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Kurzdarstellung

Im Rahmen der AdS/CFT Korrespondenz wird in dieser Arbeit die Zustandsgleichung des
Quark-Gluon Plasmas untersucht. Dazu wird ein holographisches Modell verwendet, welches
aus der klassischen Einstein’schen Gravitationstheorie in 5 Dimensionen gekoppelt an ein
Skalarfeld mit einem nicht-trivialen Potential besteht. Es werden zwei Potentialansätze ana-
lysiert, welche von Kiritsis und Gubser stammen. Die neuesten Daten der Gittereichtheorie
für die QCD-Zustandsgleichung werden verwendet, um die Potentialparameter zu fitten. Beim
Confinement-Deconfinement Übergang des Quark-Gluon Plasmas handelt es sich um einen
sogenannten crossover. Um für die Fitprozedur eine Skala festzulegen, werden jeweils Decon-
finement Temperaturen 𝑇𝑐 definiert. Es wird festgestellt, dass das Kiritsis Modell keine gute
Beschreibung der Zustandsgleichung ermöglicht. Auch durch eine Modifikation des Potentials
kann keine Verbesserung erreicht werden. Im Gegensatz dazu ermöglicht das Gubser Modell
eine gute Reproduktion der Zustandsgleichung im Rahmen der Unsicherheiten der Gitterdaten.
Im Temperaturbereich 1 ≤ 𝑇/𝑇𝑐 . 3.5 können die Entropiedichte und der Druck quantitativ
sehr gut beschrieben werden. Bei der Schallgeschwindigkeit und dem Wechselwirkungsmaß
treten in Abhängigkeit des Fitergebnisses Unterschiede im Hochtemperaturbereich auf.

Abstract

In the context of the AdS/CFT correspondence, the equation of state of the quark-gluon plasma
is studied in this work. A holographic model is used, which employs 5-dimensional Einstein
gravity coupled to a scalar field with a non-trivial potential. Two potential approaches are
analyzed, originating from Kiritsis and Gubser. The most recent data of lattice gauge theory
for the QCD equation of state are used to fit the potential parameters. The confinement-
deconfinement transition of the quark-gluon plasma is a so-called crossover. To set a scale
for the fit procedure, deconfinement temperatures 𝑇𝑐 are defined respectively. It is found
that the Kiritsis model does not allow a good description of the equation of state. Also by
a modification of the potential, no improvement can be achieved. In contrast, the Gubser
model provides a good reproduction of the equation of state within the uncertainties of the
lattice data. In the temperature range 1 ≤ 𝑇/𝑇𝑐 . 3.5 the entropy density and pressure can
be quantitatively described very well. With regard to the speed of sound and the interaction
measure, differences occur in the high temperature range depending on the fit result.
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1 Introduction

In the early universe, a transition from the quark-gluon plasma, i.e. a deconfined phase dom-
inated by colored degrees of freedom, to a confined phase (color neutral hadrons) occurred.
Nowadays, this transition can be reproduced in heavy ion collisions at the Large Hadron
Collider (LHC, CERN). The fundamental theory, which describes these strong interactions
between quarks and gluons is Quantum Chromodynamics (QCD). An important research aim
is the accurate description of the QCD phase diagram and the thermodynamics of strongly
interacting matter. Lattice gauge theory is an established method for such non-perturbative
effects. A new method is the Anti de Sitter - Conformal Field theory (AdS/CFT) correspon-
dence, which was discovered by Maldacena in 1997. This correspondence relates quantum field
theories with conformal invariance (living in our flat 4-dimensional space) and string theory.
The latter one is a quantum theory of gravity and a promising candidate for the consistent
quantization of gravity. Strong CFT coupling is translated into weak string coupling and
vice versa. In a certain limiting case, the AdS/CFT correspondence describes the duality
between a CFT and a classical theory of gravity. In fact, QCD is not a CFT. However, the
quark-gluon plasma at high energies can be approximately described by a CFT. Therefore, the
correspondence may be employed.

In this thesis, the duality of a 5-dimensional gravity theory and a quantum field theory in
4 dimensions is applied, to study the strongly coupled quark-gluon plasma. Since the field
theory lives at the boundary of the higher dimensional gravity theory, one speaks also of a
holographic principle. It is the goal of this thesis to reproduce the equation of state of the
quark-gluon plasma from the lattice results.

The thesis is organized as follows. In chapter 2 we describe the necessary theoretical prin-
ciples. At first, the fundamentals of general relativity are described. Afterwards, Quantum
Chromodynamics is introduced. We focus on the properties and the Lagrangian formulation
of Yang-Mills theories. The QCD phase diagram is described. The relevant elements of string
theory are discussed. The AdS/CFT correspondence is introduced in section 2.4. The Anti
de Sitter space and conformal field theories are defined. Different variants and the validity
of the correspondence are discussed. We give a brief introduction into the state map of the
holographic principle. In chapter 3, we evaluate the lattice gauge theory results, since the
holographic models are fitted to the data. Chapter 4 deals with these holographic models.
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1 Introduction

We consider two potential approaches, namely the models from Kiritsis and Gubser. The fit
procedure is described for the reconstruction of the QCD equation of state. The fit results are
discussed in comparison to the lattice results.
Appendix A is devoted to some more detailed calculations of the Gubser model. Appendix B
is a treatise, which summarizes previous studies in which we have described the pure gluon
plasma holographically.
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2 Theoretical principles

2.1 General relativity

General theory of relativity (GTR) is a relativistic generalization of the Newtonian theory of
gravitation [1]. Because the gravitational field contains energy, it represents itself a source of
the field. The first hypothesis, which underlies GTR, is that the metric in the four-dimensional
event space is pseudo-Riemannian [2]. There are coordinates (𝑥0, 𝑥⃗), in which the metric tensor
𝑔𝜇𝜈 and the first fundamental form have the following form

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (2.1)

In an infinitesimal neighborhood of a point on the manifold the relation 𝑔𝜇𝜈 = 𝜂𝜇𝜈 +𝛾𝜇𝜈 holds,
where 𝜂𝜇𝜈 is the Euclidean metric and the coefficients fulfill the condition |𝛾𝜇𝜈 | ≪ 1. The
energy-momentum tensor 𝑇 𝜇𝜈 = 𝑇 𝜇𝜈(𝑥0, 𝑥⃗) describes the motion and distribution of matter
in spacetime except those arising from the gravitational field. The component 𝑇 00 represents
the energy density. In analogy to the law of conservation of energy and momentum in special
relativity, it is required that the tensor 𝑇 𝜇𝜈 is covariantly conserved

∇𝜇𝑇
𝜇𝜈 ≡ 𝑇 𝜇𝜈

;𝜇 = 0 . (2.2)

Here, ∇𝜇 represents the absolute or covariant derivative. In an arbitrary coordinate system
this relation does not imply a global conservation law of energy or momentum in general.
The second fundamental hypothesis in general relativity is that the energy-momentum tensor
is given by the pseudo-Riemannian geometry itself. The simplest tensor that fulfills condi-
tion (2.2) is the so-called Einstein tensor 𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − 𝑅

2
𝑔𝜇𝜈 . Here, 𝑅𝜇𝜈 is the Ricci tensor

and 𝑅 the Ricci scalar. This results in a direct proportionality between 𝐺𝜇𝜈 and 𝑇𝜇𝜈 . The
proportionality constant 𝜅 describes the coupling between matter and spacetime curvature.
Written with the cosmological constant Λ one obtains the Einstein field equations

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 ≡ 𝑅𝜇𝜈 −
𝑅

2
𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 . (2.3)
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2 Theoretical principles 2.1 General relativity

In a four-dimensional space 𝜅 is related to Newton’s gravitational constant 𝐺 via 𝜅 = 8𝜋𝐺
𝑐4

.
The equations of motion for a point-like particle of mass 𝑚 are

𝑚
𝑑2𝑥𝜇

𝑑𝜏 2
+𝑚Γ𝜇

𝛼𝛽

𝜕𝑥𝛼

𝜕𝜏

𝜕𝑥𝛽

𝜕𝜏
= 𝐾𝜇 (2.4)

with 𝜏 as a affine curve parameter, Γ𝜇
𝛼𝛽 as the Christoffel symbol of the second kind and

𝐾𝜇 as a non-gravitational force. If 𝐾𝜇 = 0, the world line of a point particle is a geodesic
in spacetime. Thus, the tensor 𝑇𝜇𝜈 is related to the gravitation field (which determines the
course of the geodesics for point particles) through the pseudo-Riemannian metric [2].

Einstein’s field equations (2.3) can also be derived from an extremum principle with the Euler-
Lagrange equations. The corresponding action is (see [3] for the original work from Hilbert
or [4, 5] for detailed discussions)

𝑆 = 𝑆𝐹 + 𝑆𝑀 =

∫︁
d4𝑥

√
−𝑔
[︂
𝑅

2𝜅
+ ℒ𝑀(𝐴, 𝑔𝜇𝜈)

]︂
. (2.5)

𝑆𝐹 denotes the action for the free gravitational field and 𝑆𝑀 stands for the action of the matter
field, where 𝐴 contains all „matter variables“ and 𝑔 ≡ det(𝑔𝜇𝜈). Requiring 𝛿𝑆 = 0 yields at first
2𝜅𝛿𝑆𝐹 =

∫︀
d4𝑥
[︀
(𝛿𝑔𝜇𝜈)𝑅𝜇𝜈

√
−𝑔+𝑔𝜇𝜈(𝛿𝑅𝜇𝜈)

√
−𝑔+𝑅(𝛿

√
−𝑔)

]︀
= 0. Using 𝛿

√
−𝑔 = − 1

2
√
−𝑔
𝛿𝑔 =

−
√
−𝑔
2
𝑔𝜇𝜈𝛿𝑔

𝜇𝜈 , one obtains

2𝜅𝛿𝑆𝐹 =

∫︁ (︂
𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅

)︂
𝛿𝑔𝜇𝜈

√
−𝑔d4𝑥+

∫︁
𝑔𝜇𝜈𝛿𝑅𝜇𝜈

√
−𝑔d4𝑥 ∀𝛿𝑔𝜇𝜈 . (2.6)

The second term vanishes because it can be converted to a surface integral by using Stokes
integral theorem. Thus, the requirement 2𝜅𝛿𝑆𝐹 = 0 leads to 𝐺𝜇𝜈 = 0. The variation of 𝑆𝑀

w.r.t. to the matter variables leads to the matter field equations

𝜕ℒ𝑀

𝜕𝐴
− 𝜕𝜇

𝜕ℒ𝑀

𝜕𝐴,𝜇

= 0 . (2.7)

The variation according to 𝑔𝜇𝜈 yields

𝛿𝑆𝑀 =

∫︁
d4𝑥

[︂
𝜕(ℒ𝑀

√
−𝑔)

𝜕𝑔𝜇𝜈
𝛿𝑔𝜇𝜈 +

𝜕(ℒ𝑀

√
−𝑔)

𝜕𝑔𝜇𝜈,𝜅
𝛿𝑔𝜇𝜈,𝜅

]︂
=

∫︁
d4𝑥

√
−𝑔1

2
𝑇𝜇𝜈𝛿𝑔

𝜇𝜈 (2.8)

whereby

𝑇𝜇𝜈 :=
2√
−𝑔

𝛿(ℒ𝑀

√
−𝑔)

𝛿𝑔𝜇𝜈
=

2√
−𝑔

[︂
𝜕(ℒ𝑀

√
−𝑔)

𝜕𝑔𝜇𝜈
− 𝜕𝜅

𝜕(ℒ𝑀

√
−𝑔)

𝜕𝑔𝜇𝜈,𝜅

]︂
(2.9)

defines the energy-momentum tensor of the matter. 𝑇𝜇𝜈 is symmetric and, due to the Bianchi
identity, 𝑇 𝜇𝜈

;𝜇 = 0 holds. Since a constant Λ can be added in the action, this results in the
field equations (2.3).
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2 Theoretical principles 2.2 Quantum Chromodynamics

2.2 Quantum Chromodynamics

2.2.1 Properties

Quantum chromodynamics (QCD) describes as a quantum field theory (QFT) strong inter-
actions [6]. It is a non-abelian local gauge theory with symmetry group SU(3). QCD deals
with quarks - massive spin-1

2
fermions with a color charge whereas gluons are the interaction

particles. (These are spin-1 bosons that also carry color charges.) In contrast to quantum
electrodynamics (QED) gluons can interact with each other. Furthermore, the coupling de-
creases with increasing energy or momentum [7]. This leads to the asymptotic freedom for
high energies or momenta: This means that quarks and gluons behave, at small distances,
like free particles and interact weakly. Previously, it was believed that the formation of a
quark-gluon plasma (QGP) is related to asymptotic freedom. It happens, however, that de-
confinement with nearly free quarks and gluons is related also to non-perturbative effects. For
low energies confinement occurs. This refers to the fact that the force between quarks (and
gluons) does not diminish if the distance between them enlarges. Hadronisation denotes the
formation of colorless mesons and baryons when quarks are separated [7]. In this case, quarks
are always bound together into hadrons. Thus, the quark confinement postulate is the same as
that of the non-observability of colored states [6]: All hadron states and physical observables
are color-singlets.

2.2.2 Yang-Mills theories and Lagrangian

The following section shall give a short introduction into the Lagrangian formalism of QCD
as a quantized non-abelian gauge field theory. It is based on [6].

Yang-Mills theory is obtained by extending the algebra of QED to a more general noncommu-
tative (non-abelian) algebra. Let us consider a quark field 𝜓(𝑥) with mass 𝑚 which belongs to
the N-dimensional fundamental representation of the group 𝐺 (later this will be particularly
the color group SU(3)). 𝐺 can be restricted to semi-simple Lie groups. The corresponding Lie
algebra is generated by 𝑛 generators 𝑇 𝑎, 𝑎 = 1, 2, . . . , 𝑛 which fulfill the commutation rela-
tions [𝑇 𝑎, 𝑇 𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑇 𝑐, where 𝑓𝑎𝑏𝑐 are the structure constants. The transformation property
of 𝜓(𝑥) under the operation of the group element 𝑈 of 𝐺 is given by

𝜓′
𝑖 = 𝑈𝑖𝑗𝜓𝑗 , 𝑈 = exp(−𝑖𝑇 𝑎𝜃𝑎) (2.10)

with 𝜃𝑎 = 𝜃𝑎(𝑥) as parameters. We use the following ansatz for the covariant derivative to
construct an invariant Lagrangian under local gauge transformations

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝑇 𝑎𝐴𝑎
𝜇 , (2.11)
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2 Theoretical principles 2.2 Quantum Chromodynamics

where 𝐴𝑎
𝜇 are gauge fields and 𝑔 is the coupling representing the interaction strength between

𝜓 and 𝐴𝑎
𝜇. Then, the Lagrangian for the fermion field 𝜓(𝑥) in interaction with the gauge fields

is given by ℒ = 𝜓(𝑖𝛾𝜇𝐷𝜇 −𝑚)𝜓 with 𝑚 as the mass parameter. It can be shown that ℒ is
invariant under (2.10) if 𝐴𝑎

𝜇 obeys the transformation rule

𝑇 𝑎𝐴′𝑎
𝜇 = 𝑈(𝑇 𝑎𝐴𝑎

𝜇 −
𝑖

𝑔
𝑈−1𝜕𝜇𝑈)𝑈−1 . (2.12)

In analogy to QED one can show [𝐷𝜇, 𝐷𝜈 ] = −𝑖𝑔𝑇 𝑎𝐹 𝑎
𝜇𝜈 with 𝐹 𝑎

𝜇𝜈 as the field strength for the
non-abelian gauge fields, defined by

𝐹 𝑎
𝜇𝜈 ≡ 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇𝐴
𝑐
𝜈 . (2.13)

It can be shown that the term 𝐹 𝑎
𝜇𝜈𝐹

𝑎𝜇𝜈 is gauge invariant. Thus, the final form of the La-
grangian which is invariant under (2.10) and (2.12) is

ℒ = −1

4
𝐹 𝑎
𝜇𝜈𝐹

𝑎𝜇𝜈 + 𝜓(𝑖𝛾𝜇𝐷𝜇 −𝑚)𝜓 . (2.14)

The gauge coupling 𝑔 and the mass𝑚 are the parameters for the gauge principle. This principle
includes Lorentz invariance and invariances under space and time reversal. However, (2.14) is
not unique. It is important to note that the Lagrangian includes self-interactions of the gauge
fields (gluons in QCD) through the last term in (2.13). This causes mainly the asymptotic
freedom. Particularly in QCD, 𝐺 corresponds to the color SU(3). Quarks 𝜓 belong to the
fundamental and gluons 𝐴𝑎

𝜇 to the adjoint representations. In QCD, the classical Lagrangian
is given by

ℒ𝑄𝐶𝐷 = −1

4
𝐹 𝑎
𝜇𝜈𝐹

𝑎𝜇𝜈 +

𝑁𝑓∑︁
𝑘=1

𝜓𝑘(𝑖𝛾𝜇𝐷𝜇 −𝑚)𝜓𝑘 (2.15)

where the sum over 𝑘 involves all quark flavors and 𝑎 = 1, 2, . . . , 8.

2.2.3 The QCD phase diagram

The QCD phase diagram covers different phases of strongly interacting matter as a function
of temperature 𝑇 and baryo-chemical potential 𝜇𝐵 as sketched in figure 2.1. A first prototype
was conjectured in [9]. The current research is still far remote from a complete understanding
of the QCD thermodynamics. However, this section gives a summary of the established phases.
The discussion follows [10].

For low 𝑇 and 𝜇𝐵, quarks and gluons exist only as colorless bound states, i.e. hadrons and pure
glueballs. Thus, in this region confinement is present (see also section 2.2.1 for properties).
For high 𝑇 and/or high 𝜇𝐵, the deconfined QGP occurs. Quarks and gluons as the degrees
of freedom interact strongly. Obviously, there is a deconfinement transition between those

6



2 Theoretical principles 2.3 String theory

Figure 2.1: The QCD phase diagram, taken from [8].

two phases. For low 𝜇𝐵, it is a crossover at a confinement scale 𝑇𝑐 ≈ 150 − 170 MeV [11, 12],
while for higher 𝜇𝐵 a first-order phase transition is assumed that probably starts in a critical
point. Furthermore a chiral phase transition is expected, during which the chiral symmetry
of the QCD-Lagrangian is spontaneously broken [13]. Details of the phase diagram and the
transition curves are still matter of debate, e.g. also the phases for higher 𝜇𝐵 and lower 𝑇 .

Heavy-ion collisions are the most important experimental method for studying QCD thermo-
dynamics. Current facilities are the LHC or RHIC, a future facility is FAIR1 (see figure 2.1 for
their range in the phase diagram). During a heavy-ion collision, the particles interact strongly
and form a QGP fireball. While expanding, the plasma cools and reaches the transition area.
Then, quarks and gluons confine and form a gas of hadron resonances [10]. The resonances
freeze out and decay products are emitted, which might be detected. The hadrons are also
subject to the electromagnetic or weak interaction in the final state. There occur also direct
probes of the fireball such as real and virtual photons.

2.3 String theory

The following section shall give a short introduction into the main concepts of string theory
that are important for AdS/CFT correspondence. It is mainly based on [14] and [15]. For an
extensive summary see e.g. [16].

String theory is the theory of relativistic strings i.e. a generalization of QFT whereby the
fundamental objects are extended, one-dimensional lines or loops. Strings can have a tension
(energy per unit length). Thus, the only possible action is the one whose variational law
minimizes the total area of the string worldsheet (surface swept out by the moving string) in

1Large Hadron Collider at CERN, Relativistic Heavy Ion Collider at the Brookhaven National Laboratory
and Facility for Antiproton and Ion Research at GSI in Darmstadt
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2 Theoretical principles 2.3 String theory

spacetime. In a first step, we consider the bosonic string. Let 𝑋𝜇(𝜎, 𝜏) be the coordinates for
the string position (𝜎: worldsheet length, 𝜏 : worldsheet time). The Nambu-Goto action is

𝑆𝑁𝐺 = −𝑇
∫︁
𝑑𝜎𝑑𝜏

√︀
det(ℎ𝑎𝑏) , (2.16)

where 𝑇 = 1
2𝜋𝛼′ is the string tension, connected via 𝛼′ = 𝑙2𝑠 to the intrinsic string length,

and ℎ𝑎𝑏 = 𝜕𝑎𝑋
𝜇𝜕𝑏𝑋

𝜈𝑔𝜇𝜈(𝑋) is the induced spacetime metric. The Nambu-Goto action allows
the calculation of the string trajectory through spacetime. A more fundamental form is the
Polyakov action

𝑆𝑃 [𝑋, 𝛾] = −𝑇
2

∫︁
𝑑𝜎𝑑𝜏

√
−𝛾𝛾𝑎𝑏ℎ𝑎𝑏 . (2.17)

Here, 𝛾𝑎𝑏 has the interpretation as an independent metric on the worldsheet. Note that
quantum mechanically the two actions are not the same, because the Polyakov action has more
symmetries.2 Using the equation of motion with respect to 𝛾𝑎𝑏, one can show the coincidence
with (2.16). Essentially, one needs to define boundary conditions for strings. An open string
can have Neumann (free endpoints) or Dirichlet (fixed endpoints) boundary conditions.

The action can be easily generalized to a 𝑝-brane action, i.e. a 𝑝-brane sweeping out a (𝑝+ 1)-
dimensional world volume in 𝐷-dimensional spacetime. The action takes the form

𝑆𝑝 = −𝑇𝑝
∫︁
𝑑𝜇𝑝 , (2.18)

whereby 𝑇𝑝 is the 𝑝-brane tension and 𝑑𝜇𝑝 the (𝑝 + 1)-dimensional volume element, given
by 𝑑𝜇𝑝 =

√︀
− det𝐺𝛼𝛽𝑑

𝑝+1𝜎 with 𝐺𝛼𝛽 = 𝑔𝜇𝜈(𝑋)𝜕𝛼𝑋
𝜇𝜕𝛽𝑋

𝜈 , (𝛼, 𝛽 = 0, . . . , 𝑝). Fixing a gauge
reduces the closed string action to free 2-dimensional bosons. The solution of the wave equation
(that is yielded by the 𝑋𝜇 equation of motion) contains left and right moving wave modes.
The open string mode expansion has standing waves for its solution.

The next step is to apply the canonical quantization to the worldsheet field theory under
consideration of physical state conditions. This yields the particle spectrum: massless particles
are the graviton, an antisymmetric tensor and a scalar (dilaton). Quantum consistency requires
the dimension 𝐷 = 26. Strings can interact with each other and the strength of the interaction
is governed by the string coupling 𝑔𝑠.

Since the bosonic string is unstable (there is a tachyonic ground state), one introduces a
superstring (i.e. a supersymmetric string). In general, there are two ways to introduce super-
symmetry in string theory: On one hand, the Ramond-Neveu-Schwarz (RNS) formalism uses
two-dimensional worldsheet supersymmetry. A different way is the Light-Cone Green-Schwarz

2Indeed, the Weyl invariance is not present in the Nambu-Goto action. The worldsheet Weyl invariance is
defined by 𝑋 ′𝜇(𝜎, 𝜏) = 𝑋𝜇(𝜎, 𝜏) , 𝛾′

𝑎𝑏(𝜎, 𝜏) = exp {2𝜔(𝜎, 𝜏)} 𝛾𝑎𝑏(𝜎, 𝜏) for any 𝜔(𝜎, 𝜏). Both actions have the
following symmetries: spacetime Poincaré invariance and worldsheet diffeomorphism invariance.
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2 Theoretical principles 2.4 AdS/CFT correspondence

formalism. For the first one, the Polyakov action is extended to a supersymmetric action

𝑆 = −𝑇
2

∫︁
𝑑𝜎𝑑𝜏(𝜕𝑎𝑋

𝜇𝜕𝑎𝑋𝜇 − 𝑖𝜓𝜇𝜌𝑎𝜕𝑎𝜓𝜇) , (2.19)

where 𝜌𝑎(𝑎 = 0, 1) are Dirac matrices and 𝜓 is a fermion field. The equations of motion for the
fermion fields are given by the massless Dirac equation in two dimensions. After applying the
canonical quantization one can calculate the spectrum. (It is in part obtained by projecting
out some of the bosonic string states.) Now, the superstring critical dimension is 𝐷 = 10.
The superstring is stable and the Kaluza-Klein dimensional reduction needs to be applied to
get a 4-dimensional theory. Imposing self-consistent backgrounds for strings, the low-energy
limit (𝛼′ → 0) of string theory is supergravity. Depending on the number of supersymmetries
and minimal fermions (and other properties), there are different types of string theories in 10
dimensions. Relevant for the holographic approach is type IIB supergravity, which has two
minimal 10-dimensional fermions of the same chirality.

An important concept are 𝐷-branes (for a comprehensive discussion see e.g. [17]). These are
(𝑝+ 1)-dimensional endpoints of strings, that act as dynamical walls. They are introduced as
follows: In contrast to closed strings, open strings need to have boundary conditions defined
on the endpoints. Therefore, there is an additional boundary term in the Polyakov action:

𝛿𝑆𝑃,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = − 1

2𝜋𝛼′

∫︁
𝑑𝜏

√
−𝛾𝛿𝑋𝜇 × 𝜕𝜎𝑋𝜇|𝜎=𝑙

𝜎=0 . (2.20)

In case of Neumann boundary conditions (𝜕𝜎𝑋𝜇 = 0 at 𝜎 = 0, 𝑙) the endpoints move with the
speed of light. Dirichlet boundary conditions (𝛿𝑋𝜇 = 0 at 𝜎 = 0, 𝑙) imply fixed endpoints.
There exist (𝑝 + 1) Neumann boundary conditions (in 𝑝 spatial dimensions plus time) and
(𝐷 − 𝑝 − 1) Dirichlet boundary conditions. As a constraint, the string endpoints live on
(𝑝 + 1)-dimensional dynamical (and perhaps different) walls, so-called 𝐷- or 𝐷𝑝-branes. One
can prove that 𝑁 coincident 𝐷-branes give an U(N) gauge group and that there is a theory of
open strings in the adjoint of U(N). The important fact for the holographic principle is, that
the low-energy limit of this theory is a SU(N) Yang-Mills theory. Thus, in 4 dimensions, the
theory on the world-volume of 𝑁 𝐷3-branes is 𝒩 = 4 Super Yang-Mills.3 4

2.4 AdS/CFT correspondence

The following sections outline the holographic principle. The AdS/CFT correspondence was
originally conjectured by Maldacena in [19]. Gubser, Klebanov and Polyakov worked out de-

3It is beyond the scope of this thesis to give a introduction to supersymmetric Yang-Mills theory; see e.g. [18]
for a detailed discussion.

4The quantity 𝒩 represents the number of independent supersymmetries of the algebra [18], i.e. the number
of noncommutative operators, which generate supersymmetric transformations.
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2 Theoretical principles 2.4 AdS/CFT correspondence

tails in [20]. A precise operator-field correspondence was proposed by Witten in [21]. However,
the following discussion is based on [15], which is especially recommendable for an introductory
level.

2.4.1 Anti de Sitter space

Anti de Sitter (AdS) space in 𝑑 dimensions can be defined by an embedding in (𝑑+1) dimensions
as the Lorentzian version of a Lobachevski space:

𝑑𝑠2 = −𝑑𝑥20 +
𝑑−1∑︁
𝑖=1

𝑑𝑥2𝑖 − 𝑑𝑥2𝑑+1 , −𝑥20 +
𝑑−1∑︁
𝑖=1

𝑥2𝑖 − 𝑥2𝑑+1 = −𝑅2 . (2.21)

The AdS space has a SO(2, d-1) invariance.5 It is possible to write the metric of this space
in various coordinates. Global coordinates cover the whole space (in contrast to Poincaré
coordinates6) with the metric

𝑑𝑠2𝑑 = 𝑅2(− cosh2 𝜌 𝑑𝜏 2 + 𝑑𝜌2 + sinh2 𝜌 𝑑Ω⃗2
𝑑−2) =

𝑅2

cos2 𝜃
(−𝑑𝜏 2 + 𝑑𝜃2 + sin2 𝜃 𝑑Ω⃗2

𝑑−2) (2.22)

with 𝑑Ω⃗2
𝑑−2 as the metric on the unit (𝑑− 2)-dimensional sphere, 𝜏 ∈ [0, 2𝜋] and 𝜌 ∈ R+. The

last equality is gained by the change tan 𝜃 = sinh 𝜌 with 𝜃 ∈ [0, 2𝜋]. Using the transformations
𝑟 ≡ 𝑅 sinh 𝜌 and 𝑡 ≡ 𝑅𝜏 , the metric becomes

𝑑𝑠2𝑑 = −𝑓(𝑟)𝑑𝑡2 +
1

𝑓(𝑟)
𝑑𝑟2 + 𝑟2𝑑Ω⃗2

𝑑−2 , 𝑓(𝑟) = 1 +
𝑟2

𝑅2
. (2.23)

AdS space can be represented by the Penrose diagram, which is a cylinder obtained by the
rotation of the infinite strip between 𝜃 = 0 and 𝜃 = 𝜋/2 around the 𝜃 = 0 axis. The boundary
of AdS𝑑 in global coordinates is ℛ𝜏 × 𝑆𝑑−2 with ℛ𝜏 as the infinite vertical line of time and 𝑆
is a sphere.

Moreover, AdS𝑛 space is a 𝑛-dimensional solution of the Einstein equations with the Lagrangian
density ℒ = 1

16𝜋𝐺𝑛
(𝑅 − 2Λ). There is a negative cosmological constant (due to the second

constant term in ℒ), related to a constant energy-momentum tensor via 𝑇𝜇𝜈 = Λ𝑔𝜇𝜈 . Thus,
the field equations are [22]

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 0 . (2.24)

AdS space is a maximal symmetric space with constant negative curvature.

5That group rotates the first 𝑑 coordinates 𝑥𝜇 by 𝑥′𝜇 = Λ𝜇
𝜈𝑥

𝜈 .
6The metric in Poincaré coordinates is given by 𝑑𝑠2 = 𝑅2

𝑥2
0

(︁
−𝑑𝑡2 +

∑︀𝑑−2
𝑖=1 𝑑𝑥2

𝑖 + 𝑑𝑥2
0

)︁
with −∞ < 𝑡, 𝑥𝑖 <

+∞; 0 < 𝑥0 < +∞.
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2 Theoretical principles 2.4 AdS/CFT correspondence

2.4.2 Conformal field theories

Conformal field theories (CFT) are quantum field theories which are invariant under confor-
mal transformations. This involves coordinate transformations that act on flat space in 𝑑

dimensions (𝑅1,𝑑−1) and are defined by 𝑥𝜇 ↦→ 𝑥′𝜇(𝑥) so that

𝑑𝑥′𝜇𝑑𝑥
′
𝜇 = [Ω(𝑥)]−2𝑑𝑥𝜇𝑑𝑥𝜇 , (2.25)

whereby [Ω(𝑥)]−2 is a space dependent scale factor.

In QFT, the procedure of renormalization introduces a renormalization- or energy-scale 𝜇 into
the theory. The 𝛽 function characterizes the running of the coupling constant 𝑔 with the scale:

𝛽(𝑔) = 𝜇
𝑑𝑔

𝑑𝜇
. (2.26)

A scale invariant theory7 is per definition 𝜇-independent and thus has a zero 𝛽 function.
More generally, a scale invariant theory obeys mostly also a larger conformal invariance. The
infinitesimal conformal transformation is

𝑥′𝜇 = 𝑥𝜇 + 𝑣𝜇(𝑥) , Ω(𝑥) = 1 − 𝜎𝜈(𝑥)

⇒ 𝜕𝜇𝑣𝜈 + 𝜕𝜈𝑣𝜇 = 2𝜎𝜈𝛿𝜇𝜈 ⇒ 𝜎𝜈 =
1

𝑑
𝜕 · 𝑣 (2.27)

with the general solution (𝑑 > 2)

𝑣𝜇(𝑥) = 𝑎𝜇 + 𝜔𝜇𝜈𝑥𝜈 + 𝜆𝑥𝜇 + 𝑏𝜇𝑥
2 − 2𝑥𝜇𝑏 · 𝑥 . (2.28)

The terms 𝜆, 𝑎𝜇, 𝑏𝜇, 𝜔𝜇𝜈 correspond to scale transformations, translations, special conformal
transformations8 and rotations. In 𝑑 > 2 Minkowski dimensions, the symmetry group of
these conformal transformations is SO(2, d). Remarkably, AdS𝑑+1 has got the same invariance
group. This may be understood as a hint of a relation between a conformal field theory in
𝑑-dimensional Minkowski space and a gravitational theory in AdS𝑑+1.

𝒩 = 4 Super Yang-Mills theory in 4 dimensions is a representation of the conformal group. It
has a SU(N) gauge group and the fields {𝐴𝑎

𝜇, 𝜓
𝑎𝑖
𝛼 , 𝜑

𝑎
[𝑖𝑗]}. This theory possesses quantum scale

invariance since the 𝛽 function is zero.

7Scale transformations are defined by 𝑥′𝜇 = 𝛼𝑥𝜇 ⇒ 𝑑𝑠2 = 𝑑𝑥⃗′2 = 𝛼2𝑑𝑥⃗2. Thus a scale invariant theory is
independent of 𝛼.

8Special conformal transformations are defined by 𝑥𝜇 ↦→ 𝑥𝜇+𝑏𝜇𝑥2

1+2𝑥𝜈𝑏𝜈+𝑏2𝑥2 .
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2 Theoretical principles 2.4 AdS/CFT correspondence

2.4.3 The correspondence: Motivation, definition and validity

As already indicated, AdS/CFT correspondence establishes a connection between a 𝑑-dimen-
sional CFT and a gravity theory in (𝑑 + 1)-dimensional AdS space. We regard 𝑑 = 4 with
𝒩 = 4 supersymmetric Yang-Mills theory with gauge group SU(N) as the CFT and string
theory as the gravity theory.

A first step for the motivation of the duality is the equivalence of 𝐷-branes and (extremal) 𝑝-
branes.9 (The proof was performed by Polchinski in [23].) 𝒩 = 4 supersymmetric Yang-Mills
theory with gauge group SU(N) is the low-energy theory on the worldvolume of 𝑁 𝐷3-branes.
On the other side, extremal 𝑝-branes are yielded as solutions of supergravity, which itself is the
low-energy limit (𝛼′ → 0) of string theory.10 In addition, they also have 𝒩 = 4 supersymmetry
in 𝑑 = 4. Thus, the supergravity solution

𝑑𝑠2 = 𝐻−1/2(𝑟)𝑑𝑥⃗2‖ +𝐻1/2(𝑟)(𝑑𝑟2 +𝑟2𝑑Ω2
5), 𝐻(𝑟) = 1+

𝑅4

𝑟4
, 𝑅 = 4𝜋𝑔𝑠𝑁𝛼

′, 𝑄 = 𝑔𝑠𝑁 (2.29)

corresponds to 𝑁 𝐷3-branes (which therefore curve space). A 𝑝-brane can emit Hawking
radiation. Due to the equivalence, this radiation is dual to the collision of two open strings
(living on a 𝐷-brane) to form a closed string, which can peel of the brane and move away as
Hawking radiation.
One can heuristically derive the correspondence from two different points of view:

∙ On the one hand, we consider the 𝐷-branes with the action

𝑆 = 𝑆𝑏𝑢𝑙𝑘 + 𝑆𝑏𝑟𝑎𝑛𝑒 + 𝑆𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 . (2.30)

The first term refers to closed strings living in the bulk of spacetime. They are related
to supergravity coupled to the massive modes of the string. The second term refers to
open strings living on the 𝐷3-branes. The last term corresponds to the unitary quantum
process, described above. In the low-energy limit (𝛼′ → 0), one has 𝑆𝑏𝑢𝑙𝑘 → 𝑆𝑠𝑢𝑝𝑒𝑟𝑔𝑟𝑎𝑣𝑖𝑡𝑦,
𝑆𝑏𝑟𝑎𝑛𝑒 → 𝑆𝒩=4𝑆𝑌𝑀 and 𝑆𝑖𝑛𝑡 → 0. The last relation is valid, because 𝑆𝑖𝑛𝑡 ∼ 𝑔𝑠𝛼

′. Thus,
(super-)gravity becomes free and there are two decoupled (i.e. non-interacting) systems:
Free gravity in the bulk of spacetime and 4-dimensional 𝒩 = 4 Super Yang-Mills on the
𝐷3-branes.

∙ On the other side, we consider 𝑝-branes, i.e. supergravity solutions. One can show
that there are also two decoupled systems of excitations at low energies. First, gravity

9𝑝-branes were introduced previously through the 𝑝-brane action. However, they can be also regarded as
black holes that extend in 𝑝 spatial dimensions. Extremal 𝑝-branes satisfy 𝑀 = 𝑄. Here, 𝑀 represents the
mass and 𝑄 the charge.

10It is beyond the scope of this thesis to give a introduction to supergravity. However, for a comprehensive
discussion see [24,25]. The latter one is the most complete review of AdS/CFT correspondence.
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2 Theoretical principles 2.4 AdS/CFT correspondence

becomes free at large distances (= low energies or away from the 𝑝-brane in the bulk of
spacetime). Second, at small distances, there exist low-energy excitations.

Identifying the two systems, we obtain the result, that 𝒩 = 4 Super Yang-Mills theory with
gauge group SU(N) on the 𝐷3-branes at large 𝑁 corresponds to the gravity theory at small
distances in the 𝐷-brane background within the limit 𝛼′ → 0. Thus, it is necessary to specify
this gravity theory:
The supergravity solution (2.29) becomes for 𝑟 → 0 with 𝐻 ≈ 𝑅4

𝑟4

𝑑𝑠2 ≈ 𝑟2

𝑅2
(−𝑑𝑡2 + 𝑑𝑥⃗23) +

𝑅2

𝑟2
+𝑅2𝑑Ω2

5 (2.31)

and with the transformation 𝑟/𝑅 ≡ 𝑅/𝑥0

𝑑𝑠2 = 𝑅2−𝑑𝑡2 + 𝑑𝑥⃗23 + 𝑑𝑥20
𝑥20

+𝑅2𝑑Ω2
5 . (2.32)

In fact, equation (2.32) is the metric of 𝐴𝑑𝑆5 × 𝑆5 whereby 𝐴𝑑𝑆5 is in Poincaré coordinates
and 𝑆5 is a 5-sphere with radius 𝑅. In this space, the gauge theory lives at 𝑟 → ∞ or 𝑥0 → 0,
therefore in the 4-dimensional Minkowski boundary of AdS5. Remarkably, 𝑁 is the number of
𝐷3-branes on the string theory side and the rank of the SU(N) gauge group on the CFT side.
The string coupling 𝑔𝑠 is related to the Yang-Mills coupling by11

𝑔𝑠 = 𝑔2𝑌𝑀 . (2.33)

In summary, AdS/CFT correspondence relates string theory in its supergravity limit in 𝐴𝑑𝑆5×
𝑆5 with 𝒩 = 4 supersymmetric Yang-Mills theory with gauge group SU(N) in 4 dimensions
at the Minkowski boundary of AdS5 (in Poincaré coordinates).

As a next step, we consider the limits of validity of the correspondence. One makes the
transition from a quantum string to a classical string and then to supergravity. The latter
requires 𝑅 =

√
𝛼′(𝑔𝑠𝑁)1/4 ≫ 𝑙𝑠. This is fulfilled if 𝑔𝑠𝑁 ≫ 1 or 𝑔2𝑌𝑀𝑁 ≫ 1. Since quantum

string corrections need to be small, 𝑔𝑠 → 0 must hold. Thus, for supergravity, we need the
limits: 𝑔𝑠 → 0, 𝑁 → ∞ and 𝜆 ≡ 𝑔𝑠𝑁 = 𝑔2𝑌𝑀𝑁 constant and large (≫ 1). On the other side,
in the gauge theory, the ’t Hooft coupling 𝜆 ≡ 𝑔2𝑌𝑀𝑁 is small for large 𝑁 : 𝜆 ≪ 1 in contrast
to the other approximation. These opposite regimes justify the notion duality.
AdS/CFT correspondence is valid in different versions:

∙ In the strongest form, AdS/CFT correspondence relates string theory in 𝐴𝑑𝑆5 × 𝑆5 to
𝒩 = 4 Super Yang-Mills with gauge group SU(N) at any 𝑔𝑠 = 𝑔2𝑌𝑀 and 𝑁 . This regime

11As an example, two open string splitting interactions, governed by 𝑔𝑌𝑀 , are dual to one closed string splitting
interaction, governed by 𝑔𝑠.
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2 Theoretical principles 2.4 AdS/CFT correspondence

is believed to be true.

∙ A strong version is valid at any finite 𝑔𝑠𝑁 under the constraint 𝑁 → ∞ and 𝑔𝑠 → 0.
This corresponds to the ’t Hooft limit of a QFT: 𝑁 → ∞, 𝑔𝑌𝑀 → 0, 𝑁𝑔2𝑌𝑀 = 𝑐𝑜𝑛𝑠𝑡.

∙ The weakest version of AdS/CFT correspondence relates supergravity in 𝐴𝑑𝑆5×𝑆5 with
𝒩 = 4 Super Yang-Mills with gauge group SU(N) and 𝑔2𝑌𝑀 = 𝑔𝑠 at 𝑔𝑠 → 0, 𝑁 → ∞
and 𝜆 = 𝑔𝑠𝑁 fixed and large (≫ 1).

Finally, it should be stated that the holographic principle can also relate global AdS5 space to
𝒩 = 4, 𝑑 = 4 Super Yang-Mills theory. In this case, string theory in global AdS5 × 𝑆5 space
corresponds to a CFT on the ℛ𝜏 × 𝑆3 space, which represent the boundary of global AdS5.

2.4.4 Operator-field duality and Witten prescription

The Witten prescription outlines a precise correspondence between observables and correlators
of the CFT and those of supergravity. In fact, this section shall give just a very short and
basic idea of this duality. See [15,25] for detailed explanations.
Let us consider the Euclidean version of AdS5. Then, the operator-field duality states that an
scalar operator 𝒪 in 𝒩 = 4 Super Yang-Mills of scaling dimension ∆ is related to a field 𝜑 of
mass 𝑚 in 𝐴𝑑𝑆5 × 𝑆5 supergravity with the relation

∆ =
𝑑

2
+

√︂
𝑑2

4
+𝑚2𝑅2 . (2.34)

Applying the Kaluza-Klein procedure of compactification reduces the supergravity fields on
𝑆5.12 Furthermore, let 𝜑0 be the value of a massless field on the boundary of AdS5. The
interpretation is that 𝜑0 is a source for 𝒪. Then, 𝒪 must be a composite operator. On
the field theory side, one can calculate the partition function with sources for 𝒪. This is a
generating functional of correlation functions of the operator and allows the calculation of
expectation values (in Euclidean space):

𝑍𝒪[𝜑0] =

∫︁
𝒟𝜑 𝑒−𝑆𝒩=4𝑆𝑌 𝑀+

∫︀
𝑑4𝑥𝒪(𝑥)𝜑0(𝑥) (2.35)

⇒ ⟨𝒪(𝑥1) . . .𝒪(𝑥𝑛)⟩ =
𝛿𝑛

𝛿𝜑0(𝑥1) . . . 𝛿𝜑0(𝑥𝑛)
𝑍𝒪[𝜑0]

⃒⃒⃒⃒
𝜑0=0

. (2.36)

In AdS5, 𝑍𝒪[𝜑0] should be a partition function of classical supergravity for the field 𝜑 with
source 𝜑0 on its boundary, since we do not expect quantum corrections in the limit 𝑔𝑠 → 0,
𝛼′ → 0, 𝑔𝑠𝑁 ≫ 1. Thus we have

𝑍[𝜑0] = 𝑒−𝑆𝑠𝑢𝑝𝑒𝑟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 [𝜑[𝜑0]] . (2.37)
12This procedure allows also the following duality: Gravity on AdS5 is dual to a CFT in 4 dimensions.
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Finally, Wittens prescription for the correlation functions of massless fields becomes

𝑍𝒪[𝜑0]𝐶𝐹𝑇 =

∫︁
𝒟𝜑 𝑒−𝑆+

∫︀
𝑑4𝑥𝒪(𝑥)𝜑0(𝑥) = 𝑍𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙[𝜑0]𝐴𝑑𝑆 = 𝑒−𝑆𝑠𝑢𝑝𝑒𝑟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 [𝜑[𝜑0]] . (2.38)

A more general form states [16]

𝑍𝑠𝑡𝑟𝑖𝑛𝑔(𝜑0) =

∫︁
𝜑0

𝒟𝜑 𝑒−𝑆𝑠𝑡𝑟𝑖𝑛𝑔 =

⟨
exp

∫︁
𝑆𝑑

𝜑0𝒪
⟩

𝐶𝐹𝑇

. (2.39)
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3 Evaluation of the lattice data results

Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a
space-time lattice [26]. It has become a standard method for non-perturbative gauge theory
calculations, particular for QCD. The main idea is to evaluate the partition function stochas-
tically on a finite number of Euclidean spacetime points. To obtain physical results, the
continuum limit needs to be taken (𝑎 → 0 or 𝑁𝜏 → ∞).13 The main quantity is the interac-
tion measure (or trace anomaly) that is determined directly from the partition function. Other
thermodynamic quantities are calculated out of it.

Essentially, our analyses are based on results of two collaborations that perform lattice QCD
studies: The Wuppertal-Budapest (WuB) and the hotQCD collaborations. This chapter aims
to analyze these data since the holographic model is fitted to the QCD lattice results. The
WuB data are taken from [11] and the hotQCD data originated from [27]. Both collaborations
calculate the QCD equation of state at zero baryon chemical potential (𝜇𝐵 = 0) with physical
quark masses.

Figure 3.1 shows the entropy density 𝑠, the speed of sound 𝑐2𝑠, the pressure 𝑝 and the interaction
measure 𝐼 in dependence of the temperature 𝑇 . To obtain dimensionless values, the quantities
𝑝 and 𝐼 are usually scaled with 𝑇 4, while 𝑠 uses a scaling with 𝑇 3. The graphs contain two
different data sets from the hotQCD collaboration, referred to as HISQ/tree and stout. These
are based on different lattice actions. As one can see, the WuB and the stout data agree very
well with respect to 𝑠, 𝑐2𝑠 and 𝑝, although there are differences in the interaction measure. Note
that also the uncertainties are of the same order of magnitude. The last graph in figure 3.1
illustrates the interaction measure in dependence of different discretizations of the hotQCD
data. As mentioned, these data vary from those of the WuB collaboration. However, the
differences are much smaller in contrast to older data (denoted as asqtad and p4 in the graph)
that result in much higher 𝑇𝑐 values. Since the WuB lattice data are calculated in a larger
temperature range (110-510MeV) and agree with the hotQCD results (130-400MeV), we will
just consider these data for the holographic model.

The arrows in the plots denote the Stefan-Boltzmann limits that represent an ideal gas of

13The QFT is discretized on 𝑁3
𝑠 ×𝑁𝜏 lattice points and the temperature is given by 𝑇 = 1/(𝑎𝑁𝜏 ) whereby 𝑎

is the discretization interval.
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3 Evaluation of the lattice data results
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Figure 3.1: Comparison of the lattice QCD results from the WuB collaboration [11] and
the hotQCD collaboration [27] in dependence of the absolute temperature 𝑇 . The arrow
denotes the Stefan-Boltzmann limit.

massless, free, relativistic quarks and gluons. The values are given by

𝑝𝑆𝐵
𝑇 4

=
𝜋2

90
𝑔𝑄𝐺𝑃 , 𝜖𝑆𝐵 = 3𝑝𝑆𝐵 , 𝑠𝑆𝐵 =

4𝑝𝑆𝐵
𝑇

, 𝑐2𝑠,𝑆𝐵 =
𝑑𝑝𝑆𝐵
𝑑𝜖𝑆𝐵

=
1

3
. (3.1)

𝑔𝑄𝐺𝑃 is the number of degrees of freedom and it is determined by 𝑔𝑄𝐺𝑃 = 𝑔𝑔 + 7
8
𝑔𝑞 whereby

𝑔𝑔 and 𝑔𝑞 are the bosonic (gluons) and fermionic (quarks) degrees of freedom.14 They are
calculated as follows: 𝑔𝑔 = 2𝑠𝑝𝑖𝑛 · (𝑁2

𝑐 − 1) = 16, 𝑔𝑞 = 2𝑠𝑝𝑖𝑛 · 2𝑞𝑞 ·𝑁𝑐 ·𝑁𝑓 = 36 (𝑁𝑓 = 3). As one
can see in figure 3.1, the entropy density and pressure are far away from an ideal gas. Even
for the highest temperatures, the quantities are still almost 20% below the Stefan-Boltzmann
limits. The interaction measure for an ideal gas vanishes since 𝐼 is defined as 𝐼 ≡ 𝜖−3𝑝. Thus,
the trace anomaly is a useful measure for the deviation of the QGP from ideal gas behavior.

In contrast to pure SU(N) Yang-Mills theory, which exhibits a first-order deconfinement phase

14The factor 7/8 takes into account the different quantum statistics and is obtained by the integration over a
fermionic distribution.
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3 Evaluation of the lattice data results

transition for 𝑁 ≥ 3, the transition of the QGP from a phase of colored degrees of freedom to
a phase dominated by hadrons occurs as a crossover. Thus, there is no real phase transition.
One of the most important parameters is the transition temperature 𝑇𝑐, which introduces
an absolute scale. The WuB collaboration obtains the range 𝑇𝑐 ≈ 150 − 170 MeV for the
crossover [11, 12]. There is no unique transition temperature since different observables lead
to different 𝑇𝑐 definitions. Particularly for the interaction measure and using a 𝑁𝑡 = 8 lattice,
the result is

WuB: 𝑇𝑐 = 154 ± 7 MeV , (3.2)

whereby 𝑇𝑐 is defined as the inflection point of the curve 𝐼/𝑇 4(𝑇 ). However, different pseu-
docritical 𝑇𝑐 values for various quantities do not indicate that a phase transition happens at
different temperatures. These variations are just a characteristic of the crossover [12]. For
instance, for the entropy 𝑠/𝑇 3(𝑇 ), a characteristic point is the inflection point. A calculation
of this point with two different methods (using smoothed splines and a high-order polyno-
mial) yielded 𝑇𝑐 ≈ 160 MeV. These different 𝑇𝑐 ranges will be considered in subsequent fit
procedures. The hotQCD collaboration calculates 𝑇𝑐 by two different methods (based on a con-
tinuum extrapolation using two actions with physical quark masses and on the peak position
of the chiral susceptibility). The values are:

hotQCD: method 1: 𝑇𝑐 = 154 ± 9 MeV, method 2: 𝑇𝑐 = 155 ± 9 MeV. (3.3)

All estimates are in very good agreement within the error margins.

An interesting aspect are the differences between the equation of state of the pure gluon and
the quark-gluon plasma. Figure 3.2 shows both lattice data. The entropy density and pres-
sure of the QGP attain higher values. The reason is the number of degrees of freedom: The
approximate ratio is 25:16. The number 16 results from 8 gluon colors and a factor of 2 for the
polarisation. The factor 25 is the product 2 · 2 · 3 · 2.5 with respect to antiparticles, spin, color
and quark flavors (u, d, c weighted). The different Stefan-Boltzmann limits are also a measure
of the ratio of the degrees of freedom. Note that the pure gluon plasma is just 13% below
the SB limit of the entropy density at 𝑇 = 3.5 Tc in contrast to the QGP. Remarkably, the
speed of sound of the QGP is much less smooth in comparison to the gluon data. Moreover,
𝑐2𝑠 has no zero in case of the QGP and the values increase for temperatures below 𝑇𝑐. This
behavior is indicating a crossover in contrast to the pure gluon data, where a first-order phase
transition occurs. In addition, figure 3.3 (right side) shows differences between the interaction
measure. The gluon data are scaled so that the maximum point and maximum value match.
This representation shows that the main difference occurs for higher 𝑇 : After a steep slope, the
pure gluon lattice data reach faster small values. The left side of figure 3.3 shows a fit function
for the interaction measure, that is proposed by the WuB collaboration. However, this is only

19



3 Evaluation of the lattice data results

0 1 2 3 4 5
T/Tc

0

5

10

15

20

s/
T

3

SBQGP

SBGP

gluon data
quark-gluon data, WuB

0 1 2 3 4 5
T/Tc

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

c
2 s

SB

0 1 2 3 4 5
T/Tc

0

1

2

3

4

5

p
/T

4

SBQGP

SBGP

0 1 2 3 4 5
T/Tc

0

1

2

3

4

5

I/
T

4

quark-gluon data, hotQCD: HISQ/tree
gluon data
quark-gluon data, WuB
quark-gluon data, hotQCD: Nτ=6
quark-gluon data, hotQCD: Nτ=8
quark-gluon data, hotQCD: Nτ=10
quark-gluon data, hotQCD: Nτ=12

Figure 3.2: Comparison of the lattice QCD results from the WuB collaboration [11] and
and previous pure gluon lattice data [28] in dependence of the scaled temperature 𝑇/𝑇𝑐.
The interaction measure contains also the new hotQCD results [27]. The arrows denote the
Stefan-Boltzmann limits for the QGP and pure gluon plasma (GP).

a numerical fit function and has no deeper justification. Therefore it is not considered further.

For a deeper understanding, the pressure, entropy density and speed of sound were recalculated
with the interaction measure as input. The quantities are following from the relations [29]

𝐼 ≡ 𝜖− 3𝑝 = 𝑇 5 𝜕

𝜕𝑇
(𝑝/𝑇 4) ⇒ 𝑝

𝑇 4
=

∫︁
𝑑𝑇

𝐼

𝑇 5
+ 𝑐𝑜𝑛𝑠𝑡 , (3.4)

𝑠

𝑇 3
=
𝜖+ 𝑝

𝑇 4
=
𝐼 + 4𝑝

𝑇 4
, (3.5)

𝜖 = 𝐼 + 3𝑝 , (3.6)

𝑐2𝑠 =
𝑑𝑝

𝑑𝜖
⇔ 𝑐2𝑠 =

𝑑 ln𝑇

𝑑 ln 𝑠
. (3.7)

Thus, the scaled pressure is obtained through integration of the interaction measure. The
appropriate integration constant comes from a Hadron Resonance Gas model. Since this value
is unknown to us, the first lattice point from the WuB collaboration was taken. The scaled
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Figure 3.3: Representation of the interaction measure and the suggested fit function from
WuB collaboration [11] (left side). Scaled interaction measure of the gluon [28] and quark-
gluon [11] lattice data (right side).

entropy density is a linear combination of 𝐼/𝑇 4 and 𝑝/𝑇 4 (relation (3.5)). Figure 3.4 shows
the results of the calculation.
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with the own recalculation (blue dots) with the interaction measure from [11] as input.
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3 Evaluation of the lattice data results

This recalculation was numerically performed with B-splines of order 5 that interpolate be-
tween lattice points. For values below 400MeV, the recalculation underestimates the pressure
and entropy density. Moreover, the original lattice data do not fulfill relation (3.5) for each
data point: There is a maximal discrepancy of 0.21 for 𝑇 = 210 MeV. The last plot in fig-
ure 3.4 shows the speed of sound. Using B-spline interpolations (green dots), the numerical
result is less smooth than the lattice data points. This behavior is independent of the used
formula in (3.7). Thus, we applied a smoothing condition, such that

∑︀
[𝑦(𝑇 ) − 𝑔(𝑇 )]2 ≤ 𝑠,

where 𝑦(𝑇 ) are the lattice points and 𝑔(𝑇 ) is the smoothed interpolation. The plot shows the
results for two different smoothing factors 𝑠 (blue and black marks). In fact, the lattice data
points cannot be reproduced exactly. This implies that smoothing effects have been applied
by the collaboration, which are not described in detail. That is why the lattice data points
should always be considered only in the context of their error bars.
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4 Holographic models

In the following, the AdS5/CFT4 correspondence is used to calculate the equation of state
of the QGP. In fact, the holographic principle cannot be directly applied to QCD or Yang-
Mills theory (see [10] for more detailed discussions). One reason is the gauge theory limit
𝑁 → ∞ that is needed to perform calculations in the non-quantum gravity sector, whereas
in QCD one has 𝑁 = 𝑁𝑐 = 3. Furthermore, the gravity approximation is strictly valid in the
limit of infinite ’t Hooft coupling 𝜆 → ∞, while one is interested in large but finite coupling
calculations. However, the coupling in the temperature range of the lattice data and transition
temperatures seems to be a good approximation. The dual to the gravity theory is𝒩 = 4 SYM
theory as a CFT. A characteristic of this is a vanishing 𝛽 function. In contrast, QCD has a non-
trivial 𝛽 function and besides, it is not a supersymmetric theory. Despite all these difficulties,
AdS/CFT correspondence has been successfully applied to QCD, mainly for the description
of pure gluon lattice data [30,31]. In this case, one speaks of AdS/QCD correspondence. The
following two sections consider both bottom-up models.15 These models make the assumption
that a gravity dual exists and is given by non-supersymmetric Einstein’s GTR. The emphasis
lies on the reproduction of the QCD properties. Five-dimensional Einstein gravity is coupled
to a scalar field 𝜑 with a non-trivial potential 𝑉 (𝜑). The SYM theory is conformally invariant,
whereas in QCD conformal invariance is broken due to quantum fluctuations. The basic
principle of the holographic models is the translation thereof into the deformation of the
conformally invariant AdS space due to a non trivial scalar field potential [10].

The numerical setup for the following results is based on the work of Yaresko in [10].

4.1 The Kiritsis model

Kiritsis et al. developed a holographic model in [32–34] (denoted as Kiritsis model in the
following). The comparison with gluon lattice data was performed in [31]. The holographic
dual of large-𝑁𝑐 Yang-Mills theory is based on a 5D Einstein dilaton model with the action

𝑆5 = −𝑀3
𝑝𝑁

2
𝑐

∫︁
𝑑5𝑥

√
𝑔

[︂
𝑅− 4

3
(𝜕Φ)2 + 𝑉 (Φ)

]︂
+ 2𝑀3

𝑝𝑁
2
𝑐

∫︁
𝜕𝑀

𝑑4𝑥
√
ℎ𝐾 . (4.1)

15On the other side, one has more rigorous top-down models; see e.g. [10] for explanations.
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4 Holographic models 4.1 The Kiritsis model

Here, 𝑀𝑝 is the 5D Planck scale and the second term is the Gibbons-Hawking term with 𝐾
as the extrinsic curvature of the boundary and ℎ is the determinant of the induced metric on
it.16 The effective 5D Newton constant is 𝐺5 = 1/(16𝜋𝑀3

𝑝𝑁
2
𝑐 ). One defines usually 𝜆 ≡ 𝑒Φ.

Einstein’s field equations are (see [34] for calculations)

𝐺𝜇𝜈 −
4

3

[︂
𝜕𝜇Φ𝜕𝜈Φ − 1

2
(𝜕Φ)2𝑔𝜇𝜈

]︂
− 1

2
𝑔𝜇𝜈𝑉 = 0 , �5 +

𝜕𝑉

𝜕Φ
= 0 . (4.2)

With the ansatz 𝑑𝑠2 = 𝑒2𝐴(−𝑓𝑑𝑡2 + 𝑑𝑥2) + 𝑑𝑢2

𝑓
the field equations become:

12𝐴′2 + 3𝐴′𝑔′ − 4

3
Φ′2 − 𝑒−𝑔𝑉 = 0 , 𝐴′′ +

4

9
Φ′2 = 0 ,

𝑔′ +
𝑔′′

𝑔′
+ 4𝐴′ = 0 , Φ′′ + 4𝐴′Φ′ + 𝑔′Φ′ +

3

8
𝑒−𝑔 𝑑𝑉

𝑑Φ
= 0 .

(4.3)

A prime denotes a derivative w.r.t. 𝑢 and 𝑓 and 𝑏 are defined as 𝑓 = 𝑒𝑔, 𝑏 = 𝑒𝐴. This is
usually called the domain wall frame and the parametrization of the metric yields 𝑑𝑟 = 𝑒−𝐴𝑑𝑢

with 𝑟 as the radial (conformal) coordinate. It is convenient to use scalar variables 𝑋 ≡
Φ′/3𝐴′ and 𝑌 ≡ 𝑓 ′/4𝑓𝐴′ for numerical analysis. Thus, one transforms the field equations into
a coupled system of two first-order differential equations. Thermodynamic observables are
entirely encoded in this system. For a given potential 𝑉 (𝜆) the equations for 𝑋 and 𝑌 are:

𝑑𝑋

𝑑𝜆
= − 4

3𝜆
(1 −𝑋2 + 𝑌 ) ·

(︂
1 +

3

8𝑋

𝜆𝑑 log 𝑉

𝑑𝜆

)︂
, (4.4)

𝑑𝑌

𝑑𝜆
= − 4

3𝜆
(1 −𝑋2 + 𝑌 )

𝑌

𝑋
. (4.5)

For the numerical calculations we substituted 𝑍 ≡ ln𝑌 ⇔ 𝑌 = 𝑒𝑍 in equation (4.5). The
equations are numerically integrated17 from a boundary 𝜆0 = 0.005 ≪ 1 to the horizon 𝜆ℎ

with the following two initial conditions that arise from the requirement for finitness of 𝑑𝑋/𝑑𝜆
and 𝑑𝑌/𝑑𝜆 at the horizon [31]

𝑋ℎ ≡ 𝑋(𝜆ℎ) = −
3𝜆ℎ

𝑑𝑉

𝑑𝜆
(𝜆ℎ)

8𝑉 (𝜆ℎ)
, 𝑌ℎ ≡ 𝑌 (𝜆ℎ) =

9𝜆ℎ
𝑑𝑉

𝑑𝜆
(𝜆ℎ)

32𝑉 ln
𝜆ℎ
𝜆

= − 3𝑋ℎ

4 ln
𝜆ℎ
𝜆

. (4.6)

Kiritsis et al. use the following ansatz for the potential

𝑉 (𝜆) =
12

𝐿2

{︂
1 + 𝑉0𝜆+ 𝑉1𝜆

4/3
[︀

ln(1 + 𝑉2𝜆
4/3 + 𝑉3𝜆

2)
]︀𝑃}︂

. (4.7)

16The signature (−++++) is used.
17The entire numerical calculations are performed in python using scipy. The integration routine odeint is

used for solving the differential equations and B-splines are used to interpolate the solutions and to calculate
the thermodynamic quantities.
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4 Holographic models 4.1 The Kiritsis model

The parameters 𝑉1 and 𝑉3 are free and fitted (see below) whereas 𝑃 = 1/2 is fixed in the original
setting. The other parameters are determined by some normalization and UV expansion
considerations [31] and are given by

𝑉0 =
8

9
𝑏0 , 𝑉2 = 𝑏40

(︂
23 + 36𝑏1/𝑏

2
0

81𝑉1

)︂2

, 𝑏0 =
22

3(4𝜋)2
,

𝑏1
𝑏20

=
51

121
. (4.8)

𝑓 is called black hole or blackness function since it defines a black hole at the horizon. To
calculate the equation of state, one makes use of the black hole thermodynamics: Hawking [35]
and Bekenstein [36] postulated that black holes can be associated with a temperature and an
entropy (density), given by

𝑇𝐻 =
κ
2𝜋

⃒⃒⃒⃒
ℎ

, 𝑠𝐵𝐻 =
𝐴ℎ

4𝐺5𝑉ℎ
(4.9)

with 𝐴ℎ as the surface of the black hole horizon, κ as the surface gravity and 𝑉ℎ is the horizon
volume. In the Kiritsis model, the temperature and entropy then follow from 𝑇 = −𝑓(𝑟ℎ)

4𝜋
,

𝑆 = 4𝜋(𝑀3
𝑝𝑁

2
𝑐 𝑉3)𝑏

3(𝑟ℎ), where a dot denotes a derivative w.r.t. 𝑟. Alternatively, the equation
of state is given by18

𝑇𝐿 =
1

𝜋
exp

{︂
𝑍0 + 𝐴0 −

∫︁ 𝜆ℎ

𝜆0

𝑑𝜆
1

𝑋𝜆

}︂
,

𝑠

𝑇 3
=

𝜋3

4𝐺5

(︂
12

𝑉

)︂
exp

{︂
−4

∫︁ 𝜆ℎ

𝜆0

𝑑𝜆
𝑋

𝜆

}︂
. (4.10)

In general, 𝐴 can be regarded as a scale factor and 𝐴0 is calculated as 𝐴0 =
⃒⃒ ∫︀ 𝜆ℎ,0

𝜆0
𝑑𝜆 1

3𝑋𝜆

⃒⃒
(rounded) with 𝜆ℎ,0 = 0.05. 𝑍0 is defined as 𝑍0 = 𝑍(𝜆0). From (4.10), 𝑠 is calculated with
𝑠 = 𝑠

𝑇 3 (𝑇𝐿)3.
An important point is the definition of the transition temperature 𝑇𝑐. This must be understood
in the sense of an ad hoc definition to set a scale for the fit procedure. In this case, 𝑇𝑐 is defined
as the minimum of the curve 𝑇 (𝜆ℎ). If it does not exist, 𝑇𝑐 is defined as the inflection point
of 𝑠

𝑇 3 (𝑇 ).
The other thermodynamic quantities are calculated with the following relations

𝑐2𝑠 =
𝑠

𝑇

(︂
𝑑𝑇

𝑑𝑠

)︂
=
𝑑 ln𝑇

𝑑 ln 𝑠
, 𝑝(𝑇 ) = 𝑝0 +

∫︁ 𝑇

𝑇𝑐

𝑠(𝑇 )𝑑𝑇, 𝜖 = 𝑠𝑇 − 𝑝, 𝐼 = 𝜖− 3𝑝,

(4.11)

whereby 𝑝0 = 𝑝(𝑇𝑐) is taken from the lattice data [11].
For the fit procedure, the WuB lattice data were used with the definition 𝑇𝑐 = 155 MeV19 and
the thermodynamic quantities in the holographic model were calculated in dependence of the

18by using eqn. (H.67) and under consideration of eqn. (7.38), both in [34].
19In the last chapter the value 154 MeV was given. However, for 155 MeV a tabulated data point exists and

the hotQCD group obtained also 155 MeV for 𝑇𝑐 with one method. Furthermore, the uncertainty is much
larger.
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4 Holographic models 4.1 The Kiritsis model

scaled temperature 𝑇/𝑇𝑐. Different types of fit procedures were considered:

1. fit of 𝑉1 and 𝑉3 to 𝑐2𝑠(𝑇/𝑇𝑐) and afterwards fit of 𝐺5 to 𝑠/𝑇 3(𝑇/𝑇𝑐),

2. fit of 𝑉1, 𝑉3 and 𝐺5 to 𝑠/𝑇 3(𝑇/𝑇𝑐).

A fit to the interaction measure was also tested but did not yield better results. To evaluate
the goodness of the fit, the quantities were interpolated as functions of 𝑇/𝑇𝑐 using B-splines
and a 𝜒2-function was defined in the following way:

𝜒2 =
1

𝑁 − 𝑝− 1

𝑁∑︁
𝑖=1

[︂
𝑞ℎ(𝑇𝑖/𝑇𝑐) − 𝑞𝐿(𝑇𝑖/𝑇𝑐)

𝜎𝑖,𝐿

]︂2
. (4.12)

Here 𝑞ℎ is the fitted thermodynamic quantity in the holographic model and 𝑞𝐿 the correspond-
ing value from the lattice data. 𝜎𝑖,𝐿 stands for the error of a lattice point, 𝑁 is the number
of fitted lattice points and 𝑝 is the number of fitted parameters. The normalization factor is
the inverse of the number of degrees of freedom and allows the interpretation as a reduced
chi-square statistic [37]. A value in the order of 1 represents a good fit. For the fit procedure
itself the simplex method of Nelder and Mead was used.20 Tables 4.1 and 4.2 summarize the
fit results. The implementation of the fit procedures revealed a strong dependence on the
initial values and scale settings. Despite numerous investigated initial value ranges and scales,
no convergence was found, i.e. fit 1 and 2 do not yield the same results. However, as one can
see from the table, fit 2 to the entropy density yields the best results.
Figure 4.1 shows the equation of state of the QGP from fit 2 and further quantities (blue
lines). Since we want to describe the deconfinement phase, the holographic equation of state
is calculated for temperatures 𝑇/𝑇𝑐 > 1. As the first plot shows, the entropy density 𝑠/𝑇 3

underestimates the lattice data very strongly for the temperature range 𝑇/𝑇𝐶 ' 1 and thus
the model does not describe the curve shape of the lattice data. Moreover, the speed of
sound is badly described, since it assumes the value 𝑐2𝑠 = 0 for 𝑇 = 𝑇𝑐. The curve of the
Kiritsis model is smooth in contrast to the lattice results. This is reflected in the fact, that the
model overestimates the lattice points for temperatures 𝑇/𝑇𝑐 ≈ 1.75. The high temperature
behavior of the model seems to be constant, whereas the data points probably do not exhibit
this tendency. The pressure is described very well, whereby one must remember that 𝑝(𝑇𝑐) is
taken from the lattice results. The interaction measure overestimates the peak and does not
describe the low as well as the high temperature range.
The reason for these problems seems to be the fact, that the Kiritsis model is adjusted to yield
a first-order phase transition as needed to describe the pure gluon plasma. In his publications,
the author discusses different sizes of black holes and energy ranges. He calculates different
20In fact (−𝜒2) was maximized. Other methods like the L-BFGS-B algorithm, a downhill simplex algorithm,

Powell’s method, a nonlinear conjugate gradient algorithm and others did not yield good results or were
impractical.
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4 Holographic models 4.1 The Kiritsis model

Table 4.1: Parameter values of the different fit procedures.
Fit Fit type Fit quantity 𝑉1 𝑉3 𝐺5 𝑃
1 𝑃 = 1/2 fixed 𝑐2𝑠 6.5438 162.2250 0.3466 0.5
2 𝑠/𝑇 3 5.2177 150.0827 0.3745 0.5
3 𝑃 < 0 fitted 𝑠/𝑇 3 5.0852 150.1697 0.2106 -0.0614

Table 4.2: Parameter values of the different fit procedures.
Fit 𝜒2

𝑐2𝑠
𝜒2
𝑠/𝑇 3 𝑇𝑐-type

1 9.5987 1.8606 minimum
2 9.8178 1.2932 minimum
3 30.0723 37.6726 inflection
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Figure 4.1: Equation of state and thermodynamic quantities of the QGP. The Kiritsis
model is fitted to the lattice QCD data [11].
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4 Holographic models 4.2 The Gubser model

power-law expansions of the potential 𝑉 (𝜆) for small and large 𝜆 (that correspond to the UV
and IR region) and sets 𝑃 = 1/2 to reproduce confinement and a linear glueball spectrum
(see [34]). To avoid this constraint, we tested, whether 𝑃 < 0 as a free parameter allows a
better description of the equation of state. Fit 3 in table 4.1 and 4.2 shows the fit result. The
dashed curves in figure 4.1 correspond to this fit. As one can see, this setting describes the
equation of state even much worse and there is no match with the lattice data at all.

4.2 The Gubser model

The so-called Gubser model was developed by Gubser et al. in [30, 38]. It is based on the
action

𝑆 =
1

16𝜋𝐺5

∫︁
𝑑5𝑥

√
−𝑔
(︂
𝑅− 1

2
𝜕𝜇𝜑𝜕

𝜇𝜑− 𝑉 (𝜑)

)︂
(4.13)

with the metric 𝑑𝑠2 = 𝑒2𝐴(−𝑓𝑑𝑡2 + 𝑑𝑥⃗2 + 𝑑𝑧2

𝑓
) = 𝑒2𝐴(−𝑓𝑑𝑡2 + 𝑑𝑥⃗2) + 𝐿2𝑒2𝐵 𝑑𝜑2

𝑓
. The equality

follows from the transformation 𝑑𝑧2 = 1
𝐿2

𝑑𝑧2

𝑑𝜑2𝐿
2𝑑𝜑2 and the definition 𝑒2𝐵 ≡ 𝑒2𝐴 𝑑𝑧2

𝐿2𝑑𝜑2 . The
field equations and the 𝜑 equation of motion take the form [10,30]

𝐴′′ − 𝐴′𝐵′ +
1

6
= 0 , 𝑓 ′′ + 𝑓 ′(4𝐴′ −𝐵′) = 0 ,

6𝐴′𝑓 ′ + 𝑓(24𝐴′2 − 1) + 2𝑒2𝐵𝐿2𝑉 = 0 , 4𝐴′ −𝐵′ +
𝑓 ′

𝑓
− 𝑒2𝐵

𝑓
𝐿2𝑉 ′ = 0 ,

(4.14)

where a prime denotes 𝑑/𝑑𝜑.21 With the definition of two scalar variables 𝑋 ≡ 1
4𝐴′ , 𝑌 ≡ 𝑔′

4𝐴′

(whereby 𝑔 is defined as 𝑔 ≡ ln 𝑓) one can transform the system into

𝑋 ′ = −
(︂

1 + 𝑌 − 2

3
𝑋2

)︂(︂
1 +

3𝑉 ′

4𝑋𝑉

)︂
, (4.15)

𝑌 ′ = −
(︂

1 + 𝑌 − 2

3
𝑋2

)︂
𝑌

𝑋
. (4.16)

As in the Kiritsis model, the quantity 𝑍 ≡ ln𝑌 was defined for the numerical calculation.
The differential equations are integrated from the horizon 𝜑ℎ to 𝜑0 = 0.001 with the initial
conditions

𝑋ℎ ≡ 𝑋(𝜑ℎ) = −3𝑉 ′

4𝑉
(𝜑ℎ) , 𝑌ℎ ≡ 𝑌 (𝜑ℎ) =

𝑋ℎ

𝜑− 𝜑ℎ

, (4.17)

where 𝜑 = 0.9999𝜑ℎ is set. The ansatz for the potential is [30]

𝑉 (𝜑) =
1

𝐿2

[︀
−12 cosh(𝛾𝜑) + 𝑏𝜑2

]︀
, (4.18)

21See appendix A for more detailed explanations.
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4 Holographic models 4.2 The Gubser model

where the relation ∆(∆ − 4) = 𝑀2𝐿2 = 2𝑏 − 12𝛾2 holds. Here, ∆ is the dimension of the
gauge theory operator dual to 𝜑 and 𝑀 is the mass of the field. The equation of state follows
from the relations

𝑠 =
𝑒3𝐴

4𝐺5

⃒⃒⃒⃒
𝜑ℎ

, 𝑇𝐿 = − 𝑓 ′

4𝜋
𝑒𝐴−𝐵

⃒⃒⃒⃒
𝜑ℎ

(4.19)

and to be more specific:

𝐴ℎ ≡ 𝐴(𝜑ℎ) =

∫︁ 𝜑ℎ

𝜑0

(︂
1

4𝑋
− 1

𝜑(∆ − 4)

)︂
+

ln𝜑ℎ

∆ − 4
, 𝑇𝐿 =

1

𝜋
𝑒𝑍0+𝐴𝑈𝑉 (𝜑0,Δ)−3𝑎ℎ (4.20)

𝑎ℎ = 𝐴ℎ − 𝐴𝑈𝑉 (𝜑0,∆), 𝐴𝑈𝑉 (𝜑,∆) =
ln𝜑

∆ − 4
. (4.21)

The first term in 𝐴ℎ is the inversion of the 𝑋-definition and the other terms take into account
the boundary asymptotics.

The definition of 𝑇𝑐, the calculation of the other thermodynamic quantities and the fit pro-
cedure are performed in the same way as for the Kiritsis model. The results are presented in
table 4.3 and figure 4.2 shows the equation of state for 𝑇𝑐,𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 155 MeV.

First, one can notice that the 𝜒2 values are smaller than for the Kiritsis model. In fact, fits
to the squared speed of sound yielded the best results. Two ranges of the parameter ∆ were
found, that allow a good description of the equation of state (denoted as fit 1 and 2). Fit 1
allows a very good description of the (scaled) entropy density. In contrast to fit 2, fit 1 is nearly
constant for high temperatures (𝑇/𝑇𝑐 ' 3.0). Since no lattice results for higher temperatures
are available, one cannot determine which fit is better in this range. Both fit results are
within the uncertainties of the lattice results. The plot of 𝑐2𝑠 reveals that the lattice points are
underestimated in the range 1.3 < 𝑇/𝑇𝑐 < 1.6. In particular in this range, fit 2 is slightly better
but the graph has a poorer performance at high temperatures. Both fits overestimate the peak
position of the interaction measure. However, they both describe exactly the maximum height
of the lattice data but they differ in the high temperature behavior since fit 1 decreases faster.

To achieve a better description of the lattice data, it was analyzed if a different definition of
𝑇𝑐,𝑙𝑎𝑡𝑡𝑖𝑐𝑒 yields better fit results. For fit 1 and 2, 𝑇𝑐 was determined as the inflection point
of the curve 𝑠/𝑇 3(𝑇 ) in the holographic model. As shown in in chapter 3, the value of this
characteristic point in the lattice data is circa 160MeV. However, choosing 𝑇𝑐,𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 160 MeV

did not improve the fit results. Thus, the value 𝑇𝑐,𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 150 MeV was analyzed. The fit
results 3 and 4 in table 4.3 correspond to this definition. In fact, the 𝜒2 values can be reduced.
Figure 4.3 shows the related thermodynamic quantities. As fit 1 and 2, they can well describe
the entropy density and the pressure. In addition, the speed of sound is better reproduced in
the temperature range 1.3 < 𝑇/𝑇𝑐 < 1.6 and the peak position and value of the interaction
measure are in good agreement with the lattice data. Both fits differ in the high temperature
behavior as before.
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4 Holographic models 4.2 The Gubser model

Table 4.3: Parameter values of the different fit procedures.
Fit Fit quantity 𝛾 ∆ 𝐺5 𝜒2

𝑐2𝑠
𝜒2
𝑠/𝑇 3 𝑇𝑐-type

1 𝑐2𝑠 0.6473 2.2765 0.4583 1.0762 0.2212 inflection
2 𝑐2𝑠 0.5347 3.9645 0.3828 1.2087 0.4272 inflection
3 𝑐2𝑠 0.6571 2.4953 0.4595 0.4663 0.1441 inflection
4 𝑐2𝑠 0.5365 3.9634 0.3922 0.4903 0.1574 inflection
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Figure 4.2: Equation of state and thermodynamic quantities of the QGP. The Gubser
model is fitted to the lattice QCD data [11] with 𝑇𝑐,𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ≡ 155MeV.
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Figure 4.3: Equation of state and thermodynamic quantities of the QGP. The Gubser
model is fitted to the lattice QCD data [11] with 𝑇𝑐,𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ≡ 150MeV.

In summary it can be stated that the Gubser model allows a good description of the equation
of state of the quark gluon plasma and related thermodynamic quantities in a limited tem-
perature range. It needs to be stressed that the lattice data should be considered within their
uncertainty, because the lattice data points itself are underestimated as well as overestimated
in specific temperature ranges.
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5 Summary and Outlook

Within the frame of this work, we have studied the equation of state of the quark gluon
plasma. At first we evaluated the lattice data results from the Wuppertal-Budapest and the
hotQCD collaboration (see chapter 3). The results of both collaborations agree very well. We
used the lattice data from the Wuppertal-Budapest collaboration, which are calculated in the
temperature range 110-510MeV, for the holographic reconstruction of the QCD equation of
state. The confinement-deconfinement transition occurs as a crossover. However, to set an
absolute scale for the fit procedure, we defined the deconfinement temperature 𝑇𝑐 = 155 MeV

in accordance with both collaborations.

In chapter 4, we introduced two holographic models, following the work of Kiritsis and Gubser.
Both models employ 5-dimensional Einstein gravity coupled to a scalar field with a non-trivial
potential 𝑉 (𝜑) to calculate the equation of state 𝑠(𝑇 ). We tested different procedures to fit
the potential parameters. Concerning the Kiritsis model, tables 4.1 and 4.2 summarize the
parameter sets. The corresponding graphs of the holographic model are shown in figure 4.1.
Within the Kiritsis model, we defined 𝑇𝑐 as the minimum of the curve 𝑇 (𝜑ℎ). It is found
that the Kiritsis model does not allow a good reconstruction of the QCD equation of state.
Particularly, the (scaled) entropy density, speed of sound and the interaction measure are
not reproduced well. The reason seems to be the fact, that the Kiritsis model is adjusted
to the pure gluon plasma, which is characterized by a first-order phase transition (and not a
crossover). Thus, we tested if an additional fit parameter in the potential (4.7) yields better
results. In fact, no improvement can be achieved. In contrast, the Gubser model allows a
good reconstruction of the equation of state of the quark-gluon plasma. In this holographic
model, 𝑇𝑐 is defined as the inflection point of the curve 𝑠/𝑇 3(𝑇 ). We found two parameter sets
that differ in their high temperature behavior. Table 4.3 and figure 4.2 show the results. In
the temperature range 1 ≤ 𝑇/𝑇𝑐 . 3.5 the entropy density and pressure can be quantitatively
described very well. The speed of sound and interaction measure cannot be reproduced in the
whole temperature range.

A crossover has no unique transition temperature, e.g. the Wuppertal-Budapest collaboration
specifies the range 150-170MeV for the transition. However, this range allows the definition
of different 𝑇𝑐 values that are necessary for the fit procedure. In a further study, we defined
𝑇𝑐 = 155 MeV for the lattice data and repeated the fit procedure of the Gubser model. In
fact, this definition slightly improves the fit result. Figure 4.3 shows the equation of state and

33



5 Summary and Outlook

related thermodynamic quantities for this setup.
In summary, it can be found that the Gubser model allows the reconstruction of the QCD
equation of state and related thermodynamic quantities in a limited temperature range within
the uncertainties of the lattice data.

In future studies we will deal with the problem of avoiding any 𝑇𝑐 definitions, since the char-
acteristic crossover has no unique transition temperature. An idea is to employ the parameter
𝐿, that appears in the temperature (4.19) in the holographic model, to set an absolute scale.
Thus, we will fit the holographic model to the temperature of the lattice data, which is given
in physical units. The advantage would be to reconstruct the equation of state in the whole
temperature range of the lattice data. We have already started these studies, but have so far
no results. In addition, we will calculate the shear and bulk viscosity in the holographic model.
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A Detailed calculations of the Gubser
model

In this chapter some more detailed calculations of the Gubser model are presented, based
on [10,39,40]. The relevant action is

𝑆 =
1

16𝜋𝐺5

∫︁
𝑑5𝑥

√
−𝑔 (𝑅 + ℒ𝑀) (A.1)

with
ℒ𝑀 = −1

2
𝜕𝜇𝜑𝜕

𝜇𝜑− 𝑉 (𝜑) = −1

2
𝜕𝜇𝜑𝜕𝜈𝜑𝑔

𝜇𝜈 = ℒ𝑀(𝑔𝜇𝜈) . (A.2)

The field equations follow from

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 𝑇𝜇𝜈 (A.3)

with the ansatz for the metric

𝑑𝑠2 = 𝑒2𝐴(𝜑)
(︀
−𝑓(𝜑)𝑑𝑡2 + 𝑑𝑥⃗2

)︀
+

𝐿2

𝑓(𝜑)
𝑒2𝐵(𝜑)𝑑𝜑2 . (A.4)

The numbering scheme is (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝜑) = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥5). In a five dimensional curved
space, the energy-momentum tensor follows from

𝑇𝜇𝜈 = − 1√
−𝑔

𝛿(
√
−𝑔ℒ𝑀)

𝛿𝑔𝜇𝜈

= − 1√
−𝑔

(︂
ℒ𝑀

𝛿
√
−𝑔

𝛿𝑔𝜇𝜈
+
√
−𝑔 𝛿ℒ𝑀

𝛿𝑔𝜇𝜈

)︂ ⃒⃒⃒⃒
𝛿
√
−𝑔 = −

√
−𝑔
2

𝑔𝜇𝜈𝛿𝑔
𝜇𝜈

= − 1√
−𝑔

(︂
−ℒ𝑀

√
−𝑔
2

𝑔𝜇𝜈
𝛿𝑔𝜇𝜈

𝛿𝑔𝜇𝜈
+
√
−𝑔 𝛿ℒ𝑀

𝛿𝑔𝜇𝜈

)︂
= −

(︂
−ℒ𝑀

2
𝑔𝜇𝜈 +

𝛿ℒ𝑀

𝛿𝑔𝜇𝜈

)︂
(A.2)
= −1

4
𝜕𝜇𝜑𝜕

𝜇𝑔𝜇𝜈 −
1

2
𝑉 (𝜑)𝑔𝜇𝜈 −

𝜕ℒ𝑀

𝜕𝑔𝜇𝜈

(A.2)
= −1

4
(𝜕𝜑)2𝑔𝜇𝜈 −

1

2
𝑉 (𝜑)𝑔𝜇𝜈 +

1

2
𝜕𝜇𝜑𝜕𝜈𝜑 ,

(A.5)
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with the components

𝑇00 = −1

2
𝑉 𝑔00 =

1

2
𝑉 𝑒2𝐴𝑓 , 𝑇11 = 𝑇22 = 𝑇33 = −1

2
𝑉 𝑔11 = −1

2
𝑉 𝑒2𝐴 ,

𝑇55 = −1

4
𝑔55 −

1

2
𝑉 𝑔55 +

1

2
= −1

4

𝐿2

𝑓
𝑒2𝐵 − 1

2
𝑉
𝐿2

𝑓
𝑒2𝐵 +

1

2
= −1

2

𝐿2

𝑓
𝑒2𝐵

(︂
1

2
+ 𝑉

)︂
+

1

2
.
(A.6)

Using a computer algebra system, one derives the Einstein equations (A.3)

𝐴′′ − 𝐴′𝐵′ +
1

6
= 0 , (A.7)

𝑓 ′′

𝑓 ′ = −4𝐴′ +𝐵′ , (A.8)

6𝐴′𝑓
′

𝑓
+
(︀
24𝐴′2 − 1

)︀
= − 2

𝑓
𝑒2𝐵𝐿2𝑉 . (A.9)

The first two of these equations follow from the (00) and (11) components; the third comes
from the (55) component.22 The scalar equation of motion for 𝜑 comes from23

𝑇 𝜇𝜈
;𝜈 = 0 ⇒ 4𝐴′ −𝐵′ +

𝑓 ′

𝑓
=
𝑒2𝐵

𝑓
𝐿2𝑉 ′ . (A.10)

To transform the eqs. (A.7)–(A.10) into scalar equations, we define

𝑔′ = (ln 𝑓)′ =
𝑓 ′

𝑓
. (A.11)

It follows

𝑔′′ =
𝑓 ′′𝑓 − 𝑓 ′𝑓 ′

𝑓 2
=
𝑓 ′′

𝑓
− 𝑔′2

⃒⃒⃒⃒
· 𝑓
𝑓 ′

𝑔′′𝑓

𝑓 ′ =
𝑓 ′′

𝑓 ′ −
𝑓 ′

𝑓
⇒ 𝑓 ′′

𝑓 ′ =
𝑔′′

𝑔′
+ 𝑔′. (A.12)

Dividing (A.10) by (A.9) yields

− 𝑉 ′

2𝑉
=

4𝐴′ −𝐵′ +
𝑓 ′

𝑓

6𝐴′𝑓
′

𝑓
+ 24′2 − 1

(A.7)
=

4𝐴′ −
(︂
𝐴′′

𝐴′ +
1

6𝐴′

)︂
+
𝑓 ′

𝑓

6𝐴′𝑓
′

𝑓
+ 24′2 − 1

(A.11)
=

4𝐴′ − 𝐴′′

𝐴′ −
1

6𝐴′ + 𝑔′

6𝐴′𝑔′ + 24′2 − 1

=
1

6𝐴′ ·
4𝐴′ − 𝐴′′

𝐴′ −
1

6𝐴′ + 𝑔′

𝑔′ + 4′ − 1

6𝐴′

. (A.13)

22A prime denotes a derivative w.r.t. 𝜑.
23This relation is sometimes also denoted as �𝜑 = 𝑉 ′(𝜑) and not independent.
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This relation is equivalent to

− 3𝐴′𝑉 ′

𝑉
= 1 +

𝐴′′

−𝑔′𝐴′ − 4𝐴′2 +
1

6

= 1 +
𝐴′′

−4𝐴′2
(︂
𝑔′

4𝐴′ + 1 − 1

24𝐴′2

)︂ (A.14)

and finally

− 𝐴′′

4𝐴′2 = −
(︂

3𝐴′𝑉 ′

𝑉
+ 1

)︂(︂
𝑔′

4𝐴′ + 1 − 1

24𝐴′2

)︂
. (A.15)

On the other hand, we replace 𝐵′ in (A.8) using (A.7) and obtain

𝑓 ′′

𝑓 ′
(A.12)

=
𝑔′′

𝑔′
+ 𝑔′ = −4𝐴′ +

𝐴′′

𝐴′ +
1

6𝐴′

⃒⃒⃒⃒
· 𝑔

′

𝐴′ (A.16)

⇔ 𝑔′′

𝐴′ +
𝑔′2

𝐴′ = −4𝑔′ +
𝑔′𝐴′′

𝐴′2 +
𝑔′

6𝐴′2 (A.17)

⇔ 𝑔′′

4𝐴′ −
𝑔′𝐴′′

4𝐴′2 = −
(︂

1 +
𝑔′

4𝐴′ −
1

24𝐴′2

)︂
𝑔′. (A.18)

We define

𝑋 ≡ 1

4𝐴′ , (A.19)

𝑌 ≡ 𝑔′

4𝐴′ . (A.20)

Plugging (A.19) into (A.15) and (A.20) into (A.18), we obtain the final result for the scalar
equations

𝑋 ′ = −
(︂

1 + 𝑌 − 2

3
𝑋2

)︂(︂
1 +

3𝑉 ′

4𝑋𝑉

)︂
, (A.21)

𝑌 ′ = −
(︂

1 + 𝑌 − 2

3
𝑋2

)︂
𝑌

𝑋
. (A.22)

The Hawking temperature is calculated using the formula

𝑇 =
κ
2𝜋

⃒⃒⃒⃒
ℎ

=
𝑔𝑡𝑡,𝑟

4𝜋
√
−𝑔𝑡𝑡𝑔𝑟𝑟

⃒⃒⃒⃒
𝑟=𝑟ℎ

, (A.23)

where κ is the surface gravity at the black hole horizon and 𝑟 stands for the radial coordinate
of the metric. In the approach by Gubser, we have 𝑔00 = −𝑒2𝐴𝑓 and 𝑔55 = 𝐿2

𝑓
𝑒2𝐵. It follows

√
−𝑔𝑡𝑡𝑔𝑟𝑟 =

√
−𝑔00𝑔55 = 𝐿𝑒𝐴+𝐵 and 𝑔𝑡𝑡,𝑟 = 𝑔00,5 = 𝑒2𝐴 (−2𝐴′𝑓 − 𝑓 ′). This leads to

𝑇 =
1

4𝜋

[︂
𝑒2𝐴 (−2𝐴′𝑓 − 𝑓 ′)

𝐿𝑒𝐴+𝐵

]︂ ⃒⃒⃒⃒
𝜑ℎ

. (A.24)
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Due to the boundary condition 𝑓(𝜑ℎ) = 0, we finally obtain

𝑇𝐿 = − 1

4𝜋
𝑓 ′𝑒𝐴−𝐵

⃒⃒⃒⃒
𝜑ℎ

. (A.25)
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B Holographic description of the
gluon plasma

This chapter summarizes previous studies, whose aim was a holographic description of the pure
gluon plasma. In fact, the Kiritsis model (see section 4.1) was used to calculate the equation
of state and viscosities. The lattice data for the fit procedure originated from [28]. The focus
lies on the description of the temperature range 1 ≤ 𝑇/𝑇𝑐 ≤ 10. The main difference to the
QGP is the appearance of of a first-order deconfinement phase transition.

The fit procedure was performed in the same way as for the QGP with the definition

𝜒2
𝑞 = ln

(︃
103 1

ln𝑁

𝑁∑︁
𝑖=1

[︂
𝑞ℎ(ln

𝑇𝑖
𝑇𝑐

) − 𝑞𝐿(ln
𝑇𝑖
𝑇𝑐

)

]︂2)︃
(B.1)

and the parameter value 𝑃 = 1/2. We considered different versions of the Kiritsis model:
First, the so-called original model. In this setup, the free energy (density) is calculated as

𝐹

𝑉
(𝜆ℎ) =

∫︁ ∞

𝜆ℎ

𝑠(𝜆̄ℎ)
𝑑𝑇 (𝜆̄ℎ)

𝑑𝜆̄ℎ
𝑑𝜆̄ℎ . (B.2)

The pressure is related to the free energy through the relation 𝑝 = −𝜕𝐹/𝜕𝑉 = −𝐹/𝑉 and 𝑇𝑐 is
defined as 𝑇𝑐 ≡ 𝑇 (𝜆𝑐) whereby 𝜆𝑐 is the zero of the function 𝑝(𝜆ℎ). The other thermodynamic
quantities are calculated with the relations in (4.11) with 𝑝0 = 0. The fit parameters for the
potential are taken from [31]. In addition, we fitted this original setup to the more recent
lattice data [28].24 In this case, 𝑝0 = 𝑝(𝑇𝑐) is taken from these lattice data. As a third method,
we defined 𝑇𝑐 as the minimum of the curve 𝑇 (𝜆ℎ) and calculated the other quantities as before.
This setup is denoted as improved in the following.
The two different fit procedures, which are described in section 4.1, were also applied here.
Figure B.1 summarizes the results for a fit to the speed of sound and figure B.2 shows the
results for a fit to the entropy density. The numerical results are summarized in table B.1.
As can be seen from the figures, the original model does not allow a good description of the
lattice data. The speed of sound, pressure and entropy density are overestimated in the tem-
perature range 1 ≤ 𝑇/𝑇𝑐 ≤ 2, whereas the pressure and entropy density are underestimated in
24The original setup in [31] was fitted to the older lattice data [29].
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Table B.1: Parameter values of the different fit procedures for the Kiritsis model.
Fit Type Fit quantity 𝑉1 𝑉3 𝐺5 𝜒2

𝑐2𝑠
𝜒2
𝑠/𝑇 3 𝑇𝑐-type

1 original 14 170 1.104 -0.169 4.896 zero
2 original new fit 𝑐2𝑠 6.079 176.573 1.011 -1.213 4.474 zero
3 improved 𝑐2𝑠 13.113 180.078 1.069 -5.138 1.914 minimum
4 original new fit 𝑠/𝑇 3 10.998 199.970 1.064 -0.792 4.140 zero
5 improved 𝑠/𝑇 3 12.977 180.990 1.068 -5.122 1.910 minimum

the range 2 ≤ 𝑇/𝑇𝑐 ≤ 10. However, the high temperature behavior of the interaction measure
is well described. In fact, the fit of the original model to the new lattice data marginally
reduces the 𝜒2-value. In case of the fit to the speed of sound (number 2 in table B.1), the new
fit overestimates the lattice data in opposite manner than the original model. If the original
model is fitted to the entropy density (fit 4), the result is much better, as may be seen from
figure B.2. This fit slightly overestimates the 𝑐2𝑠-lattice data in the range 1 ≤ 𝑇/𝑇𝑐 ≤ 2. The
peak height of the interaction measure is well described in contrast to the high temperature
behavior. The improved Kiritsis model allows the best description of the lattice data (fit 3
and 5). The 𝜒2 values are significantly reduced. Furthermore, one can assume that the fits
to 𝑐2𝑠 and 𝑠/𝑇 3 converge to the same parameters for 𝑉1, 𝑉3 and 𝐺5. The lattice data of the
speed of sound, pressure and entropy density are described nearly perfectly. Only the high
temperature behavior of the interaction measure is not as good as that of the original model.

In the following, the improved Kiritsis model (fit 5) is compared to the Gubser model (see
section 4.2). The optimal fit parameters of the Gubser model, which describe the gluon plasma,
are taken from [41]. We calculated with 𝛾 = 0.6938, ∆ = 3.5976 and 𝐺5 = 1.1753. 𝑇𝑐 is defined
as the minimum of the curve 𝑇 (𝜑ℎ) in this model. The resulting 𝜒2 values are 𝜒2

𝑐2𝑠
= −4.4595

and 𝜒2
𝑠/𝑇 3 = 1.1555.

Figure B.3 shows the potential of the optimal fits in dependence of the variable 𝜑𝐺 that
appears in the Gubser model (see (4.18)) as the holographic coordinate. The variable 𝜑𝐾 ≡ Φ,
appearing in the Kiritsis model (4.7), follows from the relation 𝜑𝐺 = 𝜑𝐾

√︀
8/3. The difference

arises because of the different factors in the action for the Kiritsis (4.1) and Gubser model
(4.13). The 𝜑𝐺-interval is chosen so that the temperature range 1 ≤ 𝑇/𝑇𝑐 ≤ 10 is described
exactly. The minimum value of 𝜑𝐺 corresponds to 10 𝑇𝑐. Since the 𝜑𝐺 values are negative in
the Kiritsis model, the curve is shifted such that the minimal values match with the Gubser
model. Remarkably, the original and improved Kiritsis model do not differ much, although
they describe the lattice data very differently.25 In contrast, the potential of the Gubser model
extends in a wider range of values. Although the two models use totally different potential
approaches, both models allow the description of the lattice data. The right plot in figure B.3
shows the ratio of the derivative of the potential (𝑑𝑉 (𝜑𝐺)/𝑑𝜑𝐺) to the potential. In case of the

25For comparison with the Gubser model, −𝑉𝐾(𝜑𝐺) is plotted.
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Figure B.1: Equation of state and thermodynamic quantities of the pure gluon plasma.
Squares: lattice data [28]. The Kiritsis model is primary fitted to the speed of sound 𝑐2𝑠.

Kiritsis model, the derivative is calculated as 𝑑𝑉 (𝜆(𝜑𝐺))
𝑑𝜑𝐺

= 𝑑𝑉 (𝜆)
𝑑𝜆

𝑑𝜆
𝑑𝜑𝐺

. The slopes of the curves
do not match exactly.

Figure B.4 shows the speed of sound end entropy density of the two models. The two models
are in good agreement with the lattice data in the studied temperature range. In more detail,
the entropy density is very slightly underestimated in the temperature range 1.1 ≤ 𝑇/𝑇𝑐 ≤ 3.5

in the Kiritsis model and very slightly overestimated in the Gubser model in this range. For
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Figure B.2: Equation of state and thermodynamic quantities of the pure gluon plasma.
Squares: lattice data [28]. The Kiritsis model is fitted to the entropy density 𝑠/𝑇 3.

higher temperatures, the situation is reversed.
Furthermore, we studied the viscosities of the gluon plasma. Namely, the relevant quantities
are the bulk- 𝜁 and shear viscosity 𝜂. The shear viscosity is holographically calculated by the
relation [42]

𝜂 =
𝑠

4𝜋
. (B.3)

The ratio of bulk to shear viscosity is calculated with the formula of Elling and Oz [43]. The
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Figure B.4: Speed of sound and entropy density of the improved Kiritsis model in compari-
son to the Gubser model. The parameter values from the Gubser model are taken from [41].

most general form reads as follows

𝜁

𝜂
=
∑︁
𝑖

(︂
𝑠
𝑑𝜑𝑖,ℎ

𝑑𝑠
+ 𝜌𝑎

𝑑𝜑𝑖,ℎ

𝑑𝜌𝑎

)︂2

. (B.4)

Here, 𝜌𝑎 are the charges associated with the gauge fields 𝐴𝑎
𝜇 that appear in the action. Specif-

ically, the equations for the Gubser and Kiritsis model are

𝜁

𝜂
=

(︂
d ln(𝑠)

d𝜑ℎ

)︂−2

. (B.5)

Figure B.5 shows the results of the analysis. The ratio of bulk to shear viscosity is plotted in
dependence of the scaled temperature and the non-conformality measure. The latter one is
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defined as26

∆𝑐2𝑠 =
1

3
− 𝑐2𝑠 . (B.6)

The ratio of the viscosities displays a nearly linear section in the range 0 ≤ ∆𝑐2𝑠 ≤ 0.24, which
was already described in [44] for the Gubser model. The improved Kiritsis model confirms
this result. However, there occur deviations for high values of ∆𝑐2𝑠, which correspond to values
close by the critical temperature 𝑇𝑐. (The differences for high temperatures, that occur in the
double logarithmic plot on the right side of figure B.5 are negligible.)
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Figure B.5: Ratio of bulk to shear viscosity of the improved Kiritsis model in comparison
to the Gubser model. The parameter values from the Gubser model are taken from [41].

Remarkably, these differences correspond to the very small temperature interval 1.00 ≤ 𝑇/𝑇𝑐 ≤
1.03. To analyze possible reasons for this behavior, figure B.6 compares the equation of state,
i.e. the temperature and entropy density, in dependence of 𝜑𝐺 (w.r.t. the Gubser model) for
both models. Since the ratio of the viscosities is calculated from the entropy, differences in
the curves directly influence the viscosities. Note that high values of 𝜑𝐺 correspond to small
temperatures. In fact, the graphs ln 𝑠(𝜑𝐺) do not differ much. However, two intersection points
at 𝜑𝐺 ≈ 0.7 and 𝜑𝐺 ≈ 1.9 imply that even very small differences in the slope of the curves cause
the differences in the viscosities. Therefore, the logarithmic derivative of the entropy density
is shown in figure B.7. There occur very small differences for high values of 𝜑𝐺. Moreover, the
graph of the Gubser model exhibits a local maximum at 𝜑𝐺 ≈ 3.34, which corresponds to an
inflection point in the curve ln 𝑠(𝜑𝐺) in figure B.6. Since the improved Kiritsis model does not
exhibit this behavior, there occur differences in the ratio of the viscosities.

26The name refers to the fact, that for an ideal gas the relation Δ𝑐2𝑠 = 0 holds.
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