
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3 The AdS/CFT correspondence 3.5 Application to Yang-Mills theory

Since string theory has not yet been consistently quantized on curved spaces, one has

to rely on the large-N limit, hoping that an extrapolation to finite N makes sense.20

2. The gravity approximation is strictly valid in the limit of infinite t’Hooft coupling

λ→∞, while one might want to perform calculations at large but finite coupling.

As mentioned in section 2.2.1, the QGP phase of QCD is a strongly coupled near-

ideal liquid, i.e. the coupling g is large even at temperatures of the order T ≈
Tc ≈ 170 MeV. Therefore, the λ → ∞ limit is regarded as a good approximation.

Finite coupling corrections correspond to higher order curvature corrections21 of the

Einstein-Hilbert action (A.1). These can be partially motivated by supergravity (see

[27], and references therein) and/or systematically studied in a general setting [26].

Two specific properties of the N = 4 SYM theory preventing direct applications to QCD

and Yang-Mills theory are (see section 4.3.1 of [13]):

1. Because of the vanishing of the SYM theory β function it is conformally invariant,

while QCD and Yang-Mills theory have non-trivial β functions as mentioned in sec-

tion 2.1.2.

Conformal invariance can be broken by deforming the N = 4 SYM theory by a rel-

evant22 operator. On the gravity side this corresponds to deforming the pure AdS5

space by a matter field.

2. The SYM theory is supersymmetric in contrast to QCD and Yang-Mills theory.

Supersymmetry can be broken by compactifying the 10-dimensional supergravity

theory on a circle of radius R with supersymmetry-breaking boundary conditions.

This introduces a scale R into the theory, above which supersymmetry is still present.

A ”phenomenological” solution to this problem is to use the non-supersymmetric

Einstein’s theory of general relativity.

3.5.2. Top-down and bottom-up models

Despite the problems discussed above, the AdS/CFT correspondence was used to gain

new insights into QCD and Yang-Mills theory, the holographic models being usually re-

ferred to as AdS/QCD. Two different approaches have emerged. Top-down models take

the original AdS/CFT correspondence and deform the theory as described in the last

20See however [26], where finite-N corrections where calculated within an effective (effective with respect
to string theory) supergravity description.

21These are e.g. invariants of the form RµνρσR
µνρσ or CµνρσC

µνρσ and higher order contractions, where
Rµνρσ and Cµνρσ are respectively the Riemann and Weyl curvature tensors.

22A relevant operator is one with scaling dimension ∆ < 4.
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3 The AdS/CFT correspondence 3.5 Application to Yang-Mills theory

subsection, or start from a different brane system to obtain a more ”QCD-like” theory

on the gauge theory side of the duality. Bottom-up models assume that a gravity dual

to QCD or pure Yang-Mills theory exists, and that its leading behavior is given by Ein-

stein gravity. In the context of the correspondence the top-down models can be regarded

as more rigorous: They start from the full classical superstring theory or supergravity,

consistently break supersymmetry, introduce extra branes to model matter fields in the

fundamental representation of the gauge group,23 etc. Bottom-up models are in this sense

more phenomenological: The emphasis lies not so much on a string theoretically consis-

tent construction of the model, but rather on the reproduction or prediction of one or

more QCD or Yang-Mills theory properties. Thus, for bottom-up models, the theory of

gravity in question is usually Einstein’s general theory of relativity, the metric interacting

with or acting as a background for matter fields. Top-down models usually use the full

10-dimensional formulation of the conjecture, while bottom-up models usually work with

the 5-dimensional form described in section 3.3.3.

See [28] for the successful Sakai-Sugimoto top-down model. See e.g. [29] for the soft-wall

bottom-up model. See [30] for a top-down oriented review on mesons in AdS/QCD, see [17]

for an extensive review on AdS/QCD applications.

Since string theory is an important candidate, but not yet a fully established theory of

quantum gravity24, it cannot be said that one approach is better than the other; both

directions are worth pursuing.

3.5.3. Yang-Mills plasma thermodynamics and the large-N limit

The discussion in section 3.5.1 brings up an important question. While, as mentioned

above, the approximation of strong coupling should be a minor problem, the N →∞ limit

of the SU(N) Yang-Mills theory plasma might have little in common with the N = 3

plasma one wants to describe. An exact answer to this question is not known; there is

however evidence that a calculation in the large-N limit can indeed reproduce the features

of the SU(3) Yang-Mills plasma. Consider the lattice calculations exhibited in figures 3.2

and 3.3.25 One sees that, once normalized to their respective Stefan-Boltzmann limits,

the thermodynamic quantities show little dependence on the rank of the SU(N) gauge

group. Moreover, as seen from figure 3.3, the extrapolation to the large-N limit preserves

the qualitative dependences. The holographic approach to the Yang-Mills plasma thermo-

23This is necessary, since in the N = 4 SU(N) SYM theory the fermions transform in the adjoint repre-
sentation of the gauge group, while in QCD they transform in the fundamental representation.

24See [16] for arguments against string theory as quantum gravity and alternative theories; see also [31].
25In our nomenclature the interaction measure is denoted by I and ∆ denotes the scaling dimension of an

operator.
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Figure 3.2.: Lattice calculations [32] of the SU(N) Yang-Mills equation of state for
N = 3, 4, 5, 6 and 8 (symbols) and the Improved Holographic QCD model
(curves, [33]). Left panel: scaled entropy density, normalized to its Stefan-
Boltzmann limit (B.9). Right panel: scaled interaction measure, normal-
ized to the Stefan-Boltzmann limit of the pressure (B.10).

Figure 3.3.: Extrapolation of the SU(N) Yang-Mills equation of state to the large-N
limit [32]. The error bars show systematical and statistical uncertainties.
The arrow denotes the large-N limit of the latent heat. The vertical bars
on the right denote the Stefan-Boltzmann limits of p, e ≡ ε and s, from
bottom to top. See [32] for the details of the extrapolation procedure.

dynamics works ”the other way round“: a calculation in the large-N limit is extrapolated

to finite N . We take the figures 3.2 and 3.3 as an affirmation that the simple setting of

Einstein gravity coupled to a scalar field, see section 4.1, is sufficient for the quantitative
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description of the SU(3) Yang-Mills plasma equation of state.

While the above discussion of the equation of state is encouraging, the situation concerning

the viscosities is slightly worse. It is by now a well-known result, that in a large class of

holographic models [34], including the action (cf. equation (4.1) below) used by us, the

shear viscosity to entropy density ratio is given by

η

s
=

1

4π
. (3.41)

A different η(s) dependence can be achieved, e.g. by considering higher-order curvature

corrections in the action [26,27]. Thus, to connect with the present (albeit not very reliable)

calculations of η/s, one would need a more complicated model which reproduces the trends

exhibited in figure 3.4.

Figure 3.4.: Results of calculations of the η/s ratio for strongly interacting matter,
reproduced from [35]. Dashed and dotted curves: hadron resonance gas
model. Solid line: perturbative QGP. See [35] for details.
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4. Holographic Yang-Mills plasma

thermodynamics

We now introduce the bottom-up AdS/QCD model for the thermodynamics of the pure

gluon plasma (SU(3) Yang-Mills theory). The setup is five-dimensional Einstein gravity

coupled to a scalar field φ with a non-trivial potential V (φ). The basic idea, described

in detail below, is to translate the breaking of the conformal invariance of the pure gluon

plasma due to quantum fluctuations into the deformation of the conformally invariant

AdS space due to a non-trivial scalar field profile. The model is ”bottom-up“ in the sense

that, as we will shortly see, additional information has to be supplied to close the system of

equations. This affects the form of one of the unknown functions, as well as the parameters

of the specific ansatz. Concretely, in chapter 5, we will adopt the form of the potential

considered by Gubser et al. in [2] and use the lattice gauge theory data [36] of the SU(3)

Yang-Mills equation of state s(T ) to fix the parameters.

4.1. The general setup

The holographic model describing the thermodynamics of the Yang-Mills theory is given

by the following action

S =
1

16πG5

∫
d5x
√
−g
(
R− 1

2
∂µφ∂

µφ− V (φ)
)
, (4.1)

where G5 is the “Newton constant“ related to the Einstein constant κ5, 8πG5 = κ2
5, in

a five dimensional pseudo-Riemannian space with the metric fundamental tensor gµν ; −g
is the negative determinant of the metric tensor gµν , R denotes the Ricci scalar and φ is

a scalar field with a standard kinetic term and a potential V (φ) to be specified below.1

We omitted the Gibbons-Hawking term in (4.1) (see A.1). The action (4.1) serves as the

generic AdS/QCD model for the Yang-Mills theory thermodynamics. The ansatz for the

1In a quantized theory, one would refer to V (φ) as ”self-interaction”, we follow the literature and use the
term ”potential”.
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4 Holographic Yang-Mills plasma thermodynamics 4.1 The general setup

metric tensor is encoded in the infinitesimal line element squared

ds2 = e2A
(
− fdt2 + d~x2 +

dz2

f

)
. (4.2)

The quantities A, f and φ are functions of the z-coordinate only, as we demand SO(3)

invariance in the xi-directions. Here, A(z) is a deformation of the black hole AdS space (as

long as A(z) 6= ln(L/z)) and f(z; zh) is the ”black hole function”, (or blackness function)

defining a black hole horizon by f(zh) = 0. There are three independent Einstein equations:

the (tt), (x1x1) = (x2x2) = (x3x3) ≡ (xx) and (zz) components.2 Linear combinations of

these lead to more tractable equations (a prime denoting d/dz):

6A′2 − 6A′′ − φ′2 = 0, (4.3)

3A′f ′ + f ′′ = 0, (4.4)

f(9A′2 + 3A′′)− f ′′ + e2AV = 0. (4.5)

(
from the components (tt)/f 2+(zz); (tt)/f+(xx); (zz)f/2−3/2(tt)/f−(xx), respectively

)
.

The equation of motion of φ following from T µν ;ν = 0 as the integrability condition of the

Einstein equations is

3A′φ′2 + φ′φ′′ − e2AV ′ = 0. (4.6)

It also follows from (4.5) by differentiating and using (4.3) and (4.4), i.e. it does not contain

additional information.

In the metric (4.2), the range of the z-coordinate is 0 ≤ z ≤ zh, where z = 0 is the location

of the boundary, z & 0 is the asymptotic AdS (aAdS) region, and z = zh defines the

location of the black hole horizon.

According to the AdS/CFT correspondence, the aAdS boundary conditions at z → 0 must

be required:

A = ln
L

z
, (4.7)

f = 1, (4.8)

V = −12

L2
+
M2

2
φ2, (4.9)

φ = (Λz)4−∆. (4.10)

2The Einstein equations follow from the action (4.1) as Rµν− 1
2Rgµν = Tµν with Tµν = − 1

2gµν( 1
2∂µφ∂

µφ+
V ) + 1

2∂µφ∂νφ.
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The −12/L2 term in the potential (4.9) is the negative cosmological constant (already

expressed through the AdS5 “radius” L). For φ ≡ 0, thus V = −12/L2, the Einstein

equations yield the pure AdS5 metric, where A and f are given by equations (4.7) and

(A.19), respectively; see appendix A.2. Equation (4.10) is the analogue of equation (3.32)

and means a deformation of the boundary theory by a source Λ. The M2φ2/2 term in

(4.9) ensures that asymptotically one has the action (3.15) for a massive scalar field on

AdS5, see section 3.4.2. Further, as in equation (3.23), ∆ is the larger root of

∆(∆− 4) = M2L2. (4.11)

With the boundary conditions f(zh) = 0 and f(0) = 1 equation (4.4) can be integrated to

yield

f(z; zh) = 1−
∫ z

0
dxe−3A∫ zh

0
dxe−3A

, (4.12)

where we emphasize the parametric dependence on zh. We will use an abbreviation for the

denominator:

fh ≡ fh(zh) =

zh∫
0

dxe−3A (4.13)

Using (B.1) and (B.2) the temperature and the entropy density are given in this metric by

T (zh) =
f ′

4π

∣∣∣
zh

=
e−3A(zh)

4π
∫ zh

0
dxe−3A(x)

, (4.14)

s(zh) =
e3A(zh)

4G5

. (4.15)

Equations (4.14) and (4.15) define the equation of state s(T ) by the parametric dependence

on zh.

It is a property of the AdS/QCD thermodynamics model defined by the action (4.1) that

four functions

A(z), f(z), φ(z), V (φ) (4.16)

have to be related by three independent equations (4.3-4.6). To close the system of equa-

tions one needs to supply additional information. Two approaches have been considered

so far:

1. the AdS deformation A(z) is specified, or

2. the potential V (φ) is specified.

35
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The first approach is inspired by the successes of the AdS/QCD soft-wall model [29]. Note

however an important difference: in the soft-wall model the metric as well as the scalar

field profile are prescribed in an ad hoc manner, i.e. they are not found as self-consistent

solutions of the Einstein equations (although an action and the potential leading to the

desired profiles was found in [37]).

The second approach is inspired by the following line of thought: The scale invariance

of the classical Yang-Mills theory is broken by quantum fluctuations as evidenced by the

non-vanishing β function, equation (2.10). On the other hand, the field-operator corre-

spondence, section 3.4.1, states that the energy-momentum tensor T µνYM of the Yang-Mills

theory is dual to the AdS metric gµν , while Tr
(
FµνF

µν
)

is dual to a scalar field φ in AdS,

which interacts with gµν . The idea is to map the breaking of the conformal invariance in

the Yang-Mills theory (due to the β function) to a deformation of the metric from the

conformally invariant black hole AdS one (due to the interaction with the scalar field φ in

AdS). One thus models the running coupling in (2.10) by a non-trivial scalar field profile,

mapping the β function on the scalar field potential V . This idea was effectively pur-

sued by Kiritsis and collaborators, resulting in the Improved Holographic QCD (IHQCD)

model [33]. In [33] one can find the exact formulation of the mapping just described.

We make a rather obvious, albeit important remark. Since one of the functions A(z),

f(z), φ(z), V (φ) has to be supplied by an additional relation, one needs extra input “from

outside the model”. It is perfectly reasonable to take some Yang-Mills theory information

like the β function etc., however, within equilibrium thermodynamics, the only new thing

that we learn this way is that the AdS/CFT language is indeed appropriate for describing

strongly coupled Yang-Mills theory or QCD. Though important by itself, this insight does

not lead us to new predictions for Yang-Mills theory. With this in mind we take the follow-

ing point of view, analogous to [38]: the parameters of the holographic thermodynamics

model will be fixed by fitting to some quantitatively well accessible Yang-Mills observable.

After achieving this, we will take a step further and compute observables beyond equi-

librium thermodynamics that are easily accessible in the holographic setup, being at the

same time not so straightforwardly computed with other methods. Concretely, we will fix

A(z) or V (φ) to the equation of state s(T ) of the SU(3) Yang-Mills theory computed on

the lattice [36, 39, 40], concentrating on the most recent high precision data of [36] and,

with this input, subsequently compute the shear and bulk viscosities η(T ) and ζ(T ).

We conclude this section with a remark about the compatibility of the two approaches: At

first sight it might seem that, besides the fact that one specifies a different function, the
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two approaches are completely equivalent. For instance given V (φ) one can, knowing the

solutions of the Einstein equations, immediately obtain A(z) of the other approach and vice

versa. However, consider equation (4.5) with the zh-dependence of f (4.12) emphasized:

f(z; zh)(9A
′2 + 3A′′)− f(z; zh)

′′ + e2AV = 0. (4.17)

We see from (4.12) that the profile of f changes for different values of zh, the latter being a

parameter of the solutions, which defines the temperature via (B.1). Thus, computing the

equation of state s(T ) one has to vary zh to scan a range of temperatures. Since it is not

possible to eliminate fh from (4.17) we conclude: if one specifies a zh-independent profile

V (φ) of the potential, then A(z; zh) depends on zh; conversely, if a zh-independent A(z)

is specified, then the potential depends on zh: V
(
φ(z);φ(zh)

)
. It is thus not possible to

directly compare the two approaches. One would need a family of solutions parametrized

by zh in one approach as an input for the other one.

4.2. Approach by Huang et al.

Huang et al. [1] made the ansatz

e2A =
L2

z2
e

2As− 2√
6
φ
, (4.18)

where the pure AdS part L2/z2 is factored out. The motivation for the specific ansatz (4.18)

is due to the fact that the numerical factor 2/
√

6 in front of φ ensures the cancellation of

the φ′2-term in equation (4.3). Thus the equation (4.3) for φ becomes a linear differential

equation.

Einstein equations

Equations (4.3), (4.4) and (4.5) with the ansatz (4.18) become

φ′′ − φ′
(

2A′s −
2

z

)
−
√

6
(
A′′s − A′2s

)
− 2
√

6
A′s
z

= 0, (4.19)

f ′′ + f ′
(

3A′s −
√

6

2
φ′ − 3

z

)
= 0, (4.20)

V = − z
2

L2
e
−2As+ 2√

6
φ

(
f ′′ + f

(
12A′′s − 2

√
6φ′′ +

3

2
φ′2 +

12

z2

))
. (4.21)

37



4 Holographic Yang-Mills plasma thermodynamics 4.2 Approach by Huang et al.

Boundary conditions

Imposing the aAdS boundary conditions (4.7-4.10) in the asymptotic region z → 0 for the

specific ansatz (4.18) amounts to:

As → 0, (4.22)

φ→ 0. (4.23)

Solutions

One can integrate the two equations (4.19) and (4.20) with the result

φ(z) =
√

6

(
As(z) +

z∫
0

dx
e2As(x)

x2

x∫
0

dyy2e−2As(y)A′s(y)2

)
(4.24)

and

f(z; zh) = 1−
∫ z

0
dxx3e

√
6

2
φ(x)−3As(x)

fh
, (4.25)

with

fh =

zh∫
0

dxx3e
√
6
2
φ(x)−3As(x). (4.26)

The temperature and the entropy density can now be calculated. Equations (4.14) and

(4.15) yield, with A given by equation (4.18),

T =
z3
he

√
6

2
φ(zh)−3As(zh)

4π
∫ zh

0
dxx3e

√
6

2
φ(x)−3As(x)

, (4.27)

s =
1

4G5

L3

z3
h

e3As(zh)−
√
6

2
φ(zh). (4.28)

In the asymptotic region z ≤ zh � 1, the exponentials become O(1) and the conformal

behavior of T and s according to (B.3) and (B.4) is recovered, i.e. s/T 3 = const.

To summarize, once As(z) is given it is straightforward to obtain φ and fh by performing

the integrals (4.24) and (4.26) and, using equations (4.27) and (4.28), to arrive at the

equation of state s(T ). The potential V (z; zh) is a byproduct. Due to the dependence on

zh it looks like an effective, temperature dependent interaction term.

38
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4.3. Approach by Gubser et al.

A different ansatz for the infinitesimal line element squared, more convenient for the spec-

ification of a potential V (φ), is used by Gubser et al. [2]:

ds2 = e2A
(
− fdt2 + d~x2

)
+ L2e2B dφ

2

f
. (4.29)

Here, the profile of the scalar field φ itself is used as the radial coordinate. Since the scalar

field φ has mass dimension zero, a scale needs to be introduced. The metric (4.29) follows

from (4.2) by a coordinate transformation:

dz2 =
1

L2

dz2

dφ2
L2dφ2, (4.30)

i.e.

ds2 = e2A
(
− fdt2 + d~x2 +

dz2

f

)
(4.31)

= e2A
(
− fdt2 + d~x2

)
+ e2A dz2

L2dφ2
L2dφ

2

f
. (4.32)

Defining

e2B ≡ e2A dz2

L2dφ2
(4.33)

one arrives at (4.29).

Einstein equations

The Einstein equations following from the metric (4.29) are (where a prime now denotes

d/dφ):

A′′ − A′B′ + 1

6
= 0, (4.34)

f ′′ + f ′(4A′ −B′) = 0, (4.35)

6A′f ′ + f(24A′2 − 1) + 2e2BL2V = 0. (4.36)

(from the components (φφ)+(tt)e2(B−A)/f 2, e2(B−A)((tt)/f+(xx)) and (φφ), respectively).

The equation of motion of φ following from T µν ;ν = 0 is

4A′ −B′ + f ′

f
− e2B

f
L2V ′ = 0. (4.37)
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It also follows from (4.34-4.36) and their derivatives, i.e. it does not contain new informa-

tion.

Boundary conditions

We transform now the boundary conditions (4.7-4.10) into the coordinate system charac-

terized by (4.29). First, note that (4.10) implies that 0 ≤ z ≤ zh translates into 0 ≤ φ ≤ φh.

aAdS now means φ→ 0, and (4.7) with (4.10) lead to

φ = (ΛL)4−∆e(∆−4)A (4.38)

rending

A =
lnφ

∆− 4
+ ln

(
ΛL
)
. (4.39)

Equation (4.38) with A = ln L
z

yields

z = φ1/(4−∆)L(ΛL)−1 (4.40)

and
dz

dφ
=

1

4−∆
φ1/(4−∆)−1L(ΛL)−1. (4.41)

Combining (4.33), (4.39) and (4.41) one obtains

B = − ln
(
(4−∆)φ

)
. (4.42)

The boundary conditions for f are as in equation (4.12), and the horizon is now defined

by φh. Integrating (4.35) one obtains

f(φ;φh) = 1−
∫ φ

0
dφ̃e−4A(φ̃)+B(φ̃)∫ φh

0
dφ̃e−4A(φ̃)+B(φ̃)

. (4.43)

Equations (4.43) and (4.33) reproduce (4.12).

The to-be-specified potential V (φ) should be of the form (4.9) for small values of φ.

Solution technique

To solve the system (4.34-4.36), given a potential V (φ), one has two possibilities:

1. integrate the system of equations directly, or

2. compute A′ from V and its derivatives and integrate equations (4.34) and (4.35).
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In [2] the second option is used, and we employ the same technique. Manipulations of equa-

tions (4.36) and (4.37) (the goal is to eliminate f and B by combining the two equations

and/or taking derivatives) and subsequent use of (4.34) and (4.35) lead to

A′′′− U + 3A′

A′(U + A′)
A′′2−

−U
2(24A′2 + 1) + 3A′U(8A′2 + 1) + 2A′2 − 6A′2U ′

6A′U(U + A′)
A′′ = 0, (4.44)

where we have defined

U ≡ V

3V ′
. (4.45)

This form points on a dependence on U and U ′, rather than a dependence solely on V .

Equation (4.44) coincides with equation (34) in [2] after the execution of the φ derivative.

It is a second-order nonlinear differential equation for A′. Thus, we need to specify two

initial conditions. Consider equations (4.36) and (4.37) at the horizon φ = φh where

f(φh;φh) = 0:

L2V = −3A′f ′e−2B, (4.46)

L2V ′ = f ′e−2B. (4.47)

Divide (4.46) by (4.47) to obtain

A′(φh) = − V

3V ′

∣∣∣
φh
. (4.48)

Using equations (4.46) and (4.47) one can develop a power series around φh to O(φ− φh)
and obtain the initial conditions for A′(φh) and A′′(φh):

A′ = − V

3V ′

∣∣∣
φh

+
1

6

(V V ′′
V ′2

− 1
)∣∣∣

φh
(φ− φh), (4.49)

A′′ =
1

6

(V V ′′
V ′2

− 1
)∣∣∣

φh
. (4.50)

With these initial conditions we can numerically integrate equation (4.44) from φh to some

small φ0 ≈ 0+ (A′ diverges at φ = 0 as seen with (4.39)) and obtain A′(φ). Now we can

compute A and B using (4.34) and (4.39), (4.42) for the integration constants:

A =
lnφ0

∆− 4
+ ln

(
ΛL
)

+

φ∫
φ0

dφ̃A′, (4.51)

41



4 Holographic Yang-Mills plasma thermodynamics 4.3 Approach by Gubser et al.

B = − ln
(
(4−∆)φ0

)
+

φ∫
φ0

dφ̃
A′′ + 1/6

A′
. (4.52)

We choose φ0 = 10−3. With A and B, f is immediately given by (4.43).

Having calculated all metric coefficients we now can obtain the entropy density and the

temperature for the metric (4.29) via (B.1) and (B.2) and determine the equation of state

with (4.43):

TL = − f
′

4π
eA−B

∣∣∣
φh

=
e−3A(φh)

4π
∫ φh

0
dφ̃e−4A+B

, (4.53)

sG5 =
e3A(φh)

4
. (4.54)

Using the coordinate transformation (4.40) together with the asymptotic formulas (B.3)

and (B.4) one obtains for φh → 0:

LT =
ΛL

π
φ

1/(∆−4)
h , (4.55)

G5s =
1

4
(ΛL)3φ

3/(∆−4)
h . (4.56)

Following Gubser [2], we from now on set

ΛL ≡ 1. (4.57)
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5. The equation of state

5.1. Approach by Huang et al. - Analysis of the model

We first follow [1] and consider the ansatz

As(z) = ±k2z2. (5.1)

This ansatz is similar in spirit to the soft-wall AdS/QCD model, where a quadratic scalar

field profile is postulated. The ansatz (5.1) can be seen as an extension of the soft-wall

model. Instead of specifying the profile of the scalar field, one specifies the deformation

of the AdS space. Since the parameter k has the dimension of energy (or inverse length)

it introduces a scale into the model. To study the behavior of φ, expand (4.24) around

z = 0:

φ(z) =
√

6
(
± k2z2 +

1

5
k4z4 + . . .

)
. (5.2)

We see that φ is quadratic for z → 0, but will have a more complicated form for larger z.

Comparing with the asymptotic behavior following from the field-operator correspondence

(4.10) we see that

∆ = 2, (5.3)

Λ = 61/4k, (5.4)

and conclude that a specification of As automatically fixes the scaling dimension ∆ and

the z → 0 limit Λ of φ.

Having specified As we proceed as described at the end of section 4.2 to obtain the equation

of state s(T ) and other thermodynamic quantities. With the ansatz (5.1) one obtains the

equations of state exhibited in figure 5.2.

One recognizes in figure 5.1 for kzh . 0.5 the asymptotic behaviors of s and T according

to equations (B.4) and (B.3). The entropy density sG5 is a monotonously decreasing

function of zh, while the temperature T reaches a minimum and then increases, leading
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Figure 5.1.: Entropy density and temperature as functions of zh for the ansatz (4.18)
with k = 0.7 GeV and L ≡ 1. Left panel: entropy density sG5. Right
panel: temperature T/k.

Figure 5.2.: Scaled entropy density as a function of T/Tc for the ansatz (5.1) with
k = 0.7 GeV, L ≡ 1 and G5/L

3 = 1.26.

to the equation of state exhibited in figure 5.2. The scaled entropy density s/T 3 rapidly

approaches the conformal behavior, i.e. s/T 3 = const, according to equation (B.5). For

k = 0.7 GeV one obtains Tc = 0.326 GeV and Tc = 0.260 GeV for respectively the positive

and the negative sign in the ansatz (5.1), where the deconfinement temperature Tc is
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defined as the minimum of T (zh).
1

Rewrite equations (4.27) and (4.28) in terms of the dimensionless variable z̃ ≡ kz to obtain:

T =
kz̃3

he
√
6

2
φ(z̃h)−3As(z̃h)

4π
∫ z̃h

0
dx̃x̃3e

√
6

2
φ(x̃)−3As(x̃)

, (5.5)

s =
1

4G5

(kL)3

z̃3
h

e3As(z̃h)−
√
6

2
φ(z̃h). (5.6)

One sees from the equations (5.5) and (5.5), that the scaled entropy density s/T 3 is in-

dependent of the scale k. Thus, k can be chosen such that the value of Tc reproduces

that of the SU(3) Yang-Mills plasma. The choice k = 0.7 GeV leads to Tc = 0.260 GeV

for the negative sign in the ansatz (5.1), which coincides with the value Tc ≈ 265 MeV

computed on the lattice.2 To better reproduce the SU(3) Yang-Mills plasma equation of

state, one needs to modify the ansatz (5.1) for As by e.g. adding powers of z̃ or considering

a power-law dependence As = z̃α. We will not follow in this direction and instead from

now on concentrate on the model by Gubser et al. which was introduced in section 4.3.

5.2. Approach by Gubser et al. - Analysis of the model

In [2], Gubser et al. considered the potential

V (φ) = −12

L2
cosh(γφ) +

b

L2
φ2. (5.7)

The potential (5.7) was shown to well reproduce the squared speed of sound of 2 + 1

flavor QCD, see figure 3 of [2]. Expanding the cosh around φ = 0 and comparing to the

asymptotic form (4.9) we obtain

∆(∆− 4) = M2L2 = 2b− 12γ2. (5.8)

According to the AdS/CFT prescription, ∆ is the larger root of equation (5.8). Employing

the solution technique described in section 4.3 we calculate the equation of state s(T ) and

other thermodynamic quantities. Already by varying the parameters γ and b one obtains

a variety of qualitatively different equations of state.

We exhibit the T (φh), s(φh), s/T
3(φh) and s/T 3(T/Tc) dependences for different values of

1See section 5.2 for a discussion concerning the definition of Tc. The behavior of T (zh) is analogous to
the T (φh)-behavior referred to as a first order phase transition in section 5.2.

2The ansatz (5.1) with G5/L
3 = 1.26 yields an equation of state s/T 3 which is already qualitatively

similar to the equation of state of the SU(3) Yang-Mills plasma, see figures 3-7 of [1].
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γ and b, summarized in table 5.1. The potential (5.7) is exhibited in figure 5.3 for values

of γ and b as listed in table 5.1. The first three parameter values were used in [2], the last

in [41].

One recognizes in figure 5.3 the negative cosh behavior for large values of φ, while for

smaller values of φ the quadratic term in the Taylor expansion of the cosh can be compen-

sated by the (b/L2)φ2-term in (5.7). With the decreasing of the quadratic, i.e. M2L2 term

the potential becomes flatter and almost quartic and shifts to the right as a whole. For a

fixed value of M2L2, one can still “tune“ the potential, as represented by the curves 1 and

2. Since the equation (4.44) depends on U and U ′, we exhibit these quantities in figure 5.4.

One sees that, while the potential V itself is relatively featureless, the quantities U and U ′

have an interesting structure. The quantity U diverges for φ→ 0, since then V ′ → 0, and

exhibits a minimum at φ ≈ 4, which shifts to the right with increasing ∆. Note that for

the curve 4, representing the case ∆→ 4, U is for small values of φ . 2 almost an order of

magnitude larger then for the curves 1, 2 and 3 with ∆ . 3.4. Since U ′ ∝ 1/V ′2 for small

values of φ, it takes large negative values for φ → 0. Consistent with the minimum of U ,

U ′ has a root at φ ≈ 4, which shifts to the right with increasing ∆.

# γ b −M2L2 ∆ φch TcL Tc-type Phase transition

1
√

3/4 3.0 3.0 3.0 ≈ 1.67 ≈ 0.304 minimum 1st order

2
√

7/12 2.0 3.0 3.0 ≈ 2.67 ≈ 0.210 minimum 1st order

3
√

1/2 1.942 2.116 ≈ 3.373 ≈ 4.27 ≈ 0.157 inflection 2nd order
4 0.606 2.057 ≈ 0.293 ≈ 3.925 ≈ 4.36 ≈ 0.704 inflection crossover

Table 5.1.: Different parameters of the potential (5.7) following [2,41] and the resulting
deconfinement temperatures Tc.

As seen in figure 5.5, the temperature T (φh) may be sorted into three different classes

depending on the values of the parameters γ and b. These possibilities are:

1. T (φh) decreases monotonously for all values of φh, as represented by the curves 3

and 4,

2. T (φh) reaches a minimum value Tmin at some value φmin and then increases, as

represented by curve 1,

3. T (φh) reaches a minimum value Tmin at some value φmin, increases, reaches a maxi-

mum and then decreases again, as represented by curve 2 in figure 5.6.

The entropy density sG5 and the scaled entropy density s/T 3, in contrast, are decreasing

functions of φh, see figure 5.7. The three possible forms of T (φh) are reflected in the scaled
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Figure 5.3.: The potential V (φ) according to (5.7) for the parameter values of table
5.1.

entropy density s/T 3 as a function of T/Tc, see figure 5.8. The value of s/T 3G5/L
3 at

T/Tc = 1 can vary in a large interval; for the displayed examples it ranges from 1 to

4. For small values of φh, one recognizes from the right panel of figure 5.5 and from the

left panel of figure 5.7 the asymptotic power law behaviors (4.55) and (4.56), whereas for

large values, φh & 4, the exponential Chamblin-Reall behavior, i.e. T ∝ eφh , s ∝ eφh (see

appendix C, equations (C.2) and (C.3)) is recognized.3

The different cases of the behavior of s/T 3 as a function of T/Tc are exhibited in figure 5.8.

Curves 1 and 2 are double valued, while 3 and 4 are single valued. Moreover, curves 3 and

4 continue to T/Tc < 1. One may attribute these different patterns to a general discussion

of phase transitions in the AdS/CFT setting. Here, we will not go into detail and instead

follow the nomenclature of Gubser et al. [2]. Thus, we distinguish the following cases:

1. We refer to the case when the temperature T as a function of φh reaches a minimum

and then increases (as for the curves 1 and 2 in figure 5.5), as a first order phase

transition.

The specific heat C (5.9), and the squared speed of sound c2
s (5.13) become negative

after T (φh) passes its minimum, indicating a thermodynamical instability (see [2] and

references therein). It is thought that, in this case, the spacetime undergoes a first-

3Note however, that due to the bφ2-term the quantity U does not become constant for larger values φ & 4
but rather shows a linear behavior as exhibited in figure 5.4.
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Figure 5.4.: The quantities U = V/(3V ′) = −A′
∣∣
φh

and U ′ = 1/3(1 − V V ′′/V ′2)

according to equation (4.45) for the parameter values of table 5.3. Left
panel: U(φ). Right panel: U ′(φ).

Figure 5.5.: Temperature as a function of φh for the parameter values of table 5.1.
Left panel: temperature TL. Right panel: scaled temperature T/Tc.

order Hawking-Page phase transition [42] to a geometry without a black hole.4 This

point of view is supported by the IHQCD model [33]. Note that this is consistent with

the behavior of the SU(3) Yang-Mills plasma: the deconfinement phase transition

is first-order and, also, the entropy density scales as N2 in the deconfined phase (cf.

equations (B.2) and (C.9)) and as N0 in the confined phase.

4The curve 2, figure 5.6, will actually eventually drop below its local minimum and consequently s/T 3

will decrease to low temperatures (see figure 6 of [2]). One could thus also have a first-order transition
between two black hole phases.
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Figure 5.6.: Scaled temperature T/Tc for case #2 (see table 5.1) for a larger range of
φh with a local maximum at φh ≈ 6.6.

Figure 5.7.: Entropy density as a function of φh for the parameter values of table 5.1.
Left panel: entropy density sG5. Right panel: scaled entropy density
sG5/(TL)3.

2. We refer to the case when the temperature T is a monotonously decreasing function

of φh and its derivative goes to zero as φh →∞ (as for the curve 3 in figure 5.5) as

a second order phase transition.

In this case, the T -derivative of the entropy density s exhibits a singularity at T = Tc

(see below) and the squared speed of sound c2
s as a function of the temperature T

exhibits a kink (see the right panel of figure 7 in [2]).

49



5 The equation of state 5.2 Approach by Gubser et al. - Analysis of the model

Figure 5.8.: Scaled entropy density as a function of T/Tc for the parameter values of
table 5.1.

3. We refer to the case when the temperature T is a monotonously decreasing function

of φh and its derivative stays finite for φh → ∞ (as for the curve 4 in figure 5.5) as

a crossover.

In this case, the T -derivative of the scaled entropy density s/T 3 reaches a maximum

at T = Tc (see below) but stays finite, and consequently the specific heat C and the

squared speed of sound c2
s do not exhibit singular behavior.

The three different types of the phase transition arise with the potential (5.7) for a fixed

value of γ and varying values of b. This is shown in table 5.2 and figures 5.10, 5.11 and

5.12. While the entropy density sG5 as a function of φh shows essentially the same behavior

for the three different values of b (see the left panel of figure 5.11), the temperature as

a function of φh (see figure 5.10) reflects the three possible types of the phase transition

just described. The different cases result in the different types of the behavior of s/T 3 for

T → Tc as exhibited in figure 5.12. The second-order phase transition is the limiting case

between the first-order and the crossover transitions.

50



5 The equation of state 5.2 Approach by Gubser et al. - Analysis of the model

# γ b −M2L2 ∆ φch TcL Tc-type Phase transition

3a
√

1/2 1.8 2.4 ≈ 3.265 ≈ 3.94 ≈ 0.155 inflection crossover

3b
√

1/2 1.942 2.116 ≈ 3.373 ≈ 4.27 ≈ 0.157 inflection 2nd order

3c
√

1/2 2.1 1.8 ≈ 3.483 ≈ 3.53 ≈ 0.160 minimum 1st order

Table 5.2.: Different values of b for γ =
√

1/2 result in different types of the phase
transition. The case 3b repeats case 3 of table 5.1.

Figure 5.9.: The quantities U = V/(3V ′) = −A′
∣∣
φh

and U ′ = 1/3(1 − V V ′′/V ′2)

according to equation (4.45) for the parameter values of table 5.2. Left
panel: U(φ). Right panel: U ′(φ). Note that the curves intercept at φ ≈ 3
for U and at φ ≈ 4.4 for U ′.

The deconfinement temperature Tc

To compare with the lattice data, the deconfinement temperature Tc has to be defined. It

is not a priori fixed by the model and is thus an additional assumption. It can however be

constrained and defined in a ”natural” way. Consider the specific heat C defined by

C ≡ T
ds

dT
= T

ds

dφh

dφh
dT

. (5.9)

If T (φh) and s(φh) are both decreasing (as for the curves 3 and 4 in figures 5.5 and 5.7),

one has ds/dφh < 0, dT/dφh < 0 and consequently C > 0. If T (φh) reaches a minimum

and then increases (as for the curves 1 and 2 in figures 5.5 and 5.7), its derivative changes

the sign, dT/dφh > 0, and consequently C < 0. Thus (as mentioned in the discussion

above), the system becomes thermodynamically unstable for φh > φmin, signaling a phase
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Figure 5.10.: Temperature as a function of φh for the parameter values of table 5.2.
Left panel: temperature TL. Right panel: scaled temperature T/Tc.

Figure 5.11.: Entropy density as a function of φh for the parameter values of table 5.2.
Left panel: entropy density sG5. Right panel: scaled entropy density
sG5/(TL)3.

transition. It is thus ”natural” to define

Tc = Tmin, (5.10)

i.e. to identify the deconfinement temperature Tc with the first minimum of T (φh). It is

however also possible to choose any other value Tc = T (φch) with φch < φmin.

In the cases, where T (φh) does not have a minimum (as for the curves 3 and 4 exhibited
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Figure 5.12.: Scaled entropy density as a function of T/Tc for the parameter values
of table 5.2.

in figure 5.5) a ”natural” definition of Tc, proposed in [41], would be

d2

dT 2

s

T 3

∣∣∣
Tc

= 0, (5.11)

i.e. Tc is defined as the inflection point of s/T 3(T ). But one can in principle also consistently

choose Tc at any other value of φh, Tc = T (φch).

In table 5.1, Tc and the corresponding φch were obtained using the respective ”natural”

definitions (5.10) or (5.11). Equations (5.10) and (5.11) can be combined into the condition

that Tc is the location of the maximum of the T -derivative of the scaled entropy density,

d

dT

s

T 3
(T ),

which recovers equation (5.11).
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5.3. Reconstruction of the SU(3) Yang-Mills equation of

state

We use now the lattice data of [36] in a bottom-up approach to the equation of state of the

SU(3) Yang-Mills plasma. First, we extract from [36] the entropy density as a function of

the temperature using

sT = I + 4p, (5.12)

where we have abbreviated the interaction measure I = e − 3p. Then, we use a B-spline

interpolation of s(T ) to compute the squared speed of sound given by

c2
s(T ) =

s

T

( ds
dT

)−1

. (5.13)

It should be emphasized that the employed B-spline does not necessarily go through all

tabulated values - instead, a smooth interpolation is attempted. The advantage of using

c2
s(T ) instead of s(T ) is due to the fact that G5 cancels in equation (5.13). One thus has

one less parameter to fit.

We perform the fit in two steps:

1. fit γ and b to c2
s(T/Tc),

2. fit G5/L
3 to s/T 3(T/Tc).

The integration constant p0/T
4
c ≡ p(Tc)/T

4
c , needed for the calculation of the pressure p(T )

(B.6), is taken from [36]. Since the B-spline interpolation of both the lattice data and the

calculated data points for s(T ) becomes unstable for T → T+
c due to the sharp rise of c2

s,

referring to the weak first-order phase transition of the SU(3) Yang-Mills theory, we fit

temperatures in the interval 1.02 ≤ T/Tc in the first step. We present the results for two

ranges of temperatures:

1. Close to Tc: 1 ≤ T/Tc ≤ 10. This is the strongly coupled region relevant for heavy

ion collisions.

2. Up to the asymptotic region: 1 ≤ T/Tc ≤ 1000. With the new lattice data [36] at

our disposal, it is interesting to perform a fit in a large range of temperatures.

Having determined s(T ) and p(T ), the interaction measure I(T ) is obtained straightfor-

wardly via equation (5.12). The initial values of the parameters can be obtained using

input from the Yang-Mills theory. This is explained in appendix C, cf. equations (C.4),

(C.7), (C.12) and the related discussion.
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First temperature interval

The fit is performed as follows: γ and b are given as parameters. First the T (φh) dependence

is roughly scanned by computing the temperature T at 10 points between φminh and φmaxh .

Hereby, φminh is given by the asymptotic formula (4.55) with LTUV = 6. (As seen in table

5.1, TcL < 1 holds for all parameter values considered. We choose LTUV = 6 to make sure

that T/Tc & 4 for φh = φminh .) To make sure that φch is reached, we take a rather large

value φmaxh = 6.5. Having computed T (φh), one can estimate Tc and its type (minimum or

inflection point). Next, the temperature T is again computed at 10 points in the interval

between 0.7φch and 1.05φch to determine Tc with a relative accuracy of ≈ 10−3 and the

corresponding value φch. New bounds are set for φh: φ
min
h = 0.5,5 φmaxh = φch. Now, T (φh)

and s(φh) are computed at 20 points, and the squared speed of sound c2
s(T/Tc) is obtained

via a B-spline interpolation of the s(T ) curve and equation (5.13). Finally, the sum of

squares

χ2 =
1

n

n∑
i=0

(
c2
s(Ti/Tc)− c2

s,L(Ti/Tc)
)2

(5.14)

is computed, where the points Ti/Tc are taken from [36] in the range tmin ≤ Ti/Tc ≤
tmax and c2

s,L(Ti/Tc) is the squared speed of sound computed at Ti, obtained from the

B-spline interpolation of s(T ), equation (5.12), of the lattice data [36]. Hereby, tmin and

tmax are respectively the lower and upper bounds of the three T/Tc-intervals listed below.

Minimizing χ2 the optimal parameter values γ and b are obtained. The parameter G5/L
3

is fixed by a separate χ2-fit of the scaled entropy density s/T 3(T/Tc) to lattice data [36]

on the points tmin ≤ Ti/Tc ≤ tmax, keeping γ and b fixed.6

We fit three temperature ranges:

1. 1 ≤ T/Tc ≤ 2. Here, the emphasis lies in particular on an accurate reproduction of

the peak of the scaled interaction measure I/T 4.

2. 2.5 ≤ T/Tc ≤ 10. In this case, the focus lies on the reproduction of the fall-off of the

scaled interaction measure I/T 4.

3. 1 ≤ T/Tc ≤ 10. Here, a reproduction of the whole temperature interval relevant for

the LHC is performed.

5The value φminh = 0.5 turned out to be a good estimate for T/Tc ≈ 10 for the parameter range found in
table 5.3.

6More generically, the problem can be posed as a solution of the non-linear least squares χ2(γ, b;G5, TcL)
equations. Standard methods include e.g. the Levenberg-Marquardt algorithm. Since TcL is adjusted
as described above, we solve instead the χ2(γ, b) minimization with G5 adjusted separately.
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Our results, obtained with the method just described and employing the solution technique

described in section 4.3, are summarized in tables 5.3 and 5.4. It should be noted that the

numerics are rather sensitive to the values of the parameters, therefore, in table 5.3 the

values are given with necessary digits. The exact vales of M2L2 and ∆ can be obtained

with equation (5.8).

Fit Range γ b G5/L
3 −M2L2 ∆

1 1 ≤ T/Tc ≤ 2 0.709 2.156 1.215 ≈ 1.720 ≈ 3.510
2 2.5 ≤ T/Tc ≤ 10 0.641 2.081 1.138 ≈ 0.769 ≈ 3.798
3 1 ≤ T/Tc ≤ 10 0.702 2.188 1.188 ≈ 1.538 ≈ 3.569

Table 5.3.: Parameter values of the s(T ) fit in the range 1 ≤ T/Tc ≤ 10.

Fit TcL Tc-type 106 × χ2
c2s

103 × χ2
s

1 0.164 minimum 4.6 1.5
2 0.100 inflection 7.7× 10−3 0.020
3 0.158 minimum 4.5 8.5

Table 5.4.: Deconfinement temperatures and sums of squares of the s(T ) fit in the
range 1 ≤ T/Tc ≤ 10.

Figure 5.13.: The potential V (φ) for the parameter values of table 5.3.
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Figure 5.14.: Temperature and entropy density as functions of φh for the parameters
values of table 5.4. Left panel: temperature TL. Right panel: entropy
density sG5.

Figure 5.15.: Squared speed of sound c2
s. Diamonds: values extracted from the lattice

data of [36], curves: fit of the model. The horizontal line on the right
denotes the ideal gas value c2

s = 1/3.
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Figure 5.16.: Scaled entropy density s/T 3. Diamonds: values of the lattice data of
[36], curves: fit of the model. The horizontal line on the right denotes
the Stefan-Boltzmann limit (B.9).

Figure 5.17.: Scaled pressure p/T 4. Diamonds: values of the lattice data of [36],
curves: fit of the model. The horizontal line on the right denotes the
Stefan-Boltzmann limit (B.10).
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Figure 5.18.: Scaled interaction measure I/T 4. Diamonds: values of the lattice data
[36], curves: fit of the model.

Figure 5.19.: Zoom into the range 1 ≤ T/Tc ≤ 2. Left panel: squared speed of sound
c2
s. Right panel: scaled entropy density s/T 3. Diamonds: values of the

lattice data [36], curves: fit of the model.
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Figure 5.20.: Zoom into the range 1 ≤ T/Tc ≤ 2. Left panel: scaled pressure p/T 4.
Right panel: scaled interaction measure I/T 4. Diamonds: values of the
lattice data [36], curves: fit of the model.

Figure 5.21.: The conformality measure ∆c2
s ≡ 1/3− c2

s. Left panel: full temperature
interval 1 ≤ T/Tc ≤ 10. Right panel: zoom into the range 1 ≤ T/Tc ≤ 2.
Diamonds: values extracted from the lattice data [36], curves: fit of the
model.

Second temperature interval

In the asymptotic region T/Tc & 10, the the temperature (4.53) and entropy density

(4.54) are close to their asymptotic values given by equations (4.56) and (4.55). The

metric coefficients A(φ) and B(φ) are accordingly

A(φ) ≈ lnφ

∆− 4
+ ln

(
ΛL
)
, (5.15)
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B(φ) ≈ − ln(φ(4−∆)). (5.16)

Thus, A′ ∝ −1/φ computed from equation (4.44), will be large for small values of φ, which

can lead to numerical instabilities and/or inaccuracies. It makes sense to rewrite equations

(4.54) and (4.53) into a more suitable form following [2].

For the entropy density consider equation (4.54) together with equation (4.56). Rewrite

equation (4.54) as

4sG5 = exp

(
3A(φh)

)
= exp

(
3

φh∫
φ0

dφ̃A′ ˜(φ) +
1

φ̃(∆− 4)
− 1

φ̃(∆− 4)

)
(5.17)

=φ
3/(∆−4)
h

(
ΛL
)3

exp

(
− 3

lnφ0

∆− 4

)
exp

(
3

φh∫
φ0

dφ̃
(
A′ ˜(φ)− 1

φ̃(∆− 4)

))
. (5.18)

Take the limit φ0 → 0 to obtain

4sG5 = φ
3/(∆−4)
h

(
ΛL
)3

exp

(
3

φh∫
0

dφ̃
(
A′ ˜(φ)− 1

φ̃(∆− 4)

))
. (5.19)

The asymptotic behavior is now isolated and the divergent behavior of A′(φ) is canceled

by the 1/(φ(∆−4)) term. For φh → 0 the integral in (5.19) approaches zero and s→ sUV ,

where sUV is given by equation (4.56).

We now bring the expression for the temperature (4.53) into a similar form. We first derive

two relations that will be used in the manipulation of equation (4.53). Note from equation

(4.46) that

f ′
∣∣
φh

= −L
2V

3A′
e2B
∣∣∣
φh
. (5.20)

Note further that equation (4.52) can be written as

B(φh) =B(φ0) +

φh∫
φ0

dφ̃

((
lnA′(φ̃)

)′
+

1

6A′(φ̃)

)
(5.21)

=B(φ0) + lnA′(φh)− lnA′(φ0) +

φh∫
φ0

dφ̃

(
1

6A′(φ̃)

)
. (5.22)
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One thus has

eB(φh)

A′(φh)
=

eB(φ0)

A′(φ0)
exp

( φh∫
φ0

dφ̃
1

6A′(φ̃)

)
= − exp

( φh∫
φ0

dφ̃
1

6A′(φ̃)

)
, (5.23)

where in the second equality we used eB(φ0)/A′(φ0) = −1, following from the asymptotic

expressions (5.15) and (5.16). The temperature can now be rewritten as

TL =− f ′

4π
eA−B

∣∣∣
φh

=
L2V

12πA′
eA+B

∣∣∣
φh

= −L
2V

12π
exp

(
A+

φh∫
φ0

dφ̃
1

6A′(φ̃)

)∣∣∣∣∣
φh

(5.24)

=−
(
ΛL
)
L2V (φh)φ

1/(∆−4)
h

12π
exp

( φh∫
0

dφ̃
(
A′ ˜(φ)− 1

φ̃(∆− 4)
+

1

6A′(φ̃)

))
. (5.25)

We use equation (5.20) (second equality) and equation (5.23) (third equality). In the

fourth equality of equation (5.25) we have rewritten eA(φh) as in the expression for the

entropy density (5.19) and took the limit φ0 → 0. As in (5.19), the asymptotic behavior

is isolated, and the integral approaches zero as φh → 0 and T → TUV (4.55), since then

V (φh)→ −12/L2.

Equations (5.19) and (5.25) are the ones used in [2]. We employ these here too to compute

the temperature and the entropy density in the range 1 ≤ T/Tc ≤ 1000.

Since the calculation of the squared speed of sound from the interpolation of the entropy

density tabulated in [36], as described above, becomes unstable for T/Tc & 10, we start

with step 2, i.e. fit the parameters γ, b and G5/L
3 to s(T ).

For small values of φ, i.e. for high temperatures, the potential (5.7) is approximated by

lim
φ→0

V (φ) = −12

L2
+
M2

2
φ2. (5.26)

Thus, we expect that a fit in the range 10 . T/Tc ≤ 1000 uniquely determines the value

of M2L2. However, to determine the deconfinement temperature Tc the whole potential

is probed. To concentrate entirely on the small-φ region of V one would have to set the

scale differently. This can be done by taking two arbitrary temperature values T1 and

T2 and requiring that s(T1/Tc) and s(T2/Tc), calculated within our model, are equal to

the corresponding lattice values; the two equations fix Tc and G5. Here, we use the full

potential (5.7) to determine Tc and to calculate M2L2 via equation (5.8). We fit three
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temperature ranges:

1. 2.5 ≤ T/Tc ≤ 100. Here, we study the “intermediate” region of the equation of state.

2. 10 ≤ T/Tc ≤ 1000. Here, the asymptotic region, where the entropy density logarith-

mically approaches the Stefan-Boltzmann limit (B.9) is fitted.

3. 1 ≤ T/Tc ≤ 1000. A global fit is performed.

Our results are summarized in tables 5.5 and 5.6.

Fit Range γ b G5/L
3 −M2L2 ∆

4 2.5 ≤ T/Tc ≤ 100 0.642 2.072 1.138 ≈ 0.800 ≈ 3.789
5 10 ≤ T/Tc ≤ 1000 0.594 1.897 1.125 ≈ 0.440 ≈ 3.887
6 1 ≤ T/Tc ≤ 1000 0.680 2.179 1.160 ≈ 1.191 ≈ 3.676

Table 5.5.: The parameter values of the fit of the equation of state in the range 1 ≤
T/Tc ≤ 1000.

Fit LTc Tc-type 103 × χ2
s

4 0.098 inflection 3.4× 10−2

5 0.076 inflection 8.3× 10−2

6 0.136 minimum 7.5

Table 5.6.: Deconfinement temperatures and sums of squares of the fit of the equation
of state in the range 1 ≤ T/Tc ≤ 1000.
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Figure 5.22.: Scaled entropy density s/T 3 for the parameter values of table 5.5. Di-
amonds: values of the lattice data [36], curves: fit of the model. The
horizontal line on the right denotes the Stefan-Boltzmann limit (B.9).

Figure 5.23.: Scaled pressure p/T 4 for the parameter values of table 5.5. Diamonds:
values of the lattice data [36], curves: fit of the model. The horizontal
line on the right denotes the Stefan-Boltzmann limit (B.10).
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Figure 5.24.: Scaled interaction measure I/T 4 for the parameter values of table 5.5.
Diamonds: values of the lattice data [36], curves: fit of the model.

Figure 5.25.: Scaled entropy density s/T 3 for the parameter values of table 5.5. Zoom
into the region 1 ≤ T/Tc ≤ 10. Diamonds: values of the lattice data [36],
curves: fit of the model. The horizontal line on the right denotes the
Stefan-Boltzmann limit (B.9).
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Figure 5.26.: Scaled pressure p/T 4 for the parameter values of table 5.5. Zoom into
the region 1 ≤ T/Tc ≤ 10. Diamonds: values of the lattice data [36],
curves: fit of the model. The horizontal line on the right denotes the
Stefan-Boltzmann limit (B.10).

Figure 5.27.: Scaled interaction measure I/T 4 for the parameter values of table 5.5.
Zoom into the region 1 ≤ T/Tc ≤ 10. Diamonds: values of the lattice
data [36], curves: fit of the model.
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5.4. Conclusions

Within the model described in section 4.3 we have obtained the optimum values for the

parameters γ and b of the potential (5.7) and G5/L
3 in six temperature ranges. The values

are summarized in tables 5.3 and 5.5.

1. 1 ≤ T/Tc ≤ 2,

2. 2.5 ≤ T/Tc ≤ 10,

3. 1 ≤ T/Tc ≤ 10,

4. 2.5 ≤ T/Tc ≤ 100,

5. 10 ≤ T/Tc ≤ 1000,

6. 1 ≤ T/Tc ≤ 1000.

First temperature interval

In the first case, the squared speed of sound c2
s, as well as s/T 3, p/T 4 and I/T 4 are

reproduced very well in the range 1 ≤ T/Tc ≤ 2 (see figures 5.19 and 5.20), while for

2 ≤ T/Tc ≤ 10 the lattice data is underestimated by s/T 3 and p/T 4 (figures 5.16 and 5.17)

with an increasing deviation, the maximum deviation of ≈ 7% occurring at T/Tc = 10.

This is also seen in the left panel of figure 5.21, where the conformality measure ∆c2
s

obtained with the fit is about 2/3 of that of the lattice data at T/Tc = 10.

The second fit, on the other hand, reproduces the data very well in the range 2.5 ≤
T/Tc ≤ 10 (see figures 5.16, 5.17 and 5.18), while in the region 1 ≤ T/Tc ≤ 2 the fit

underestimates the lattice data, the maximum deviation of ≈ 15% occurring at T/Tc ≈ 1.2

for c2
s and s/T 3 (see 5.19). The scaled pressure p/T 4 is systematically underestimated (by

≈ 5%) in a broad region. The peak of the scaled interaction measure I/T 4 is shifted to

T/Tc ≈ 1.15, its magnitude is 2.2 instead of 2.5, and it is also slightly broader. The curves

of the two fits intercept at T/Tc ≈ 2 for s/T 3 and p/T 4 and at T/Tc ≈ 1.25 for I/T 4. For

the temperatures below the interception, the first fit is very accurate and the second fit

underestimates the lattice data, while above the interception the situation is converse. The

third fit yields essentially the same thermodynamic quantities as the first fit, but showing

a smaller deviation for higher temperatures as compared to the first fit.
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Second temperature interval

As seen from the figures 5.22, 5.22 and 5.24, all three fits are able to rather well capture

the qualitative behavior of the SU(3) Yang-Mills plasma in the whole temperature range

1 ≤ T/Tc ≤ 1000. We now focus on the nuances.

The fit of the ”intermediate region”, reproduces the lattice data very well in the region

2.5 ≤ T/Tc ≤ 100 as seen in figures 5.22, 5.22 and 5.24, deviating for T/Tc . 2 and

T/Tc & 100. For T/Tc < 2.5, s/T 3 and p/T 4 are underestimated with a deviation of

≈ 10%, for T/Tc & 100 the fit systematically deviates from the lattice data and is about

1/2 of the scaled interaction measure I/T 4 at T/Tc = 1000. Since the parameters of

the second and of the fourth fits are very similar, one concludes that the behavior of the

equation of state in the ”intermediate region” 2.5 ≤ T/Tc ≤ 100 is already captured by

the fit in the smaller interval 2.5 ≤ T/Tc ≤ 10. The fifth fit, concentrating mainly on

the asymptotic region, shows for T/Tc & 100 a minor improvement upon the ”intermedi-

ate” fit, as best seen in figure 5.24. For lower temperatures however, the fifth fit under-

(over)estimates s/T 3, p/T 4 (I/T 4), showing a behavior similar to the fourth fit, but with

a bigger deviation.

In contrast to the fourth and fifth fits, the global fit reproduces s/T 3 and p/T 4 especially

well in the region 1 ≤ T/Tc ≤ 10 (figures 5.16 and 5.17) and also the peak of the scaled

interaction measure I/T 4 (see figure 5.27); however, for temperatures T/Tc & 10, s/T 3 and

p/T 4 are underestimated, with a deviation which systematically increases for increasing

temperatures. This deviation is most evident in figure 5.24. The mutual behavior of the

fourth and sixth fits is similar to the behavior of the first and second fits.

We find a systematic evolution of the parameters from low to high temperatures, which is

summarized in table 5.7. The parameters γ, b and G5/L
3 decrease. The scaling dimension

∆ increases and the negative AdS mass −M2L2 of the scalar field decreases. The decon-

finement temperature LTc decreases.

Fit range γ b G5/L
3 −M2L2 ∆ LTc

1 ≤ T/Tc ≤ 2 0.709 2.156 1.215 ≈ 1.720 ≈ 3.510 ≈ 0.164
2.5 ≤ T/Tc ≤ 10 0.641 2.081 1.138 ≈ 0.769 ≈ 3.798 ≈ 0.100

10 ≤ T/Tc ≤ 1000 0.594 1.897 1.125 ≈ 0.440 ≈ 3.887 ≈ 0.076

Table 5.7.: The evolution of the parameters values of the fits from low to high tem-
peratures.

While the above discussion of the first temperature interval might suggest that the in-

tervals 1 ≤ T/Tc ≤ 2 and 2.5 ≤ T/Tc ≤ 10 are mutually incompatible (since the third
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fit yields essentially the same equation of state as the first one, being slightly better for

T/Tc ≈ 10), one sees from figures 5.25 and 5.27 that the global fit actually does yield the

best fit in the interval 1 ≤ T/Tc ≤ 10, exhibiting a deviation from the lattice data clearly

discernible only in figure 5.27, where the scaled interaction measure is underestimated by

≈ 15% at T/Tc = 10, and being slightly less accurate than the first fit for T/Tc ≈ 1.7

We thus regard the first, second and sixth fits as our final results: the first fit reproduces

very well the direct vicinity of the phase transition, the second fit reproduces very well

the fall-off of the scaled interaction measure and extends to T/Tc ≈ 100, and the global

fit reproduces best the region 1 ≤ T/Tc ≤ 10 relevant for heavy-ion collisions. Compare

figures 5.28, 5.29 and 5.30. We now proceed to calculate the shear and bulk viscosities for

the these three parameter sets.

Figure 5.28.: Scaled entropy density s/T 3. Comparison of the 1st, 2nd and 6th fits
in the interval 1 ≤ T/Tc ≤ 10. Diamonds: values of the lattice data
[36], curves: fits. The horizontal line on the right denotes the Stefan-
Boltzmann limit (B.9). One sees the improvement by the global fit.

7If one wants to reproduce also the scaled interaction measure I/T 4 with an accuracy of ≤ 5%, the
statement made above of course still holds: the intervals 1 ≤ T/Tc ≤ 2 and 2.5 ≤ T/Tc ≤ 10 are
incompatible when using the potential 5.7. This is best seen in figure 5.30.
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Figure 5.29.: Scaled pressure p/T 4. Comparison of the 1st, 2nd and 6th fits in the in-
terval 1 ≤ T/Tc ≤ 10. Diamonds: values of the lattice data [36], curves:
fits. The horizontal line on the right denotes the Stefan-Boltzmann limit
(B.10). One sees the improvement by the global fit.

Figure 5.30.: Scaled interaction measure I/T 4. Comparison of the 1st, 2nd and 6th
fits in the interval 1 ≤ T/Tc ≤ 10. Diamonds: values of the lattice data
[36], curves: fits. One sees that the global fit yields a good interpolation
between the 1st and 2nd fits in the interval considered.
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6. The shear and bulk viscosities

6.1. Kubo formulae

The bulk and shear viscosities ζ and η describe the relaxation of a fluid towards thermal

equilibrium after a small deviation away from it. To compute ζ(T ) and η(T ) we use the

Kubo formulae, known from linear response theory. Define retarded correlators of the

energy momentum tensor Tµν by (the special shear mode corresponding to T12 and the

bulk mode to T kk )

Gη
R(ω) = −i

∫
dtd3xeiωtθ(t)

〈
[T12(t, ~x), T12(0, 0)]

〉
, (6.1)

Gζ
R(ω) = −i1

4

∫
dtd3xeiωtθ(t)

〈
[T ii (t, ~x), T kk (0, 0)]

〉
. (6.2)

(In this section, Greek indices run from 0 to 3 and Latin indices from 1 to 3). The shear

and bulk viscosities are given by the Kubo formulae

η = − lim
ω→0

1

ω
ImGη

R(ω), (6.3)

ζ = −1

9
lim
ω→0

1

ω
ImGζ

R(ω). (6.4)

Equations (6.3) and (6.4) are derived as follows.1 One considers a small perturbation hµν

to a theory defined by an action S0, i.e.

S = S0 +
1

2

∫
d4xT µνhµν , (6.5)

where T µν is the energy momentum tensor. Within perturbation theory, the expectation

value 〈T µν(x)〉 to leading order is given by

〈T µν(x)〉 = 〈T µν(x)〉0 −
1

2

∫
d4yGµν,αβ

R (x− y)hαβ(y), (6.6)

1See appendix A of [41] and appendix A of [17] for details.
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6 The shear and bulk viscosities 6.1 Kubo formulae

where

iGµν,αβ
R (x− y) ≡ θ(x0 − y0)

〈[
T µν(x), Tαβ(y)

]〉
, (6.7)

is the response function and 〈T µν(x)〉0 is the unperturbed expectation value. Fourier

transforming equation (6.6) one obtains for δ〈Tµν(x)〉 ≡ 〈Tµν(x)〉 − 〈Tµν(x)〉0

δ〈Tij(ω,~0)〉 = −1

2
G kl
R ij(ω,~0)hkl(ω,~0), (6.8)

where, assuming hµ0 = h0ν = 0, we consider only the spatial components ij. In addition,

we have taken the long wavelength limit ~k → ~0.

Consider on the other hand the decomposition of the energy momentum tensor of a viscous

fluid without conserved charges

T µν = (e+ p)uµuν + pgµν − P µαP νβ
[
η
(
uβ;α + uα;β −

2

3
gαβu

λ
;λ

)
+ ζgαβu

λ
;λ

]
, (6.9)

where a semicolon denotes covariant differentiation, uµ is the fluid four-velocity, and P µν ≡
gµν + uµuν is a uµ-orthogonal projector. Consider a small spatial perturbation hij around

the Minkowski metric gij = ηij → ηij + hij. The spatial components of the perturbation

δTij of T µν , the latter given by equation (6.9), are

δTij = phij −
1

2
Kh k

k δij + δijη
(
− ∂thij +

1

3
δijδ

kl∂thkl
)
− 1

2
ζδijδ

kl∂thkl, (6.10)

where K = −V ∂p/∂V is the bulk modulus. The Fourier transform of equation (6.10) lets

us obtain

δTij = hkl(ω)
(
pδ ki δ

l
j −

1

2
Kδijδ

kl
)

+
iω

2
hkl(ω)

[
η
(
δ ki δ

l
j + δ li δ

k
j −

2

3
δijδ

kl
)

+ ζδijδ
kl
]
. (6.11)

Compare equations (6.8) and (6.11). Set i = k = 1 and j = l = 2 to obtain equation

(6.3); perform a trace over ij and kl to obtain equation (6.4). Note that the concrete form

of the perturbation hij(ω) is arbitrary. The interpretation of equations (6.3) and (6.4) is

that the transport coefficients η and ζ can be obtained from the response of the fluid to

a small perturbation.2 Note that for a conformally invariant fluid T µµ = e − 3p = 0 and

subsequently ζ ≡ 0. Thus, besides the interaction measure I and the conformality measure

∆c2
s (see appendix B.2), the bulk viscosity ζ is another measure for the deviation of a fluid

from ideal behavior. The general interpretation is as follows: the shear (bulk) viscosity is

a measure of the medium resistance against volume (shape) conserving deformations.

2In fact, given any conserved current operator Jµ, the long-wavelength, low frequency limit of the asso-
ciated response function GR defines a transport coefficient.
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6 The shear and bulk viscosities 6.2 The holographic correlator

6.2. The holographic correlator

We make use of the AdS/CFT prescription for computing correlators, reviewed in section

3.4.3. In [41] it was shown that

ImG
{η,ζ}
R (ω) = −F

{η,ζ}(ω)

16πG5

, (6.12)

where F(ω) is a functional of the linearly perturbed metric g
{η,ζ}
µν and its derivatives on

the gravity side. Equation (6.12) can be motivated by noting that the gauge theory energy

momentum tensor T µν is dual to the metric gµν of the deformed AdS5 space. Thus,

by the AdS/CFT correspondence, as described in section 3.4.3, the correlators (6.1) and

(6.2) can be obtained from the dual gravity theory by computing the renormalized action

S
[ren]
GRAV [g

{η,ζ}
µν ], evaluating it on the solutions of the equations of motion of g

{η,ζ}
µν , and taking

functional derivatives with respect to the boundary values. The heuristic interpretation of

equation (6.12) is that the gauge theory transport coefficients η and ζ are proportional to

the probability of a graviton to ”fall” from the boundary into the black hole [43]. We now

review the construction and evaluation of F{η,ζ}, closely following [41].

6.2.1. Perturbation of the metric

The metric of section 4.3 is used, encoded in the following infinitesimal line element squared

and henceforth referred to as g
(0)
µν

ds2 = e2A
(
− fdt2 + d~x2

)
+ L2e2B dφ

2

f
. (6.13)

The metric (6.13) is now perturbed g
(0)
µν → g

{η,ζ}
µν . As discussed in section 6.1 the concrete

form of the perturbation is arbitrary. The form chosen below leads to relatively simple

expressions for the determinants gη and gζ .

For the shear perturbation, the metric is perturbed as gηµν = g
(0)
µν + δgηµν , i.e.

gηµν =


−fe2A 0 0 0 0

0 e2A e2AλH12 0 0

0 e2AλH12 e2A 0 0

0 0 0 e2A 0

0 0 0 0 L2e2B/f

 . (6.14)
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6 The shear and bulk viscosities 6.2 The holographic correlator

For the bulk perturbation, the metric is perturbed as gζµν = g
(0)
µν δgζµν , i.e.

gζµν =


g00 0 0 0 0

0 g11 0 0 0

0 0 g11 0 0

0 0 0 g11 0

0 0 0 0 g44

 (6.15)

with

g00 = −fe2A
(
1 +

λ

2
H00

)2
, (6.16)

g11 = e2A
(
1 +

λ

2
H11

)2
, (6.17)

g44 =
L2e2B

f

(
1 +

λ

2
H44

)2
. (6.18)

Here, Hµν are the perturbations to the respective components of the metric g
(0)
µν and λ� 1

is a formal extension parameter. The shear and bulk perturbations decouple and are

treated separately. From now on, we set L ≡ 1, following [41].

6.2.2. Linearized Einstein equations

To obtain the equations of motion of Hµν the Einstein equations for the perturbed metrics

(6.14) and (6.15) are set up. One obtains equations proportional to powers of λ; terms

proportional to λ1 yield the linearized equations. The quantities A, B and f are the same

functions as in section 4.3 and obey the unperturbed Einstein equations (4.34-4.37). These

unperturbed equations are used to simplify the equations for Hµν .

For the shear viscosity, the (x1x2) Einstein equation proportional to λ yields

H ′′12 +
(

4A′ +B′ +
f ′

f

)
H ′12 + ω2 e

2B−2A

f 2
H12 = 0. (6.19)

74



6 The shear and bulk viscosities 6.2 The holographic correlator

For the bulk viscosity, the (tt), (x1x1) and (φ, φ) Einstein equations proportional to λ yield

respectively

H ′00 =
1

12A′2f 2

[
2f 2
(

1− 6A′2 − 3A′
f ′

f

)
H ′11−

−
(
ff ′(1− 24A′2)− 6A′f ′2 − 12ω2A′e2B−2A

)
H11

]
, (6.20)

H ′′11 =
(
− 1

3A′
− 4A′ + 3B′ − f ′

f

)
H ′11 −

(f ′
f

A′′

A′
+ ω2 e

2B−2A

f 2

)
H11, (6.21)

H44 =
1

A′

[
H ′11 −

f ′

2f
H11

]
. (6.22)

Observe that equation (6.21) decouples, and that H00 and H44 can be expressed in terms of

H11. Thus, it is sufficient to solve (6.21). This is an advantage of using the metric (6.13).

6.2.3. Construction of the correlator

The action for the respective perturbed metric gηµν and gζµν is given by the Einstein-Hilbert

part of (4.1):

Sp =
1

16πG5

∫
d5x
√
−gR[g{η,ζ}]. (6.23)

Renormalization and complexification

To obtain a well-defined action and finite correlators the former has to renormalized [24],

that is one has to determine counterterms which cancel the divergences in the limit φ→ 0:

Sp,ren = Sp + Sct, (6.24)

where Sct is of the schematic form

Sct =
1

16πG5

∫
d5x
(
∂tLt + ∂φLφ

)
. (6.25)

The boundary terms are the gravity analogue of counterterms in quantum field theory

regularization.
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6 The shear and bulk viscosities 6.2 The holographic correlator

The procedure is now to evaluate (6.23) using gηµν and gζµν and to separate Sp into

Sp,ren =
1

16πG5

∫
d5xL, (6.26)

Sct =
1

16πG5

∫
d5x
(
∂tLt + ∂φLφ

)
, (6.27)

and keep only L, which is equivalent to the subtraction of the counterterms Sct. Having

determined L it is then complexified, L → LC , by passing from Hµν to a complex field

ĥµν . Hereby, L depends on Hµν(t, φ) and its derivatives, and LC depends on ĥµν(t, φ)

and its derivatives. The complexified lagrangian LC is constructed to yield the equations

of motion (6.19) and (6.20-6.22) for the shear and bulk perturbations, respectively, for a

harmonic time dependence ĥµν(t, φ) = e−iωthµν(φ). The equations of motion of hµν are

then used to re-express LC as a total derivative

LC = ∂φJ + h∗µν

(
∂LC
∂h∗µν

− d

dφ

∂LC
∂h∗′µν

)
= ∂φJ. (6.28)

As shown in [41], J is the sought for Green‘s function

lim
φ→0

J(ω) = GR(ω). (6.29)

Note that, to compute η and ζ, one only needs the imaginary part and defines

F = −Im J. (6.30)

Combine (6.30) and (6.29) to obtain (6.12). Since only Im J has to be calculated, we

will see that a simplification will occur, since a rigorous renormalization procedure can be

circumvented.

Shear perturbation

Evaluating (6.23) with (6.14) yields

L =
1

2f
e2A+BḢ2

12 −
f

2
e4A−BH ′212, (6.31)

Lt = − 2

f
e2A+BH12Ḣ12, (6.32)

Lφ = 2fe4A−BH12H
′
12 + fA′e4A−BH2

12. (6.33)
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6 The shear and bulk viscosities 6.2 The holographic correlator

Here, Lt and Lφ were constructed by demanding that, to obtain second-order equations

of motions, L should depend only on H12 and its first derivatives. This however does not

fix Lφ. To see this, add any multiple of H2
12 to Lφ and the requirement is still satisfied.

An unambiguous determination of Lt and Lφ would require a rigorous holographic renor-

malization procedure. This can however be circumvented by adding a term 1/2 ∂φ(GH2
12)

to L, where G is an arbitrary differentiable real function of φ. The lagrangian (6.31) now

becomes

L =
1

2f
e2A+BḢ2

12 −
f

2
e4A−BH ′212 +

1

2
G′H2

12 +GH12H
′
12. (6.34)

In principle, G is determined by holographic renormalization [24], but we will shortly see

that it enters only the real part of the correlator and thus does not have to be known

explicitly.

Now construct LC , so that the equation of motion for h12 coincides with (6.19) and obtain

(with ĥ12(t, φ) = e−iωth12(φ))

LC =
ω2

f
e2A+B|h12|2 − fe4A−B|h′12|2 +G′|h12|2 +G(h12h

∗′
12 + h∗12h

′
12). (6.35)

Rewrite (6.35) as in (6.28) to obtain

J = −fe4A−Bh∗12h
′
12 +G|h12|2 (6.36)

and use (6.30) to arrive at the final result

Fη = −ife
4A−B

2

(
h∗12h

′
12 − h∗′12h12

)
. (6.37)

Bulk perturbation

We define

~H =

H00

H11

H44

 (6.38)

and evaluate (6.23) with (6.15). We proceed as in (6.34) and add a total derivative

1/2 ∂φ( ~HTG ~H) to L, which now takes the form

L =
1

2
~HTM ~H + ~H ′TMφ ~H +

1

2
~̇HTMtt ~̇H +

1

2
~H ′TMφφ ~H ′ +

1

2
∂φ( ~HTG ~H), (6.39)
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where

M = −3

2
e4A−B[−f(1− 24A′2) + 6A′f ′]

 0 1/2 0

1/2 1 0

0 0 1/6

 , (6.40)

Mφ = −3

4
e4A−B

 0 6A′f ′ −2A′f

6A′f + f ′ 2(6A′ + f ′) −6A′f − f ′

0 0 0

 , (6.41)

Mφφ = −3e4A−Bf

 0 1/2 0

1/2 1 0

0 0 0

 , (6.42)

Mtt =
3e2A+B

f

0 0 0

0 1 1/2

0 1/2 0

 , (6.43)

and G is a symmetric differentiable matrix depending on φ.

Construct LC by demanding that it leads to the equations of motion (6.20-6.22) for

~h =

h00

h11

h44

 (6.44)

with
~̂
h(t, φ) = e−iωt~h(φ). One obtains

LC = ~h∗′Tm~h′ + ~h∗Tk~h+ ~h∗′Tb~h+ ~h∗Tb∗T~h′, (6.45)

with

m = Mφφ, (6.46)

k = L2ω2Mtt + M + G′, (6.47)

b = Mφ + G. (6.48)

Rewrite (6.45) as (6.28) to obtain

J = ~h∗T (m~h′ + b~h) (6.49)
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and use (6.30) to arrive at

F ζ =
i

2
[~h∗T (m~h′ + b~h)− (~h∗′T + ~h∗TbT )~h]. (6.50)

Using the equations of motion (6.20-6.22), we express h00 and h44 through h11 and h′11 to

finally obtain

F ζ = −ife
4A−B

8A′2
(
h∗11h

′
11 − h∗′11h11

)
. (6.51)

6.2.4. Solution of the linearized equations

We recall equations (6.19) and (6.21) for h12 and h11:

h′′12 +
(

4A′ +B′ +
f ′

f

)
h′12 + ω2 e

2B−2A

f 2
h12 = 0, (6.52)

h′′11 +
( 1

3A′
+ 4A′ − 3B′ +

f ′

f

)
h′11 +

(f ′
f

A′′

A′
+ ω2 e

2B−2A

f 2

)
h11 = 0. (6.53)

Since the fluxes (6.37) and (6.51) are independent of the radial coordinate, one can solve

the equations (6.52) and (6.53) at any value of φ. This is most easily done at φ ≈ φh.

Consider the equations (6.52) and (6.53) close to the horizon. The quadratically divergent

terms ∝ 1/f 2 dominate and (6.52) and (6.53) become

h′′ij +
( ω

4πT

)2(f ′(φh)
f

)2

hij = 0, (6.54)

where we approximated e2(B−A) ≈ e2(B(φh)−A(φh)) and used the first equality of (4.53).

Taylor expanding f around the horizon, f ≈ 0 + f ′(φh)(φ− φh) + . . . , one obtains

h′′ij +
( ω

4πT

)2 1

(φh − φ)2
hij = 0. (6.55)

Equation (6.55) is a wave equation with the general solution

hij = c+
ij(φh − φ)iω/4πT + c−ij(φh − φ)−iω/4πT , (6.56)

where c+
ij and c−ij are integration constants; the term ∝ c+

ij is an outgoing wave, and the

term ∝ c−ij is an ingoing wave.

Since the transport coefficients (6.3) and (6.4) are given by the ω → 0 limits of the

corresponding correlators (6.1) and (6.2), one can further expand around ω = 0, which
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yields

hij = c+
ij

[
1 +

iω

4πT
ln(φh − φ)

]
+ c−ij

[
1− iω

4πT
ln(φh − φ)

]
. (6.57)

As seen from (6.57), the amplitudes c+
ij and c−ij can be obtained by solving (6.52) and (6.53)

with ω ≡ 0, that is by solving the simpler equations

h̃′′12 +
(

4A′ +B′ +
f ′

f

)
h̃′12 = 0, (6.58)

h̃′′11 +
( 1

3A′
+ 4A′ − 3B′ +

f ′

f

)
h̃′11 +

f ′

f

A′′

A′
h̃11 = 0. (6.59)

Boundary conditions

We impose the following boundary conditions:

|hij(0)|2 = 1, (6.60)

c+
ij = 0. (6.61)

Condition (6.60) means choosing a boundary value |Φ0|2 = 1, as described in section 3.4.3.

It is arbitrary, since the sources Φ0 are set to zero in the calculation of the correlator

(3.37).3 Condition (6.61), dictated by causality, means keeping an ingoing wave at the

horizon. With (6.61) the general solution (6.56) becomes

hij = c−ij(φh − φ)−iω/4πT , (6.62)

where we only have to determine c−ij. As explained at the end of the last section this will

be done by solving the ω ≡ 0 equations (6.58) and (6.59).

For the ω ≡ 0 equations (6.58) and (6.59), the boundary conditions (6.60) and (6.61)

transform into

h̃ij(0) = 1, (6.63)

h̃ij(φh) <∞. (6.64)

Thus, we look for solutions that are normalized to 1 at the boundary and that are regular

at the horizon.

3It is common to normalize a wave to unit amplitude at infinity (in our case at φ = 0), see e.g. [44].
Moreover, the functional derivative simplifies in this case.
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Shear viscosity

Equation (6.58) yields

h̃12(φ) = ã12 + b̃12

φ∫
0

dφ̃
e−4A+B

f
, (6.65)

where ã12 and b̃12 are integration constants. The term ∝ b̃12 diverges logarithmically at

the horizon due to f(φh) = 0. Thus to satisfy (6.64) we have to set b̃12 = 0. The condition

(6.63) further fixes ã12 = 1 and we arrive at the trivial solution

h̃12(φ) = 1. (6.66)

It follows that c−12 = 1. We have thus completely determined h12(φ) at φ ≈ φh:

h12(φ) = (φh − φ)−iω/4πT . (6.67)

Insert (6.67) into (6.37), perform the derivatives and use the approximations leading to

(6.55) to obtain

Fη = ωe3A(φh). (6.68)

Combine (6.3), (6.12) and (6.68) to obtain the final result:

η =
e3A(φh)

16πG5

. (6.69)

Recalling equation (4.54) reproduces the celebrated shear viscosity to entropy density ratio,

also known as the Kovtun-Son-Starinets (KSS) bound [34]

η

s
=

1

4π
. (6.70)

Equation (6.70) however turned out not to be a strict bound, see [26, 27].

Bulk viscosity

Since an analytical solution to equation (6.59) is not known, c−11 will be determined by

solving (6.59) numerically. Consider equation (6.59) close to the horizon using f ′/f ≈
1/(φ− φh) and neglecting terms that are regular at φ = φh:

h̃′′11 +
1

φ− φh
h̃′11 +

1

φ− φh
A′′

A′
h̃11 = 0. (6.71)
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Notice that A′′/A′ < 0 since A′ is monotonous and A′ ≈ 1/(φ(∆ − 4)) for φ → 0; define

x ≡ φh − φ and a ≡ −A′′(φh)/A′(φh) > 0. Equation (6.71) becomes (a prime denoting

now d/dx)

h̃′′11 +
1

x
h̃′11 +

a

x
h̃11 = 0. (6.72)

The general solution of (6.72) is

h̃11 = ã11J0(2
√
ax) + b̃11Y0(2

√
ax), (6.73)

where J0 and Y0 are Bessel functions of respectively the first and second kind, and ã11 and

b̃11 are integration constants. Expand the general solution around x = 0:

h̃11 = â11 + b̂11 lnx. (6.74)

We see that, in order to satisfy (6.64), we have to require

h̃′11(φh) = 0. (6.75)

Thus, for the numerical solution of equation (6.59) we use the boundary conditions (6.63)

and (6.75). Since equation (6.59) is homogeneous, it is easiest to start the integration at

φ = φh with

h̃11(φh) = 1, (6.76)

h̃′11(φh) = 0, (6.77)

and determine c−11 = 1/h̃11(0) from the numerical solution.

In analogy to (6.68), one inserts (6.62) into (6.51) to obtain

F ζ = ω|c−11|2
e3A(φh)

4A′(φh)2
. (6.78)

Combine (6.4), (6.12) and (6.78) to arrive at the final expression for ζ

ζ = |c−11|2
s

36πA′(φh)2
. (6.79)
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6.3. Bulk viscosity in the approach by Gubser et al.

To check our code,4 we first make sure that figure 3 of [41] is reproduced. In table 6.1 we

collect the parameters. In figure 6.1 we show the results of our numerical calculation.

# γ b −M2L2 ∆ φch TcL Tc-type Phase transition
A 0.606 2.057 ≈ 0.293 ≈ 3.925 ≈ 4.36 ≈ 0.704 inflection crossover
B 0.606 1.503 ≈ 1.401 ≈ 3.612 ≈ 3.69 ≈ 0.060 inflection crossover

Table 6.1.: Parameter values used in [41] for the calculation of the bulk viscosity.

Figure 6.1.: The bulk viscosity to entropy density ratio ζ/s as a function of the scaled
temperature computed in the interval 1 ≤ T/Tc ≤ 5 for the parameter
values of table 6.1. Compare figure 3 of [41].

The bulk viscosity is computed for the optimal parameter values, which are collected in

table 5.3. The results for the scaled bulk viscosity ζ/T 3 and for the the bulk viscosity to

entropy density ratio ζ/s are shown in figures 6.2 and 6.3. Both quantities exhibit a sharp

rise for T → T+
c .

4A program to calculate the entropy density s, the temperature T and the bulk viscosity ζ was written
using the computer algebra system sage.
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Figure 6.2.: The scaled bulk viscosity ζ/T 3 as a function of the scaled temperature
for the parameter values of the first, second and sixth fits.

Figure 6.3.: The bulk viscosity to entropy density ratio ζ/s as a function of the scaled
temperature for the parameter values of the first, second and sixth fits.

84



6 The shear and bulk viscosities 6.3 Bulk viscosity in the approach by Gubser et al.

Figure 6.4.: Deviation of the SU(3) Yang-Mills plasma from conformality for T → Tc
for the parameter set of the first fit of table 5.3.

Figure 6.5.: Deviation of the SU(3) Yang-Mills plasma from conformality for T → Tc
for the parameter set of the sixth fit of table 5.5.
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Figure 6.6.: Deviation of the SU(3) Yang-Mills plasma from conformality for T → Tc
for the parameter set of the second fit of table 5.3.

In figure 6.4 we show the final results concerning the deviation of the SU(3) Yang-Mills

plasma from the conformal behavior for T → Tc within the holographic model. One ob-

serves that, for T → Tc, any quantity measuring the non-conformality of the gluon plasma

exhibits a rather sharp rise. The locations of the maxima and their relative magnitudes

are however different, see tables 6.2, 6.3 and 6.4.

C T/Tc
(

max[C]
)

max[C]/C(T/Tc = 2) max[C]/C(T/Tc = 4)
I/T 4 ≈ 1.109 ≈ 3.2 ≈ 13.3
∆c2

s 1.0 ≈ 13.4 ≈ 44.4
ζ/s ≈ 1.001 ≈ 13.3 ≈ 48.3
ζ/T 3 ≈ 1.042 ≈ 5.4 ≈ 17.9

Table 6.2.: Locations and relative magnitudes of the maxima of the quantities C for
the parameter set of the first fit.
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C T/Tc
(

max[C]
)

max[C]/C(T/Tc = 2) max[C]/C(T/Tc = 4)
I/T 4 ≈ 1.124 ≈ 3.0 ≈ 12.1
∆c2

s 1.0 ≈ 12.8 ≈ 40.5
ζ/s ≈ 1.008 ≈ 12.0 ≈ 42.4
ζ/T 3 ≈ 1.062 ≈ 5.0 ≈ 16.1

Table 6.3.: Locations and relative magnitudes of the maxima of the quantities C for
the parameter set of the sixth fit.

C T/Tc
(

max[C]
)

max[C]/C(T/Tc = 2) max[C]/C(T/Tc = 4)
I/T 4 ≈ 1.172 ≈ 2.5 ≈ 9.8
∆c2

s 1.0 ≈ 9.9 ≈ 31.8
ζ/s ≈ 1.018 ≈ 9.0 ≈ 32.2
ζ/T 3 ≈ 1.108 ≈ 4.0 ≈ 12.7

Table 6.4.: Locations and relative magnitudes of the maxima of the quantities C for
the parameter set of the second fit.

6.4. Conclusions

Following the holographic approach to the determination of the transport coefficients es-

tablished by Gubser et al. [41], we have calculated the shear and bulk viscosities of the

SU(3) Yang-Mills plasma within the holographic model for the parameter sets of the first,

second and sixth fits obtained in section 5.3 and collected in tables 5.3 and 5.5. As dis-

cussed in the end of section 5.4, the first parameter set reproduces the equation of state

in the vicinity of the phase transition 1 ≤ T/Tc ≤ 2, the second set reproduces the re-

gion 2.5 ≤ T/Tc ≤ 10 and the sixth set yields the best description in the whole region

1 ≤ T/Tc ≤ 10.

The shear viscosity to entropy density ratio is constant and saturates the KSS bound,

η/s = 1/(4π). As discussed in section 3.5.3, the constant η/s ratio is, if at all, a realistic

scenario only for T ≈ Tc and should actually vary with temperature. This feature can

be incorporated into the model by considering higher order curvature corrections to the

action (4.1); first steps in this direction were taken in [26,27]. The bulk viscosity to entropy

density ratio ζ/s, as well as the scaled bulk viscosity ζ/T 3, show a steep rise for T → T+
c .

Consider figures 6.4, 6.5 and 6.6. It is evident that the SU(3) Yang-Mills plasma, be-

ing approximately conformal for high temperatures T/Tc & 100, strongly deviates from

conformality for T → T+
c . The different quantities C = {I/T 4,∆c2

s, ζ/s, ζ/T
3}, charac-
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terizing this deviation, peak at slightly different temperature values and exhibit slightly

different relative magnitudes, as summarized in tables 6.2, 6.3, 6.4. Note that for the first

parameter set, which accurately reproduces the SU(3) Yang-Mills plasma equation of state

in the interval 1 ≤ T/Tc ≤ 2, the peaks are sharper and closer to Tc as compared to the

second parameter set, while the sixth parameter set lies in between (compare figures 6.4,

6.5, 6.6 and tables 6.2, 6.3, 6.4). This behavior points to a systematic dependence of ζ/T 3

and ζ/s on the scaled interaction measure I/T 4: A sharper and larger maximum of I/T 4

leads to sharper and larger maxima of ζ/T 3 and ζ/s; further, the location of the maximum

of I/T 4 determines the locations of the maxima of ζ/T 3 and ζ/s.

Provided that the holographic model describes the SU(3) Yang-Mills plasma ”well enough”

(i.e., that qualitatively, figure 6.4 still holds for the gluon plasma) and that a similar be-

havior arises for the full QCD, a measurement of the respective maxima can be used to

accurately pinpoint the temperature of the deconfinement transition.
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7. Conclusions

Following essentially the work of Gubser et al. [2,41] and Huang et al. [1] we have studied

the thermodynamics of the Yang-Mills plasma within the context of the AdS/CFT corre-

spondence. The model used by us, section 4.3, is the minimal setting which can reproduce

the equation of state of the Yang-Mills plasma. As discussed in section 4.1, one needs

additional input, this can be either the AdS deformation A, or the scalar field potential V .

In the latter case one has the analogy suggested by equation (2.10): the conformal invari-

ance of the Yang-Mills theory, broken by quantum fluctuations due to the non-vanishing

β function is translated into a deformation of the conformally invariant black hole AdS

space due to the scalar field profile resulting from a non-trivial potential V (φ).

Since the focus of our work was the quantitative reproduction of the SU(3) Yang-Mills

theory equation of state above the deconfinement transition and the subsequent calcula-

tion of the bulk viscosity, we did not extend our model to temperatures below Tc. Thus,

we did not study the gravity analogue of the confinement-deconfinement phase transition

(see e.g. [33]) and did not calculate observables associated with the confined phase of the

theory, like e.g. glueball mass spectra and spectral functions. Further, we stayed with the

”heuristic” definition of Tc, as discussed in section 5.2. While the Improved Holographic

QCD model of Kiritsis et al. [33] can be regarded as more thorough, the virtue of our

model lies in its simplicity. Given an arbitrary potential with the required behavior for

φ → 0, the equation of state s(T ) can directly be obtained by numerically solving the

differential equation (4.44) and performing the integrals (5.19) and (5.25). With a suitable

determination of the φh-range, as described in section 5.3, a fit to the lattice data can

be achieved. The metric coefficients are obtained from the equations (4.51), (4.52) and

(4.43) and the bulk viscosity can be calculated by numerically solving equation (6.59).

Note that, once the equation of state s(T ) is fixed, the viscosities are obtained without

introducing any additional parameters; this is an advantage compared to the quasiparticle

model, where relaxation times have to be introduced, see [38].

Our results, section 5.3, suggest that the SU(3) Yang-Mills equation of state can be repro-

duced to a high accuracy with the compact form of the potential (5.7) by suitable parameter
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adjustments, however only for isolated temperature ranges. In the low-temperature regime

we fitted the ranges 1 ≤ T/Tc ≤ 2 and 2.5 ≤ T/Tc ≤ 10 and 1 ≤ T/Tc ≤ 10; using the

corresponding parameters sets given in table 5.3 one can achieve a very good agreement

with the SU(3) Yang-Mills theory equation of state in the first two temperature intervals,

while, for an accurate reproduction of the complete low-temperature range 1 ≤ T/Tc ≤ 10,

a modification of the potential (5.7) is needed. We also performed fits concentrating on

and extending into the high temperature regime, i.e. for the ranges 2.5 ≤ T/Tc ≤ 100,

10 ≤ T/Tc ≤ 1000 and 1 ≤ T/Tc ≤ 1000; the parameters are summarized in table 5.5. We

find that the behavior in the ”intermediate” region 2.5 ≤ T/Tc ≤ 100 is already well cap-

tured by the fit in the interval 2.5 ≤ T/Tc ≤ 10. The asymptotic region 10 ≤ T/Tc ≤ 1000

can be well reproduced by another set of parameters. We conclude that, when using the

potential (5.7), the equation of state can be roughly divided into two regions when consid-

ering s/T 3 and p/T 4: the low-temperature region 1 ≤ T/Tc . 10 and the high-temperature

region 10 . T/Tc ≤ 1000; the global (sixth) and the asymptotic (fifth) fits reproduce the

equation of state very well in the respective intervals (compare figures 5.28, 5.29 and 5.22,

5.23). When considering the scaled interaction measure I/T 4, we suggest a division into

three regions: the direct vicinity of the phase transition 1 ≤ T/Tc ≤ 2.5, the intermediate

region 2.5 ≤ T/Tc . 100 and the asymptotic region 100 . T/Tc ≤ 1000. In these three

regions the optimum parameters are given by the first, second/fourth and fifth fit respec-

tively (compare figures 5.30 and 5.24). The global fit yields the best fit of I/T 4 when

considering the larger low-temperature range 1 ≤ T/Tc ≤ 10.

Accepting larger relative deviations of the scaled interaction measure I/T 4 from the lat-

tice data, one can reproduce the even the larger interval 1 ≤ T/Tc ≤ 100. Hereby, when

the peak of I/T 4 is to be accurately reproduced, the parameters of the global fit should

be taken, while, if one desires a high accuracy when describing in particular the region

2.5 ≤ T/Tc ≤ 100, the parameters of the second/fourth fit are the optimum ones.

The bulk viscosity, computed for the first, second and sixth fits, shows both as ζ/T 3 and

as ζ/s a steep rise for T → T+
c . The location of the maximum of ζ/T 3 lies slightly above

the deconfinement temperature Tc, while the maximum of ζ/s almost coincides with Tc.

We find that the shape of the peak of the scaled interaction measure I/T 4 is reflected by

the scaled bulk viscosity ζ/T 3 and by the bulk viscosity to entropy density ratio ζ/s: A

sharper and higher maximum of I/T 4 leads to sharper and higher maxima of ζ/T 3 and

ζ/s; the locations of the respective maxima are shifted analogously. Compare figures 6.4,

6.5, 6.6 and tables 6.2, 6.3, 6.4.
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The significance of this thesis lies within the now provided possibility to put calculations,

related to the deconfinement transition and/or chiral symmetry breaking (e.g. calculations

of in-medium glueball or meson spectral functions and glueball or meson mass spectra),

which are presently often done on the background of pure black hole AdS space (see [45–47])

with s/T 3 = const (B.5), into a more realistic setting. A qualitatively different behavior

may occur: note that, in our case, on the conformal background with s/T 3 = const, one

would have ζ ≡ 0.1 Given the lattice data, the potential can be adjusted such that the

metric coefficients reproduce the equation of state s(T ) of the pure Yang-Mills theory or

of QCD to a fairly high accuracy in the desired temperature range. Although we did

not extend our analysis to temperatures T/Tc < 1, we expect that the parameters of the

potential used by Gubser et al., equation (5.7), can be further adjusted to reproduce the

equation of state also in the range 0.8 . T/Tc . 1.4. It is of course desirable and per-

haps illuminating to find a potential which would reproduce the pure Yang-Mills theory or

QCD equation of state in the whole range 0.8 ≤ T/Tc ≤ 1000 with a high accuracy. This

question marks the direction of future work.

Among the necessary improvements of the holographic model there are:

� Setting up a model which allows for a temperature dependent η/s, most favorably

such that one can achieve a match to the perturbative results.

� Including quark degrees of freedom which are important also for µ = 0.

� While he have focused on the equation of state and on the transport coefficients,

for ongoing experiments of relativistic heavy-ion collisions at RHIC and LHC, other

observables (e.g. jet quenching and drag coefficients, in-medium spectral functions

of hadrons etc.) are of interest which are also accessible within the AdS/QCD cor-

respondence.

1The calculation of spectral functions, etc. is similar to the calculation of ζ: one considers a field ”living”
on a fixed background spacetime given by the metric coefficients, and obtains e.g. the correlator of
the dual operator. In the case of ζ, we have seen that the field in question is the linear perturbation
of the metric itself. For e.g. mesons one would consider scalar, pseudo-scalar, vector, etc. fields. The
calculation of the correlators will however be analogous to the one reviewed in section 6.2.
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A. Einstein equations and Anti-deSitter

space

A.1. Einstein equations

The field equations of general theory of relativity, usually referred to as Einstein equations,

can be derived from the following action (here written down in d = 5 dimensions):

S = SEH + SM + SGH =
1

16πG5

∫
d5x
√
−g
(
R + LM

)
+ SGH . (A.1)

SEH ∝
∫
d5x
√
−gR is the Einstein-Hilbert action, SM ∝

∫
d5x
√
−gLM is the action of the

matter on a pseudo-Riemannian manifold defined by the (to be calculated) metric tensor

gµν and SGH is the Gibbons-Hawking term needed to obtain a well-defined action when

considering manifolds with a boundary; the Gibbons-Hawking term insures that the geom-

etry of the boundary is kept fixed while performing the variation with respect to the metric

gµν . The square root of the metric fundamental determinant
√
−g, where g ≡ det |gµν |,

ensures general covariance, i.e. invariance of (A.1) under coordinate transformations.

Variation of the Einstein-Hilbert action SEH with respect to gµν yields the Einstein tensor

Eµν = Rµν −
1

2
Rgµν , (A.2)

where Rµν is the Ricci tensor.

Variation of the matter action SM with respect to gµν defines the symmetric energy-

momentum tensor Tµν (with a comma denoting the partial derivative, i.e. X,α ≡ ∂X/∂xα)

Tµν =
1√
−g

δ(
√
−gLM)

δgµν
=

1√
−g

(
∂(
√
−gLM)

∂gµν
−
(∂(
√
−gLM)

∂gµν ,α

)
,α

)
. (A.3)

Requiring that the variation of the total action vanishes, δS = 0, one obtains the Einstein

equations

Rµν −
1

2
Rgµν = Tµν . (A.4)
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Since the Einstein tensor is divergence-free by the contracted Bianchi identities (where X;α

is the covariant differentiation of a geometric object X)

Eµν
;ν ≡

(
Rµν − 1

2
Rgµν

)
;ν

= 0 (A.5)

one obtains the local energy-momentum conservation

T µν ;ν = 0 (A.6)

which defines the equations of motion for the matter. Equation (A.5) ensures the integra-

bility of the Einstein equations.

The model for the Yang-Mills thermodynamics is defined by the action (A.1) with

LM = −1

2
∂µφ∂

µφ− V (φ), (A.7)

where φ is a scalar field with a standard kinetic term and a potential V .

A.2. Anti-deSitter space

Consider the action (A.1) and introduce the cosmological constant by setting LM = V0 =

Λ = const < 0. Consider further the following ansatz for the line element squared

ds2 = e2A(z)
(
− dt2 + d~x2 + dz2

)
. (A.8)

There are only two independent nontrivial Einstein equations (A.4):

A′2 − A′′ = 0, (A.9)

Λe2A + 12A′2 = 0, (A.10)

where equations (A.9) and (A.10) follow from the components
(
(tt) + (zz), (zz)

)
of the

corresponding Einstein equations.

Integrating (A.9) one obtains

A = − ln
(c1 + z

c2

)
, (A.11)

where c1 and c2 are integration constants. Insert (A.11) into (A.10) to obtain

c2 = L2 = −12

Λ
. (A.12)

93



A Einstein equations and Anti-deSitter space A.2 Anti-deSitter space

Demanding invariance of (A.8) under scalings, xµ → kxµ, further determines c1 = 0. One

thus has

A = ln
L

z
. (A.13)

We have defined the AdS scale L and obtain the pure AdS metric in Fefferman-Graham

coordinates:

ds2 =
L2

z2

(
− dt2 + d~x2 + dz2

)
. (A.14)

Note that the metric diverges for z → 0, therefore care should be taken when imposing

boundary conditions.

It is possible to introduce a black hole into AdS space by adding a function f(z; zh) to the

metric. Requiring that f(0) = 1 yields the asymptotically AdS space, and f(zh; zh) = 0

defines the black hole horizon. The metric is now of the form

ds2 = e2A(z)

(
− f(z)dt2 + d~x2 +

dz2

f(z)

)
. (A.15)

Accordingly, there are three independent Einstein equations:

A′2 − A′′ = 0, (A.16)

3A′f ′ + f ′′ = 0, (A.17)

12fA′2 − f ′′ + Λe2A = 0. (A.18)

(
From the respective components (tt)/f 2 + (zz), (tt)/f + (xixi), (zz)

)
. Solve (A.17)

remembering the boundary conditions f(0) = 1, f(zh; zh) = 0 and using A = ln L
z

to

obtain

f(z; zh) = 1− z4

z4
h

, (A.19)

and the black hole AdS metric

ds2 =
L2

z2

(
−
(

1− z4

z4
h

)
dt2 + d~x2 +

dz2

1− z4

z4h

)
. (A.20)

Equation (A.18) is fulfilled and becomes (A.10) in the limit z → 0.

We have worked step by step, first considering pure AdS space, then adding a black

hole into it. In the second case the space becomes pure AdS only in the limit z → 0. In

this sense it is a natural extension to consider a deformed AdS space, where A and f are
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no longer given by the simple functions (A.13) and (A.19), but have a more complicated

form. Since the AdS/CFT correspondence demands asymptotically an AdS space we will

recognize (A.12), (A.13) and (A.19) as boundary conditions in the generalized deformed

setting, see (4.7-4.10) . Note that one is forced to introduce at least one more function to

ensure consistency of the equations - otherwise A and f are always given by (A.13) and

(A.19).
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B. Thermodynamics

B.1. Black hole thermodynamics

It was postulated by Hawking [48] and conjectured by Bekenstein [49] that a black hole

can be endowed with a temperature TH and an entropy SBH . The Hawking temperature

is defined by

TH =
κ

2π

∣∣∣
h

=
−gtt,R

4π(−gttgRR)
1
2

∣∣∣
R=Rh

, (B.1)

where κ is the surface gravity at the black hole horizon and the indices RR stand generically

for the radial component of the metric, that is the coordinate defining the black hole horizon

by R = Rh. The Bekenstein-Hawking entropy is

sBH =
Ah

4G5Vh
, (B.2)

where Ah is the surface of the black hole horizon. The quantity G5 is here the “Newton

constant” and we have already scaled the entropy SBH by the horizon volume Vh to obtain

the entropy density sBH = SBH/Vh. The factor 1/4 in (B.2) was conjectured by Beken-

stein and Hawking; the first calculation of the Bekenstein-Hawking entropy by counting

the number of black hole micro-states was done in a supersymmetric setting by Strominger

and Vafa [50], where the factor was confirmed.

Consider the black hole AdS space (A.20). Equations (B.1) and (B.2) yield

T =
1

πzh
, (B.3)

s =
1

4G5

z3
h

L3
, (B.4)

s

T 3
=
L3π3

4G5

= const. (B.5)

Since s/T 3 = const, we see by comparing with (B.9) that the thermodynamic relation s(T )

of a black hole AdS space corresponds to an ideal gas, which is certainly a bad model for
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the Yang-Mills theory thermodynamics. However, as described at the end of section A.2,

by deforming the black hole AdS space one can achieve s/T 3 6= const and, even better, one

can construct a deformation such that the equation of state s(T ) of the SU(3) Yang-Mills

theory is quantitatively reproduced. This is the idea behind the holographic Yang-Mills

thermodynamics model. The quantitative reproduction of the SU(3) Yang-Mills equation

of state is one goal of this thesis.

Observe that in equation (B.2) the entropy is proportional to the area, not as one would

naively expect to the volume of the black hole horizon. This has led physicists to consider

far-reaching consequences, potentially radically changing our understanding of the world.

The main idea drawn from (B.2) is that all information of the 3-dimensional world we

live in is - or can be - stored on 2-dimensional surfaces, be it the horizons of black holes

or the surface of our universe itself. This idea is known as the “holographic principle”,

mainly promoted by Susskind [51]. In fact, the AdS/CFT correspondence (see chapter

3) is thought to be the most prominent manifestation of this principle: a quantum field

theory on a 4-dimensional manifold describes one-to-one a theory of quantum gravity in

5 dimensions and vice versa.

B.2. Standard thermodynamics

In this section we collect standard thermodynamic relations that will be used throughout

the thesis assuming that s(T ) is known. The pressure p(T ) follows then from

p(T ) = p0 +

T∫
T0

s(T )dT, (B.6)

where p0 = p(T0) is an integration constant. One option in our context is to start at the

deconfinement temperature: T0 = Tc, p0 = p(Tc).

The energy density e(T ) can be obtained via the Gibbs relation (for µ = 0)

sT = e+ p. (B.7)

The squared speed of sound c2
s = ∂p/∂e is given by

c2
s =

s

T

(
ds

dT

)−1

. (B.8)
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For an ideal gas of free gluons (Stefan-Boltzmann limit) s can be calculated analytically,

p and e follow with (B.6) and (B.7):

sSB =
4

45
π2(N2 − 1)T 3, (B.9)

pSB =
1

45
π2(N2 − 1)T 4, (B.10)

eSB =
1

15
π2(N2 − 1)T 4 = 3pSB, (B.11)

where a SU(N) gauge group was assumed. In the large-N context of the AdS/CFT cor-

respondence one often replaces (N2 − 1)→ N2.

The interaction measure I (also called trace anomaly) given by

I = e− 3p (B.12)

is a useful quantity, as it measures the deviation of a gas from ideal behavior. For an ideal

gas of massless particles e = 3p and consequently I ≡ 0. Another measure for the deviation

of a gas from Stefan-Boltzmann behavior is the conformality measure ∆c2
s defined as

∆c2
s =

1

3
− c2

s. (B.13)

For an ideal gas of massless particles c2
s = 1/3 and ∆c2

s ≡ 0. Instead of an ideal gas one

may also refer to a conformal gas which obeys by definition the relations I = 0, ∆c2
s = 0

in three spatial dimensions.

Note that p0 in (B.6) is an a priori unknown integration constant entering the expres-

sions for p, e and I. In our model, the value of p0 will be taken from the lattice data.
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C. Approximate determination of the

parameters

To obtain suitable initial conditions for the fitting procedure in section 5.3, it is useful to

calculate the values of the parameters γ, b and G5/L
3 using input from the Yang-Mills

theory.

The parameter γ

For large values of φh, φh & 4, the potential (5.7) becomes

V ≈ −12

L2
eγφ. (C.1)

The potential in equation (C.1) is the Chamblin-Reall potential, for which the analytic

solution of the equations (4.34-4.37) is known [2]. The entropy density and the temperature

behave as

LTCR =
1

4π

8− 3γ2

2− 3γ2
exp

([γ
2
− 1

3γ

]
φh

)
. (C.2)

G5sCR =
1

16π
exp

(
− φh

γ

)
, (C.3)

In contrast, the squared speed of sound

c2
s =

d lnT

d ln s
=

1

3
− γ2

2
(C.4)

is independent of the temperature. Assuming, that the Chamblin-Reall behavior arises

already for T ≈ Tc, one can fix γ to the Yang-Mills theory (or QCD) value of the squared

speed of sound at Tc. In [2] and [43] the value γ = 0.606 was obtained using equation

(C.4) with c2
s ≈ 0.15, which is the expected value of the squared speed of sound in QCD

at T ≈ Tc within the hadron resonance gas model.

99



C Approximate determination of the parameters

The parameter b

Consider equation (2.10), which is repeated here for convenience

T µµ =
β(α)

8πα2
Tr
(
FµνF

µν
)
. (C.5)

For any operator O, the full scaling dimension ∆ is defined by

µ
dO
dµ

= −∆O, (C.6)

where ∆ = ∆0 + γ, i.e. the full scaling dimension is the sum of the classical dimension and

the anomalous dimension. Note that, since the trace of the Yang-Mills energy momentum

tensor T µµ is renormalization group (RG) invariant, its scaling dimension is identical to

the classical one, i.e. ∆ = ∆0 = 4. Differentiate equation (C.5) with respect to µd/dµ to

obtain for the scaling dimension ∆ of Tr
(
FµνF

µν
)
:

∆ = 4 +
dβ(α)

dα
− 2β(α)

α
, (C.7)

where, to obtain the second term on the right hand side, we used

µ

β(α)

dβ(α)

dµ
=
dµ

dα

dβ(α)

dµ
=
dβ(α)

dα
. (C.8)

With the knowledge of the perturbative Yang-Mills β function and with the so obtained

α(µ)-dependence one can match the scaling dimension ∆ of Tr
(
FµνF

µν
)
, which appears

in the potential (5.7) via equation (5.8) to the perturbative result at some energy scale µ

using equation (C.7).

The parameter G5

The 5D “Newton constant“ is related to the rank N of the boundary theory SU(N) gauge

group by the AdS/CFT correspondence via

G5 =
1

16πM3
pN

2
, (C.9)

where Mp is the Planck mass. Equate the expressions for s/T 3 of the black hole AdS space

(B.5) and the Stefan-Boltzmann limit (B.9) to obtain using (C.9)
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C Approximate determination of the parameters

L3π3

4G5

= 4π4L3M3
pN

2 =
4

45
π2(N2 − 1). (C.10)

One thus has

(LMp)
3 =

1

45π2

N2 − 1

N2
. (C.11)

Inserting (C.11) into (C.9) one obtains

L3

G5

=
16

45π
(N2 − 1). (C.12)

Set N = 3 to obtain
G5

L3
≈ 1.1044. (C.13)
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D. Reviews of the AdS/CFT

correspondence

We list a number of reviews on the AdS/CFT correspondence.

� [13]: an extensive review touching many string theoretic aspects, as well as different

versions of the correspondence.

� [15]: a review with an emphasis on supersymmetric aspects.

� [52]: a review starting from general relativity, well suited for a reader unfamiliar

with string theory and supersymmetry.

� [25]: a review focusing on different aspects of the correspondence, including sample

calculations.

� [17]: an extensive review, focusing on the application of the correspondence to QCD

and Heavy-Ion Collisions, requires no prior knowledge of string theory or supersym-

metry.

� [30]: a top-down oriented review on the description of mesons within the AdS/CFT

correspondence.
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