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Abstract

The dynamical Schwinger effect refers to the creation of electron-positron pairs by a
time dependent, spatially homogeneous electric field. It probes the fundamentals of
quantum electrodynamics and is sought to be verified with upcoming high-intensity laser
installations. In the dynamically assisted Schwinger effect, the pair yield is increased
by orders of magnitude through the combination of fields of different field strength and
frequency scales. In this thesis we, investigate both processes in the framework of a
quantum kinetic equation. We are especially interested in what amplification factors
can be achieved by the assisting field and whether intermediately large mode occupation
numbers have a physical significance and could serve as a verification of the Schwinger
effect. For the latter goal, we couple our system to a quantized radiation field that serves
as a secondary (photon) probe and study its spectrum, as the afterglow of the dynamical
Schwinger effect.

Kurzdarstellung

Als dynamischen Schwingereffekt bezeichnet man die Erzeugung von Elektron-Positron-
Paaren durch ein zeitabhängiges, räumlich homogenes elektrisches Feld. Er dient zur
Untersuchung der Grundlagen der Quantenelektrodynamik und es wird versucht, ihn an
zukünftigen Hochintensitäts-Laseranlagen zu verifizieren. Bei dem dynamisch assistierten
Schwingereffekt wird die Paarausbeute durch eine Kombination von Feldern mit unter-
schiedlichen Feldstärken- und Frequenzskalen um mehrere Größenordnungen erhöht. In
dieser Dissertation untersuchen wir beide Prozesse im Rahmen einer quantenkinetischen
Gleichung. Wir interessieren uns besonders dafür, welche Verstärkungsfaktoren durch das
assistierende Feld erreicht werden können und ob intermediär große Modenbesetzungszahlen
physikalische Signifikanz haben und als Verifizierung des Schwingereffekts dienen können.
Für zweiteres Ziel koppeln wir unser System an ein quantisiertes Strahlungsfeld, das als
sekundäres (Photonen-) Signal dient, und untersuchen dessen Spektrum, das Nachglühen
des dynamischen Schwingereffekts.
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1 Introduction

Quantum electrodynamics (QED) is the quantum theory of light interacting with matter and
describes, for example, the scattering of a photon off an electron, the Coulomb interaction
or the annihilation of an electron and a positron, producing two photons. Together with
the electro-weak interaction and quantum chromodynamics (QCD), it is one of the three
pillars of the standard model of particle physics. It is the first and arguably most successful
quantum field theory (QFT) and its creators, R. Feynman, J. Schwinger and S. Tomonaga,
were awarded the Nobel price for their discovery. In this theory the strength of the coupling
between light and matter is encoded in the quantity e, the elementary charge. A standard
technique for calculations in QED is to expand physical observables in powers of e using
Feynman diagrams. For example, the magnetic moment g of the electron calculated within
QED is g = 2 + e2

4π2 + O(e4). It is an early result of the theory [1] and greatly helped
to establish its validity and reputation. Julian Schwinger, who calculated the first-order
correction, had the result engraved on his tombstone. Over the years g, was calculated to
ever higher orders in e, currently up to e10 [2, 3], showing impressive agreement with the
experiment.

There are, however, calculations for which such an expansion is not possible, for fundamental
(the result may be non-analytical in the expansion parameter e) or practical reasons (the
Feynman diagrams get too complicated to evaluate). This happens when the electro-
magnetic fields involved get strong, on the order of the “critical” electric field strength
Ec = m2/e = 1.3 × 1018 V/m (or Bc = 4.4 × 109 T for the magnetic field strength) with m
the electron mass. The subfield that deals with such phenomena is called strong-field QED
and is less well tested than the perturbative sector. Its most prominent example is the
Schwinger effect [4] which, despite its name, was first investigated by Sauter [5] and Euler
and Heisenberg [6]. It is the name given to the spontaneous creation of electron-positron
pairs from vacuum by a static electric field. As it is the background for most of this thesis,
we will describe it in more detail below.

Other areas of strong-field QED include light-by-light scattering. Although photons
cannot directly interact with each other (QED being an abelian gauge theory, there are
no interaction vertices between the gauge field), they can interact via a virtual fermion
loop, creating an effective photon-photon vertex. This can for example manifest in the
matterless double-slit: two strong lasers are focused parallel to each other and a beam of
high-frequency photons is shone perpendicularly on this focal region. By theory’s prediction,
an interference pattern as in the classical double-slit experiment should emerge [7, 8]. A
similar effect is vacuum birefringence, where a strong electric field polarizes the vacuum,
making it birefringent [9, 10].

Strong electro-magnetic fields can for example be found in the vicinity of super-heavy
nuclei. The binding energy of the lowest electron state exceeds the electron-positron band
gap at a critical nuclear charge of Zcr = 172.5 [11, 12]. That means that state dives into
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1 Introduction

the positron continuum, resulting in pair creation. Since such heavy stable nuclei have
not yet been discovered, it was sought to observe this effect in heavy ion collisions [13,
14]. This was thwarted by the lifetime of the resulting composite nuclei being short low to
allow for pair creation to set in.1 Other sources can be found in outer space in the form of
pulsars and magnetars which are rapidly rotating neutron stars. Their magnetic field can
reach strengths of 108 to 1011 T [15, 16]. This is well in the regime of strong-field QED.
Even the electric fields these magnetic fields induce can reach the critical field strength and
the energy density of the “vacuum” in the presence of such a magnetic field is greater than
the mass density of lead. Unfortunately it is hard to set up laboratory equipment close
to neutron stars. However, through the light emitted from these stars, the birefringence
induced by this strong magnetic field may be detected [17, 18].

At present, the most promising avenue for observing strong field effects is via high-intensity
(optical) lasers. They have so far eluded experimental verification for two reasons: the
experimentally achievable field strength E is still small compared to Ec and many effects
scale exponentially with E, e.g. ∝ e−π Ec

E . For lasers, the critical field strength corresponds
to a critical intensity Ic which in natural units is just Ic = E2

c and has a numerical value of
Ic = 4.4 × 1029 W/cm2. Current petawatt lasers reach intensities of 1021 to 1024 W/cm2

which corresponds to field strengths of E ≈ 10−5 . . . 10−3Ec. This translates to e.g. the
Schwinger effect being suppressed by a factor of about e104

. . . e106 . In recent years, a
multitude of research facilities focusing on strong (optical) lasers have been proposed,
planned and funded, with some already in operation. Examples are the Vulcan 10 PW
project [19], Apollon [20], PHELIX [21, 22] HiPER [23, 24], POLARIS [25, 26], HIBEF [27],
PETAL [28], ELI [29–31] and XCELS [32, 33]. For an overview of the technology used to
achieve these field strengths see [34]. There are different trade-offs between intensity, total
energy delivered and pulse length, among others, with some more suitable for strong-field
QED and some for other fields of physics. The race to higher intensities generates a
mutual amplification of interest between theorists and experimentalist: Higher available
field strengths let us probe the quantum vacuum, and interesting prediction of new physics
drives the development of stronger lasers. For general proposals for utilizing these facilities
for strong-field QED research, see [35–40].

1.1 Pair creation and Schwinger effect

This thesis focuses on pair creation by electric fields. We will assume our E field to be
spatially homogeneous, but time dependent. The model for this is two colliding lasers.
They will form a standing wave with the electric field in the anti-nodes being homogeneous
at the scale of the wavelength of the lasers. If this is large compared to the Compton
wavelength of the electron, our simplification is justified. The Compton wavelength is the
intrinsic length scale of pair creation. Indeed, we can interpret the critical field strength
the following way: An electron in a field of this strength gains its own rest mass as energy
when accelerated over one Compton wavelength.

The Schwinger effect is only one physical setting in which particles can be created. There
is also the famous Hawking radiation, where the horizon of a black hole splits a virtual

1Similarly, the passage time of peripheral ultrarelativistic heavy ion collisions is argued to be too short to
cause analog strong-field effects.
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1.1 Pair creation and Schwinger effect

Figure 1.1: Schematic illustration of the Schwinger (left) and Breit-Wheeler effect (right) in
the Dirac sea picture. The positron continuum is the lower blue band, the electron
continuum the upper one. The red circle represents a particle, the white circle a hole
and the wiggly line a photon.

particle-anti-particle loop and one of them escapes and can be measured as thermal
radiation by a far away observer [41, 42]. The driving force here is gravitation in the
context of general relativity (GR). Indeed GR provides a wide variety of scenarios for
particle creation, e.g. on a large scale by an expanding universe [43–45] or inflationary
reheating [46], or on a small scale through Unruh radiation [47]. The latter also has
parallels with QED [48]. In fact, QFT on curved space-time has many interesting parallels
with background field QED. Yet another example is from quantum chromodynamics with
hadron production from chromoelectric flux tubes [49]. Also in QCD, there is the chiral
phase transition, which can be modeled by a time dependent particle mass, leading to
pair production too [50, 51]. These different scenarios are conceptually similar, with the
underlying theoretical description being the Bogoliubov transform which diagonalizes a
time dependent Hamiltonian. Its time dependence in the above examples comes from quite
different physical phenomena: a background field, or curved space-time or time dependent
mass. We will investigate the Bogoliubov transform in detail in the course of this work,
but as an introduction to the general cases, we invite the reader to read appendix A. It
presents a toy model for pair creation which, although simplified, captures many of the
essential concepts.

We will investigate electron-positron (pair) production within QED. There are conceptually
two processes by which this can happen, the already mentioned Schwinger effect and
the Breit-Wheeler process. The former can be interpreted in the Dirac sea picture as a
(constant) electric field tilting the electron and positron continua. A particle from the filled
lower continuum will tunnel into the higher one, leaving a hole behind (the positron) and
becoming an electron. This is shown schematically in the left panel of Fig. 1.1. It has as of
yet, as we mentioned, not been observed due to insufficient available field strengths. The
Breit-Wheeler process is conceptually simpler: Two photons collide and produce a pair,
γγ → e+e−. Interpreting it similarly to the Schwinger effect, we can be imagined a particle
being lifted by a photon from the lower into the upper continuum see the right panel of
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1 Introduction

Figure 1.2: Schematic illustration of the dynamically assisted Schwinger effect, with entities as
in Fig. 1.1.

Fig. 1.1.2 This process has been observed in the E144 experiment [52]. The Schwinger
effect’s dependence on the field strength is ∝ E2e−π Ec

E , while the Breit-Wheeler’s is ∝ E2.
As might be guessed from the intuitive picture, the latter effect can be easily calculated
in the perturbative regime, when just two photons take part in creating a pair, which
happens when the combined energy of the photons in their rest frame is greater than 2m.
When the energy is lower, more photons and thus are higher field strength are needed and
the perturbative calculations get progressively more complicated, to the point of being
intractable. That is when strong-field methods need to be applied.3

The dynamical Schwinger effect is the middle ground between these two examples. The
electrical field is still assumed as a spatially homogeneous background field, but can vary
with time. We will later see that this contains the correct scaling behaviors w.r.t. E of
both processes as a limiting case. It is thus some matter of interpretation where to draw
the line between both processes, but it is a fallacy to assume two things are the same
whenever one can gradually transition from one to the other. A slowly varying but strong
field acts more like the Schwinger effect, and a fast but weak field like the Breit-Wheeler
process. Combining two fields with such different scales results in the so called dynamically
assisted Schwinger effect [53, 54] which increases the number of produced pairs by orders
of magnitude. The idea behind it is depicted in Fig. 1.2: the slow and strong field tilts
the bands as before and the photons from the fast and weak field lift a particle from the
positron continuum. They do not lift it completely into the upper band, but it is enough
to shorten the tunneling length. Since tunneling probability depends exponentially on
tunneling length, even a rather small lift will have a large effect. Such a setup might be
achieved experimentally by colliding a strong optical laser with an X-ray free electron

2The reaction needs two photons for the conservation of momentum, but we did not draw them in the
picture.

3It should be noted, however, that the law of conservation of effort holds. To apply strong-field methods,
one assumes the photons come from a coherent background field which is another approximation (in
contrast to perturbation theory), but one more suitable for this case.
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1.2 Outline of this thesis

laser [55] which, as the name suggests, operates at much higher frequencies than the former,
but also lower field strengths.

Since the Schwinger effect, as mentioned, has as of yet not been observed due to insufficient
pair yields (or equivalently insufficiently strong fields), we will also look at possible secondary
probes. In particular, even when no real particles are produced, there will be some virtual
particles influenced by the applied electric field.4 In our chosen approach, this manifests in
a large number of quasi-particles at intermediate times. They can potentially radiate real
photons through various processes, e.g. pair annihilation or bremsstrahlung. These real
photons may serve as a verification of the Schwinger effect, even when the residual pair
yield is too low to measure. Of further interest in this context is the fundamental question
whether the intermediate quasi-particles have any physical meaning, since in the standard
QFT interpretation, only the out-states and thus the residual pair number can be connected
to observables. This photon radiation from the background field is conceptually similar
to photon-photon scattering and vacuum birefringence, but we do not use an external
probe photon and emphasize the relation to the intermediate quasi-particles as a possible
verification of the dynamical Schwinger effect.

1.2 Outline of this thesis

In chapter 2 we will investigate the dynamical Schwinger effect. There is already a lot
of research on this subject (see [56] for a recent review, also relevant for chapter 3). Our
main tool is the so called quantum kinetic equation [57, 58]. There are also different
approaches, such as WKB methods [59, 60], worldline instantons [61–63] or the Wigner
formalism [64–66]. Phenomenologically, we restrict ourselves to spatially homogeneous,
linearly polarized, time dependent fields. Spatially inhomogeneous fields were studied
in [67–71], other polarizations in [72, 73] and superpositions of plane waves in [74, 75].
Within our model and approach, there are a variety of time dependencies for the electric
field under investigation. We will cite more specific literature when we discuss them in
chapter 2.

Chapter 3 discusses the dynamically assisted Schwinger effect. We will superpose two
fields of different scales, as was first proposed in [53, 54]. We do this for different time
dependencies and, building on the results of chapter 2, we give an explanation for the
orders of magnitude increase in the particle yield.

Chapter 4 deals with the secondary photon probes. We couple our system to a quantized
radiation field similar to [50]. This results in the vacuum emitting photons in the presence
of an electric background field and we discuss how they might serve as a verification of the
dynamical Schwinger effect and how they pertain to the interpretation of QFT. Also, the
echo of the dynamically assisted Schwinger effect in the photon spectrum is discussed.

Chapter 5 provides a conclusion and outlook in addition to the short summaries at the
end of each chapter.

4One popular intuitive picture is the external field aligning virtual electron-positron loops, thus polarizing
the vacuum.
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1 Introduction

In appendix A we exhibit the already mentioned toy model of particle creation. Appendix B
deals with some mathematical properties of our chosen framework, the quantum kinetic
equation. Appendix C explains the theory of general Bogoliubov transforms, valid for all
quadratic Hamiltonians and background fields (not just spatially homogeneous ones).

Published papers containing results that are presented in this thesis are (in chronological
order)

I A. Otto, D. Seipt, D. Blaschke, B. Kämpfer, and S. A. Smolyansky, “Lifting shell
structures in the dynamically assisted Schwinger effect in periodic fields”, Phys. Lett.
B 740, 335 (2015)

II A. Otto, D. Seipt, D. B. Blaschke, S. A. Smolyansky, and B. Kämpfer, “Dynam-
ical Schwinger process in a bifrequent electric field of finite duration: Survey on
amplification”, Phys. Rev. D 91, 105018 (2015)

III A. Otto, T. Nousch, D. Seipt, B. Kämpfer, D. B. Blaschke, A. D. Panferov, S. A.
Smolyansky, and A. I. Titov, “Pair production by Schwinger and Breit-Wheeler
processes in bi-frequent fields”, J. Plasma Phys. 82, 655820301 (2016)

IV T. Nousch, A. Otto, D. Seipt, B. Kämpfer, A. I. Titov, D. B. Blaschke, A. D. Panferov,
and S. A. Smolyansky, “Laser assisted Breit-Wheeler and Schwinger processes”, Pro-
ceedings of the International Symposium on New Horizons in Fundamental Physics,
Makutsi, South Africa, 23.–28. November 2015, FIAS Interdisc. Sci. Ser. (2017),
pp. 253–262

V A. D. Panferov, S. A. Smolyansky, A. Otto, B. Kämpfer, D. B. Blaschke, and Ł. Juch-
nowski, “Assisted dynamical Schwinger effect: pair production in a pulsed bifrequent
field”, Eur. Phys. J. D 70, 56 (2016)

VI S. A. Smolyansky, A. D. Panferov, D. B. Blaschke, Ł. Juchnowski, B. Kämpfer, and
A. Otto, “Vacuum particle-antiparticle creation in strong fields as a field induced
phase transition”, Russ. Phys. J. 59, 1731 (2017)

VII A. Otto and B. Kämpfer, “Afterglow of the dynamical Schwinger process: Soft photons
amass”, Phys. Rev. D 95, 125007 (2017)

Paper I contains mainly numerical results from chapters 2 and 3 and paper II the analytical
derivations. Papers III and IV contain details of the time evolution for the periodic pulse
from chapter 2 and compares the Schwinger effect with the Breit-Wheeler process. Papers V
and VI discuss the dynamical and dynamically assisted Schwinger effect for the Sauter
pulse and how the transition of the intermediate high quasi-particle number to the residual
pair number can be interpreted as a phase transition. Paper VII contains the results of
chapter 4, the secondary photon probes of the Schwinger effect.

Parallel to elaborating the material in this thesis, two Bachelor’s and one Master’s thesis
have been supervised, with another Bachelor’s thesis on the backreaction (see chapter 4)
being in progress:
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1.2 Outline of this thesis

1. H. Oppitz, “Dynamisch assistierter Schwinger-Effekt in unterschiedlichen Feldkonfig-
urationen”, Bachelor’s Thesis (Technische Universität Dresden, 2013)

2. S. Hähnel, “Paarerzeugung in elektrischen Feldern: Numerische Untersuchungen zum
Schwinger-Effekt”, Bachelor’s thesis (Technische Universität Dresden, 2015)

3. H. Oppitz, “Dynamisch assistierter Schwinger-Effekt für Multi-Skalen-Feldkonfigura-
tionen”, Master’s Thesis (Technische Universität Dresden, 2017)
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2 Dynamical Schwinger effect

In this chapter we will investigate the dynamical Schwinger effect, in which only one field
is active. We will first derive the quantum kinetic equation, the workhorse of this thesis as
it underlies most of our calculations, and discuss approximations as well as some aspects
of its numerical implementation. This derivation is done by diagonalizing the Hamiltonian
via a Bogoliubov transform. Then we introduce the different types of time dependent fields
that are commonly studied and present brief results for the Schwinger and Sauter fields,
before turning to the periodic pulse, which is our main focus and will take the rest of the
chapter. We study the resulting spectrum first with analytical methods which we later
compare to the numerics.

2.1 Nomenclature and definitions

We use units in which ~ = c = 1. Three-vectors are indicated by boldface (e.g. x) and their
components by latin indices (e.g. xi). Four-vectors are in normal math font (e.g. x) and
their components indexed by greek letters (e.g. xµ). The metric tensor is “mostly negative”,
i.e. g = diag(1,−1,−1,−1), so that the scalar product of two four-vectors x = (t,x) and
y = (s,y) is xy = xµyµ = ts − x·y. The Dirac matrices are in the Weyl representation
given by

γ0 =
(

0 1
1 0

)
, γ =

(
0 σ

−σ 0

)
, (2.1)

and the Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.2)

We employ Dirac’s slash notation, that is for any four-vector A we define /A = γµAµ.
Partial derivatives have the following equivalent notations

∂

∂y
f(xµ) = ∂yf(xµ) = ∂2f(xµ) (2.3)

and the total time derivative can be expressed as

d
dtg(t) = ġ(t). (2.4)

The momentum component parallel to the unidirectional electrical field is called p‖ and
that perpendicular to it p⊥. Since E will always point along the z direction, p‖ = pz.
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2 Dynamical Schwinger effect

2.2 Derivation of the Quantum Kinetic Equation

The aim of this section is to diagonalize the QED Hamiltonian in the presence of a
background field A,

H(t) =
∫

d3x Ψ̄(t,x)
[
−iγ∇ + e /A+m

]
Ψ(t,x), (2.5)

via a Bogoliubov transformation. We will derive an equation for the coefficients of this
transformation, which in turn implies an equation for the number of created pairs.

2.2.1 The Bogoliubov transform

The Heisenberg equation of motion for the operator Ψ following from (2.5) is the Dirac
equation

(i/∂ − e /A(t,x) −m)Ψ(t,x) = 0. (2.6)

Choosing the Coulomb gauge we set A0 = E0 = 0 so only the vector components remain.
Recall that we assume our electric field (and thus the vector potential A) spatially
homogeneous, linearly polarized and time dependent.

E(t,x) = E(t) = E(t)ez, A(t,x) = A(t) = A(t)ez, E(t) = −Ȧ(t). (2.7)

This simple form of the field suggests the ansatz

Ψ(t,x) =
∫ d3p

(2π)3ψ(t,p)eipx. (2.8)

Plugging (2.8) in (2.6) yields a reduced Dirac equation for ψ, which in Schrödinger form
reads

i∂tψ(t,p) = h(P (t))ψ(t,p), (2.9)

with the quasi-momentum P (t) = p − eA(t) and the first-quantized Dirac Hamiltonian

h(p) = γ0(pγ +m
)

=
(

−pγ m
m pγ

)
. (2.10)

The square of the matrix h is a scalar, h(p)2 = Ω(p)2, with Ω(p) =
√
m2 + p2

the energy of a particle with mass m and momentum p. Consequently, h(p) has
{−Ω(p),−Ω(p),Ω(p),Ω(p)} as its set of eigenvalues (counting multiplicity). We define
by a slight abuse of notation h(t,p) = h(P (t)) and Ω(t,p) = Ω(P (t)) and use them
interchangeably.

The Hamiltonian h(t,p) thus distinguishes two sets of bases of the spinor space: ur(t,p),
vr(t,−p) and Ur(t,p), Vr(t,−p) with r = 1, 2. The first are solutions to (2.9):

i∂tur(t,p) = h(t,p)ur(t,p),
i∂tvr(t,−p) = h(t,p)vr(t,−p),

(2.11)

10



2.2 Derivation of the Quantum Kinetic Equation

while the second are eigenvectors to h(t,p):

h(t,p)Ur(t,p) = Ω(t,p)Ur(t,p),
h(t,p)Vr(t,−p) = −Ω(t,p)Vr(t,−p).

(2.12)

From now on we require our field E to be switched on at ton and off at toff, i.e. E(t ≤ ton) =
E(t ≥ toff) = 0. This implies A(t ≤ ton) = A−∞

1 and A(t ≥ toff) = A∞. Our solutions
to (2.11) and (2.12) can then be fixed by requiring they coincide with the free solutions at
t = ton:

ur(t = ton,p) = Ur(t = ton,p) = ur(p),
vr(t = ton,−p) = Vr(t = ton,−p) = vr(−p).

(2.13)

We choose the time independent base spinors to be

ur(p) = Ω(p) + h(p)√
2Ω(p)(Ω(p) − pz)

Rr, vr(−p) = −Ω(p) + h(p)√
2Ω(p)(Ω(p) + pz)

Rr, (2.14)

where Rr are two eigenvectors to γ0γ3 with eigenvalue −1, which suits our setting since E
points along the z axis.

It is straightforward to show the following properties of these base spinors (see appendix B.1):
They are orthogonal

u†
r(p)us(p) = v†

r(−p)vs(−p) = δrs,

u†
r(p)vs(−p) = 0,

(2.15)

they are eigenvectors of h(p)

h(p)ur(p) = Ω(p)ur(p),
h(p)vr(−p) = −Ω(p)vr(−p).

(2.16)

and they obey the following ordinary differential equations (ODEs)

d
dtur(P (t)) = 1

2Q(t,p)vr(−P (t)),

d
dtvr(−P (t)) = −1

2Q(t,p)ur(P (t)),
(2.17)

with

Q(t,p) = eE(t)ε⊥
Ω(P (t))2 , ε⊥ =

√
m2 + p2

⊥. (2.18)

The quantity ε⊥ is also called the transverse energy. From (2.16) it is immediately obvious
that setting

Ur(t,p) = ur(P (t)), Vr(t,−p) = vr(−P (t)) (2.19)

satisfies (2.12) and (2.13). These spinors Ur and Vr are also orthonormal at all times,
thanks to (2.15).

1We can always set this value to 0 by a gauge transformation, or equivalently by shifting p.
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2 Dynamical Schwinger effect

For ur(t,p) and vr(t,−p) we make the ansatz

ur(t,p) = α(t,p)Ur(t,p) + β(t,p)Vr(t,−p),
vr(t,−p) = −β∗(t,p)Ur(t,p) + α∗(t,p)Vr(t,−p).

(2.20)

We now insert (2.20) into (2.11) and employ (2.19),(2.17) and (2.12)) to arrive at coupled
ODEs for α and β:

α̇(t,p) = −iΩ(t,p)α(t,p) + 1
2Q(t,p)β(t,p),

β̇(t,p) = −1
2Q(t,p)α(t,p) + iΩ(t,p)β(t,p).

(2.21)

The initial conditions (2.13) translate to α(t = ton,p) = 1, β(t = ton,p) = 0. Note
that (2.21) implies d

dt(|α|2 + |β|2) = 0 and, due to the initial condition, |α|2 + |β|2 = 1.
This makes (2.20) a unitary transformation. With this we have completely specified both
bases and we can decompose a general solution ψ of (2.9) in both of them:

ψ(t,p) =
∑

r

[
cr(p)ur(t,p) + d†

r(−p)vr(t,−p)
]

=
∑

r

[
Cr(t,p)Ur(t,p) +D†

r(t,−p)Vr(t,−p)
]
.

(2.22)

The operator cr(p) destroys a particle of momentum p and spin r, and d†
r(p) creates an

anti-particle. They fulfill the usual anti-commutation relations and span our Fock space.
Since cr, d†

r, ur, vr, Ur and Vr are fixed, we can now define Cr and D†
r in such a way that

the second equality in (2.22) holds:

Cr(t,p) = α(t,p)cr(p) − β∗(t,p)d†
r(−p),

D†
r(t,−p) = β(t,p)cr(p) + α∗(t,p)d†

r(−p).
(2.23)

This is the Bogoliubov transform from cr, dr to Cr, Dr.

2.2.2 Particle number and quantum kinetic equation

To see the significance of (2.23) let us look at the QED Hamiltonian. We can express (2.5)
in terms of ψ and h as

H(t) =
∫ d3p

(2π)3 ψ
†(t,p)h(P (t))ψ(t,p). (2.24)

Inserting (2.22) and taking into account (2.12) and the orthonormality of Ur and Vr yields

H(t) =
∫ d3p

(2π)3

∑
r

Ω(P (t))
[
C†

r(t,p)Cr(t,p) −Dr(t,p)D†
r(t,p)

]
. (2.25)

Thus H is diagonalized in terms of the operators Cr and Dr.

The Bogoliubov transform (2.23) also has the crucial property of leaving the canonical
anti-commutation relations intact, that is

{cr(p), c†
s(q)} = {Cr(t,p), C†

s(t, q)} = (2π)3δrsδ(p − q),
{dr(p), d†

s(q)} = {Dr(t,p), D†
s(t, q)} = (2π)3δrsδ(p − q)

(2.26)
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2.2 Derivation of the Quantum Kinetic Equation

with all other anti-commutators zero. Thus, both sets of operators are creation/annihilation
operators of particles with spin 1

2 and mass m. They also define two different vacua, |0〉
and |Ω〉, by cr |0〉 = dr |0〉 = 0 and Cr |Ω〉 = Dr |Ω〉 = 0. Since H is diagonal in Cr and Dr,
|Ω〉 is the (time dependent) ground state of the system.

The number operators c†
rcr and C†

rCr vanish when sandwiched between their respective
vacua, but taking their expectation values using the other vacuum yields

〈0|C†
r(t,p)Cr(t,p) |0〉 = 〈Ω(t)| c†

r(p)cr(p) |Ω(t)〉 = |β(t,p)|2(2π)3δ(0). (2.27)

This quantity is the number of quasi-particles at time t produced by the electric field. A
rigorous interpretation as an electron number is only possible when E is switched off, that
is for t ≥ toff. The divergent factor (2π)3δ(0) =

∫
d3x ei0x =

∫
d3x is just the spatial volume

of the homogeneous system, and we drop it by normalizing the particle number by this
volume. We thus define the (dimensionless) (quasi-)particle number density f (including a
factor 2 for the spin sum) as

f(t,p) = 2|β(t,p)|2. (2.28)

Note that some authors do not include the spin sum in f , which introduces various factors
of two in subsequent formulas. With the help of the auxiliary quantities u = −2 Re(α∗β)
and v = 2 Im(α∗β) and the ODEs (2.21) we find a set of coupled ODEs for f :

ḟ(t,p) = Q(t,p)u(t,p),
u̇(t,p) = Q(t,p)(1 − f(t,p)) − 2Ω(t,p)v(t,p),
v̇(t,p) = 2Ω(t,p)u(t,p),

(2.29)

with the initial conditions f(ton) = u(ton) = v(ton) = 0. This is the quantum kinetic
equation (QKE) for the particle number density f . It was first derived in [57], see also [58].

2.2.3 Low-density approximation

The ODE (2.29) is a system of coupled equations which must be solved numerically. To
gain analytical insight, approximations are in order. First, let us rewrite (2.29) as an
integro-differential equation

ḟ(t,p) = Q(t,p)
t∫

ton

dt′Q(t′,p)
[
1 − f(t′,p)

]
cos

2
t∫

t′

dt′′Ω(t′′,p)

 . (2.30)

The term (1−f) in (2.30) is the Pauli blocking factor and arises from the fermion statistics.
(In scalar QED it would be (1 + f).) It also suggests a suitable approximation: In most
cases our density will be small, f � 1, so that we can approximate 1 − f ≈ 1. Then the
right side of Eq. (2.30) becomes independent of f and can be integrated to yield

f(t,p) = 1
2

∣∣∣∣∣∣
t∫

ton

dt′Q(t′,p)e2iΘ(t′,p)

∣∣∣∣∣∣
2

, (2.31)
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2 Dynamical Schwinger effect

where we introduced the dynamical phase

Θ(t,p) =
t∫

ton

dt′Ω(P (t′)) =
t∫

ton

dt′
√
m2 + p2

⊥ + (pz − eA(t′))2 . (2.32)

Equation (2.31) is called the low-density approximation (LDA) and can be checked for
self-consistency. If the resulting f is O(1), then the LDA can no longer be valid, and thus
the result is unphysical. In this case, one must resort to solving the full equation (2.30)
which is equivalent to (2.29).

We can also derive the LDA for the Bogoliubov coefficients themselves in a more systematic
way. Recall the definition of Q given in Eq. (2.18): Q(t,p) = eE(t)ε⊥/Ω(t,p)2, that is
Q ∝ E. We can solve (2.21) in a series expansion by inserting a parameter ε in front of Q
and in the end setting ε = 1.2 We get the modified equation

d
dt

(
α
β

)
=
[(

−iΩ 0
0 iΩ

)
+ ε

(
0 Q

2
−Q

2 0

)](
α
β

)
. (2.33)

Now we make a series ansatz for both coefficients: α =
∑

n ε
nαn and β =

∑
n ε

nβn.
Inserting into (2.33) and comparing by powers of ε yields a set of recursive ODEs:

α̇n+1 = −iΩαn+1 + Q

2 βn, α̇0 = −iΩα0,

β̇n+1 = −Q

2 αn + iΩβn+1, β̇0 = iΩβ0,

(2.34)

which, upon utilizing the initial conditions α(t = ton) = 1 and β(t = ton) = 0, integrate
to

αn+1(t) = e−iΘ(t)
t∫

ton

dt′βn(t′)Q(t′)
2 eiΘ(t′), α0(t) = e−iΘ(t),

βn+1(t) = − eiΘ(t)
t∫

ton

dt′αn(t′)Q(t′)
2 e−iΘ(t′), β0(t) = 0.

(2.35)

The first non-vanishing term for β is

β1(t,p) = −1
2eiΘ(t,p)

t∫
ton

dt′Q(t′,p)e−2iΘ(t′,p) (2.36)

which inserted into f = 2|β|2 yields (2.31).

2.3 Electrical fields

In our subsequent discussions of pair production, we will use three types of time dependent
electric fields, which we describe in this section along with simple analytical properties.

2This is equivalent to an expansion in the electric field E, but more notationally convenient.
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2.3 Electrical fields

2.3.1 Schwinger field

In this case the electric field is constant:

A(t) = −E0t, E(t) = E0. (2.37)

This is the field used in the first studies of vacuum decay and pair production [4, 5]. It does
not conform to our convention of being switched on at t = ton and off at t = toff, but that
can be overcome by a limiting procedure of first calculating f and then sending ton → −∞
and toff → ∞. Analytical solutions can thus be derived in terms of the parabolic cylinder
functions Da(z) (see [86]):

f(t,p) = 1
4

(
1 + u√

2η + u2

)
e− πη

4 |A−B|2 ,

A =
(√

2η + u2 − u

)
D−1+ iη

2

(
−ue− iπ

4
)
, B = 2e

iπ
4 D+ iη

2

(
−ue− iπ

4
)
,

u =
√

2
eE0

(pz + eE0t) , η = ε2⊥
eE0

.

(2.38)

Schwinger’s seminal result is recovered by computing the total pair creation rate

Ṅ =
∫

d3pḟ(t,p) = (eE0)2

4π3 e− πm2
eE0 . (2.39)

2.3.2 Sauter pulse

This pulse type depends on a timescale τ in addition to the scale E0:

A(t) = −E0τ tanh t

τ
, E(t) = E0

cosh2 t
τ

. (2.40)

A plot of the time dependencies is shown in Fig. 2.1. It obeys our switch-on/off convention
only asymptotically, but that can be handled in the same way as for the Schwinger field.
Analytical solutions for f can again be obtained (see [86]), similar in form to (2.38), but
instead of the parabolic cylinder functions one utilizes the hypergeometric function F2 1 :

f(t,p) =
1 + Pz

Ω(t,p)

2Ω(−∞,p)
[
Ω(−∞,p) − pz + eE0τ

] ∣∣A+ iB
∣∣2,

A = 2
τ
u(1 − u)ab

c
F2 1 (1 + a, 1 + b, 1 + c;u),

B =
[
Ω(t,p) − (1 − u)Ω(−∞,p) − uΩ(∞,p)

]
F2 1 (a, b, c;u),

u = 1
2(1 + tanh t

τ ), a = −ieE0τ
2 − iτΩ(−∞,p)

2 + iτΩ(∞,p)
2 ,

b = 1 + ieE0τ
2 − iτΩ(−∞,p)

2 + iτΩ(∞,p)
2 , c = 1 − iτΩ(−∞,p).

(2.41)

Two examples of the time evolution resulting from (2.38) and (2.41) are shown in Fig. 2.2
for different field strengths. As the length of the Sauter pulse τ is increased, its solution
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Figure 2.1: Plots of the time evolution of the vector potential (left) and electric field (right) for
the Sauter pulse (2.40).
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Figure 2.2: Time evolution of the pair density f for Schwinger (black) and Sauter pulse (blue:
τ = 2/m; red: τ = 5/m; green: τ = 10/m) at p = 0. The field strength is E0 = 0.3Ec

in the left and E0 = 0.4Ec in the right panel. The fields for the Schwinger field are
given by (2.37) and its solution by (2.38). For the Sauter pulse, the corresponding
equations are (2.40) and (2.41).

approaches the Schwinger case. This is of course expected, since the limit τ → ∞ of (2.40)
is just (2.37).

We also note that f reaches an intermediate maximum far greater than its residual value
f(t → ∞).3 This is a generic feature also present in other pulse types. It begs the question
whether the number of intermediate quasi-particles has any physical significance. By the
standard rules of QFT, only asymptotic states are physical, thus only f(t → ±∞) can be
interpreted as a pair density. What then does it represent in between asymptotic times?
And given that the residual number for realistically achievable pulse parameters has as
of yet been too small to measure, could this be an avenue for detecting the dynamical
Schwinger effect experimentally? We will keep these questions in mind.

3For example, in the left panel of Fig. 2.2 the maximum value for the Schwinger pulse is about 103 times
greater than its asymptotic value.
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2.3 Electrical fields

An important dimensionless quantity can be formed from the physical quantities e, m and
the parameters E0, τ : the Keldysh parameter γ. It is defined by

γ = m

eE0τ
= Ec

E0

1
mτ

. (2.42)

One can think of it as relating the energy scales inherent in E0 and τ . It is used to
distinguish two cases. For γ � 1 we say the field is in the adiabatic or tunneling regime.
There it is expected to behave mostly like the Schwinger field, i.e. it acts mostly through
its field strength and not the energy inherent due to its time dependence. For γ � 1, on
the other hand, we say the field is in the multiphoton or perturbative regime. As the
name suggests, it should behave mostly as an ensemble of many quanta with frequencies
due to the time scale. Perturbation theory in the external field might be applicable
for some calculations here, but unlikely to succeed in the adiabatic regime. These are,
however, mainly illustrations meant to stimulate one’s intuition and should be taken with
a grain of salt. In particular, one should not exclusively depend on the Keldysh parameter
for classifying fields, but rather look at the total parameter space spanned by the two
dimensionless quantities E0/Ec and mτ .

2.3.3 Periodic pulse

Both the Schwinger and Sauter pulses have the advantage that the QKE can be solved
analytically with known functions when they are used as background fields. The usefulness
of these solutions can be questioned, however, since they look fairly intractable and it is
difficult to extract analytical predictions from them.

A major problem exists in their physical relevance. Since A(ton) > A(toff) the fields contain
a DC component which must have an electric charge as a source. So they cannot correctly
model a solution of Maxwell’s equations in vacuum, e.g. a laser, even under our relaxed
assumption of a spatially homogeneous field.

A more realistic approach is to consider a periodic A field with frequency ν modulated by
an envelope K:

A(t) = K(t)E0
ν

cos νt, E(t) = K(t)E0 sin νt− K̇(t)E0
ν

cos νt. (2.43)

The frequency is in one to one relation to the time scale τ that we used for the Sauter
pulse: ν = 1/τ . Then the Keldysh parameter is γ = Ec

E0
ν
m .4 The period of the oscillations

is T = 2π/ν. It is possible to add a carrier envelope phase ϕ0 to the field (2.43) by
substituting νt → νt+ϕ0. However, since we expect it to be of minor importance for fields
with a large number of oscillations under the envelope, and since we would like to keep our
parameter space small, we do not add it.

For the envelope K one might choose for example a window function [87] or a Gaussian [88].
But we want our envelope to have three properties, some of which those two examples do
not exhibit:

4We thought a frequency looks more natural for an oscillating field, and a timescale for a Gaussian-like
field, since the letter is just a measure for its width.
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2 Dynamical Schwinger effect

1. Smoothness, preferably K ∈ C∞.

2. Make E fulfill the switch-on/off conditions and do not let A acquire a DC component,
e.g. by setting K(ton) = K(toff) = 0.

3. Be constant over a preferably large time interval.

Modulating the A field by the envelope instead of the E field has two advantages: It is
easy to eliminate the DC component and we do not have to integrate A over time (most
likely numerically) to get E. Had we multiplied E by K, careful picking of the parameters
would have been necessary to ensure A(toff) = A(ton). We therefore construct an envelope
function satisfying our criteria using the two helper functions

r(x) =
{

0, x ≤ 0
e− 1

x , x > 0
, s(x) = r(x)

r(x) + r(1 − x) . (2.44)

Indeed, r ∈ C∞ but it is not analytical, since r(n)(x) = 0, so every term of its Taylor
series around x = 0 is zero. This carries over to s, which is defined in terms of r (and
its denominator can never be zero). We also note that s(x ≤ 0) = 0 and s(x ≥ 1) = 1.
Defining our envelope by

K(t) = s

(
t

tramp

)
s

(
tflat − 2tramp − t

tramp

)
(2.45)

fulfills these three properties:

1. K ∈ C∞ since s is.

2. K(t ≤ 0) = K(t ≥ tflat + 2tramp) = 0, so ton = 0 and toff = tflat + 2tramp.

3. K(t) = 1 for tramp ≤ t ≤ tflat + tramp.

The A field is thus switched on smoothly in [0, tramp), the duration of which is controlled
by the ramping time tramp. It then oscillates with constant amplitude in [tramp, tflat +
tramp] for the duration of the flat-top interval tflat, and is again switched off smoothly in
(tflat + tramp, tflat + 2tramp] with the same duration as the switch-on process, tramp.5 Both
parameters, tramp and tflat, can be chosen independently of each other and to arbitrary
positive values. For example, setting tramp = 0 the resulting envelope is just a window
function, K(t) = θ(t)θ(tflat − t). On the other hand, setting tflat = 0 there will be no
interval of constant amplitude; the field is switched on, and immediately off again.

We will mainly restrict ourselves to the case where tramp � tflat, so the resulting fields are
as close as physically reasonable to pure oscillating fields. It is, however, also necessary to
not make tramp too small, because since K̇(t) = O(1/tramp) in the switching-on/off region
this would create large spikes in the E field. This is also why using a window function is
very much unphysical. It creates a delta-function spike in the electric field. We will later
see that f oscillates rapidly with the periodic field as input. Suddenly switching off simply
“freezes” the density f in place, and that will be highly sensitive to when the switching-off

5One might have chosen two different timescales for switching on and off, but that seemed an unnecessary
enlargement of the parameter space with no expected additional insights.
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Figure 2.3: Plot of the time evolution of the vector potential (left) and electric field (right) for
the periodic pulse (2.43). The envelope K is shown as a dashed black curve in the
left panel. Its parameters are tramp = 1.5T and tflat = 5T .

occurred. The densities thus obtained have little value. One can get what one wants by
suitably setting the switch-off time. In contrast, slowly switching of makes the oscillations
slowly vanish and f converge to a value, that varies slowly with tramp. Thus we require
tramp to be at least a few oscillations of the modulated function, e.g. tramp & 3T . The
values we will most often use are tramp = 5T and tflat = 50T .

Plots of the A field and the resulting E field are shown in Fig. 2.3. The envelope K
is superimposed over A as a dashed black curve. Both parameters for the envelope are
relatively small in the plots compared to what we will usually use. This ensures there are
not too many oscillations of the fields under the envelope, which would be impossible to
plot right.

2.4 Numerics

Before we turn to analytical approaches, let us describe some details of our numerical
implementation for the periodic pulse, since this will be used throughout to check the
analytical results.

2.4.1 Dimensionless quantum kinetic equation

The first step of implementing a numerical algorithm is often to define dimensionless
quantities that correspond to the real ones, because computers can only be programmed
with dimensionless floats.6 We denote the dimensionless variant of a variable or function

6There are in fact libraries for using dimensional quantities in code directly, e.g. [89], but they are not
widely used and often introduce some overhead.
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2 Dynamical Schwinger effect

by putting a hat over them, e.g. t → t̂. Their definitions read

t̂ = νt, p̂ = p

m
, Â(t̂) = eA(t)

m
, Ê(t̂) = eE(t)

m2 = E(t)
Ec

,

Ω̂(t̂, p̂) = Ω(t,p)
m

=
√

1 + p̂2
⊥ + (p̂‖ − Â(t̂))2, Q̂(t̂, p̂) = Q(t,p)

m
= Ê(t̂)ε̂⊥

Ω̂(t̂, p̂)
.

(2.46)

Note that α, β, f , u and v are already dimensionless. Our dimensionless version of
Eq. (2.21) for the Bogoliubov coefficients is then

d
dt̂

(
α
β

)
= m

ν

(
−iΩ̂ Q̂/2

−Q̂/2 iΩ̂

)(
α
β

)
(2.47)

and the QKE (2.29) reads

d
dt̂

fu
v

 = m

ν

 0 Q̂ 0
−Q̂ 0 −2Ω̂
0 2Ω̂ 0


fu
v

+ m

ν

0
Q̂
0

 . (2.48)

There are four dimensionless constants that enter the equations:

1. The dimensionless field strength E0/Ec.

2. The dimensionless frequency ν/m.

3. The dimensionless ramping and flat-top times, νtramp and νtflat.

We can write our fields exclusively in terms of them:

Â(t̂) = K(t̂)m
ν

E0
Ec

cos t̂, Ê(t̂) = K(t̂)E0
Ec

sin t̂−K ′(t̂)E0
Ec

cos t̂,

K(t̂) = s

(
t̂

νtramp

)
· s
(
νtflat − 2νtramp − t̂

νtramp

)
.

(2.49)

2.4.2 Implementation details

We have translated our equations into a form suitable for computers. All those hats are
however not easy on the eye, so we will always refer to the dimensional unhatted quantities
and equations with the understanding that they need to be translated with the above
prescriptions where needed.

Both Eqs. (2.21) and (2.29) are ordinary, linear differential equations of first order. There
is, crucially, no coupling between different momenta p. The problem thus becomes what is
sometimes called “embarrassingly parallel”, i.e. we can compute solutions to the equations
independently for different momenta and parameters and distribute the computations to
as many processors as our resources allow.

Numerical methods for solving ODEs are plentiful, see for example [90] for an introduction
and overview. Implementing them correctly and efficiently is a difficult task in its own

20



2.4 Numerics

right, which we will not attempt in the course of this work. Instead we use the C++
library odeint [91] which provides a wide variety of algorithms. In particular, one can
choose between different solvers, such as Runge-Kutta schemes of various order, the
Bulisch-Stoer algorithm or Rosenbrock methods. After some explorations, we settled on
its runge_kutta_fehlberg78 template class as a stepper and its integrate_adaptive
procedure for integration of the equations.

The implementation works well for large field strengths and frequencies, e.g. E0 = O(0.1Ec)
and ν = O(0.5m). Trying to make these parameters smaller to approach more realistic
values exposes two problems. Lowering E0 rapidly reduces the residual pair density f to
the point where it is much smaller than the machine precision. Lowering ν on the other
hand makes m/ν � 1. This significantly increases the time it takes for the algorithm to
solve the equation. In fact, we found “experimentally” that the computational complexity
is O

(
(m/ν)2). In practice, one cannot go much lower than E0 = 10−2Ec and ν = 10−3m

with presently available resources.

2.4.3 Exploiting periodicity

The naive algorithm for integrating over the entire time tramp + tflat + tramp is linear in
those times, i.e. ∝ O(tramp) +O(tflat). We can make use of the periodicity of our fields in
the flat-top region and employ Floquet’s theorem to lower this to O(tramp) +O(log tflat).
This makes integrating over the flat-top region take much less time than one needs for the
switching-on/off.

We will explain this method for the Bogoliubov coefficients and their equation (2.21),
but it works equally well for Eq. (2.29). We first rewrite (2.21) into a matrix differential
equation:

U̇(t, t0) = M(t)U(t, t0), U(t0, t0) = 1, (2.50)

U =
(
α −β∗

β α∗

)
, M =

(
−iΩ Q/2

−Q/2 iΩ

)
. (2.51)

Note that M is skew-Hermitian, i.e. a solution U must be unitary and a one-parameter
group, that is U(t2, t0) = U(t2, t1)U(t1, t0). The entire time evolution can then be separated
into U(tflat + 2tramp, 0) = U(tflat + 2tramp, tflat + tramp)U(tflat + tramp, tramp)U(tramp, 0). In
the flat-top interval, the matrix M is periodic with period T = 2π/ν: M(t+ T ) = M(t)
for tramp ≤ t < t+ T ≤ tflat + tramp. By Floquet’s theorem (see e.g. [92]), the middle part
of U can be written as a product of a periodic matrix and an exponential:

U(t, tramp) = P (t− tramp)eR(t−tramp), for tramp ≤ t ≤ tflat + tramp,

P (t+ T ) = P (t), R = const.
(2.52)

In particular, we have P (T ) = 1, so that, if tflat = nT for an integer n, U(tflat +
tramp, tramp) = enRT = eRT n = U(tramp + T, tramp)n. Taking a matrix to the power
of n can be done in O(logn) steps. Calculating U(tramp + T, tramp) is constant time w.r.t.
tramp and tflat. The algorithm for computing the total time evolution is then clear:

1. Compute U1 = U(tramp, 0) in O(tramp) time.

21



2 Dynamical Schwinger effect

2. Compute U2 = U(tramp + T, tramp) in constant time.

3. Compute U3 = U(tflat + 2tramp, tflat + tramp) in O(tramp) time.7

4. Compute Un
2 in O(logn) = O(log tflat) time.

5. Compute the result U(tflat + 2tramp, 0) = U3U
n
2 U1 in constant time.

Adding up the time complexities for each step yields the claimed result. We just assumed
tflat = nT with integer n for exposition’s sake. The algorithm can be generalized, with the
same time complexity to arbitrary tflat.

2.5 Phase space structure and time evolution for the periodic
pulse

With the preliminaries out of the way, let us look at analytical properties that can be
derived for f with the periodic pulse as background. From the outset, we will make two
simplifications: We will use the low-density approximation (2.31) to derive our results
and we will neglect effects of the switching-on/off process introduced by the envelope K
in (2.43). This allows for a Fourier analysis similar to [93, 94], but we will get some more
insights about the detailed spectrum and the time evolution. The validity of the results will
be justified by comparing them with the numerical computations. Tackling the problem of
treating the switching-on/off analytically was done in [85].

2.5.1 Fourier analysis within the low-density approximation

The pair density f in the low-density approximation (2.31) is just the squared modulus of
some function, which we shall call I. Explicitly,

I(t,p) =
t∫

ton

dt′Q(t′,p)e2iΘ(t′,p) (2.53)

and f = 1
2 |I|2. Recall that we fixed ton = 0 for the periodic pulse. In the flat-top interval

the A field is periodic with period T = 2π/ν and even, A(−t) = A(t). This carries over to
Ω(t,p) = Ω(p − eA(t)) which can therefore be written as a Fourier series

Ω(t,p) =
∞∑

n=0
Ωn(p) cos(nνt),

Ω0(p) = 1
T

T∫
0

dtΩ(t,p), Ωn>0(p) = 2
T

T∫
0

dtΩ(t,p) cos(nνt).
(2.54)

7In fact, for tflat = nT we must have U3 = U†
1 .
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2.5 Phase space structure and time evolution for the periodic pulse

The dynamical phase Θ in (2.53) is just the time integral of Ω, so we have

Θ(t,p) =
t∫

0

dt′Ω(t′,p) = Ω0(p)t+
∞∑

n=1

Ωn(p)
n

sin νt = Ω0(p)t+ P (t,p), (2.55)

where P (no relation to the quantity P in section 2.4.3!) is again T -periodic in t. Inserting
this in (2.53) yields

I(t,p) =
t∫

0

dt′Q(t′,p)e2iP (t′,p)e2iΩ0(p)t′
. (2.56)

The function Qe2iP is again T -periodic and we thus expand it again in a (now complex)
Fourier series:

Q(t,p)e2iP (t,p) =
∞∑

n=−∞
In(p)e−inνt, In(p) = 1

T

T∫
0

dtQ(t,p)e2iP (t,p)einνt, (2.57)

so that

I(t,p) =
t∫

0

dt′
∑

n

In(p)e−inνt′e2iΩ0(p)t′ =
∑

n

iIn(p)ei(nν−2Ω0(p))t − 1
nν − 2Ω0(p) . (2.58)

The denominator nν− 2Ω0(p) can become zero for suitable values n and p, and in this case
I and consequently f will be large (although, it turns out, not divergent). The equation

2Ω0(p) = nν (2.59)

defines structures in phase space that we call shells or ridges. It is fulfilled by certain
momenta p forming a submanifold of phase space for each integer n, which we call the
shell or ridge number.

Before analyzing this further, let us verify it with numerics. Figure 2.4 shows a contour
plot of the residual density f , after the field has been switched off, over phase space (the
p⊥-p‖ plane). The parameters used are E0 = 0.2Ec and ν = 0.02m, leading to a Keldysh
parameter of γ = 0.1, putting the field in the adiabatic regime. One can clearly see sharp
shells/ridges arising in phase space where f gets large (note the logarithmic scale for
the color map). Different shells correspond to different values of n. They are not equal
distances apart, nor are they simple circles in phase space but elongated, ellipse like along
the p‖ axis (note the scales are different on the axes). This can be better seen in Fig. 2.5
which depicts cuts through the phase space shown in the contour plot. The numbers n
corresponding to the shells are plotted above the peaks. They are clearly spaced further
apart in the right panel along the p‖ direction than in the left panel, the p⊥ direction. The
density drops for larger |p|, but more slowly in the p‖ direction than in the p⊥ direction.

To understand the shells’ location and shape, one must investigate the Fourier zero mode
Ω0. Without a background field we simply have usual dispersion relation Ω0(p)|A=0 =
Ω(p) =

√
m2 + p2. It starts off as a parabola for small values of |p| and then tapers of to

a straight line for |p| � m. That is also the basic form for a general function Ω0(p). It
explains the distances between successive shells: The first shells are far apart, since the
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Figure 2.4: Contour plot of the pair density f over the phase space p⊥-p‖ with parameters E0 =
0.2Ec, ν = 0.02m, tramp = 5T , tflat = 50T . Loci of momenta, where 2Ω0(p) = nν,
form sharp ridges where f becomes large.

0 0.2 0.4 0.6 0.8 1

10−9

10−7

10−5

10−3 651

653

655

657

659

p⊥/m

f
(t

off
,p

⊥
,p

‖)

0 0.2 0.4 0.6 0.8 1

650
651 652

p‖/m

Figure 2.5: Cut through the phase space contour plot in Fig. 2.4 for p‖ = 0 (left) and p⊥ = 0
(right). The shell number n is displayed above the ridge peaks.
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Figure 2.6: Left panel: Plot of the Fourier zero mode Ω0 as a function of p⊥, p‖ = 0 (red) or
a function of p‖, p⊥ = 0 (blue) with parameters E0 = 0.2Ec, ν = 0.02m. Example
solutions for 2Ω0 = 651ν and 2Ω0 = 653ν are indicated by the dashed lines. Right
panel: Plot of the effective mass m∗ given by Eq. (2.60) as a function of the Keldysh
parameter γ.

parabola has little slope. Further out they are equidistant, since the slope of a straight
line is constant. This is illustrated in the left panel of Fig. 2.6. Notice that Ω0 grows more
slowly in the p‖ direction than in the p⊥ direction. Therefore the shell radii are larger in
the former direction than in the latter one, which explains the elongated shell shape in
Fig. 2.4 and the peaks being spread further apart in the right panel of Fig. 2.5 than in the
left panel.

We can interpret the ridge-determining equation (2.59) in the following way: The Dirac
field absorbs n quanta of the background field with energy ν to create a pair (the factor 2)
of quasi-particles with momentum p and energy Ω0(p). So Ω0 plays the role of an effective
energy for the quasi-particles from which we can define an effective mass m∗ = Ω0(p = 0).
We will later derive Eq. (2.82) for Ω0, but already note its specialization (with F = F2 1
the hypergeometric function)

m∗ = mF
(
−1

2 ,
1
2 ; 1; −γ−2

)
=
{ 2

πmγ
−1, γ � 1,

m, γ � 1,
(2.60)

depending only on the Keldysh parameter γ. Both notably differ from their counterparts
without a background field. For example, the effective mass corresponding to the parameters
E0 = 0.2Ec, ν = 0.02m (the same parameters as in Figs. 2.4–2.6) is m∗ ≈ 6.4m. The quasi-
particles in a background field are thus much more massive than their free counterparts,
requiring more quanta to produce. Not taking into account the increased effective mass,
one would guess 100 quanta of this field are needed for one pair at the threshold (the pair
then being at rest). But as we can see from the plot, it is actually 650 quanta. A plot of
the effective mass over the Keldysh parameter is shown in the right panel of Fig. 2.6. The
limits for γ � 1 and γ � 1 given in Eq. (2.60) can be easily identified. For a more detailed
discussion of the effective mass in the context of pair creation see [95].

We mention one more fact: The peaks for the even numbered shells do not appear in the
cut of the phase space along the p⊥ direction, see the left panel of Fig. 2.5, whereas they do
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2 Dynamical Schwinger effect

appear in the p‖ direction, see the right panel. This will be explained below in section 2.7
when we study the amplitudes In.

2.5.2 Behavior of f close to a shell

Having identified the shell/ridge structures as the important features of the residual phase
space distribution in periodic fields, we want to investigate the behavior of the quasi-particle
density f when the momentum p is close to a shell. Since the ridges form ellipse-like
structures in the p⊥-p‖ plane, we introduce polar coordinates: p⊥ = p cosϕ, p‖ = p sinϕ
with −π/2 ≤ ϕ ≤ π/2. These “ellipses” are then parametrized by ϕ-dependent radii pn(ϕ),
where n is again the shell number. Each term in the sum (2.58) contributes only in a small
region around each corresponding shell. We therefore make the following approximations:

1. We drop the terms for which there is no solution to 2Ω0 = nν, i.e. we only take the
sum for n ≥ n0 =

⌈
2Ω0(0)

ν

⌉
.8

2. We set In(p) = In(p, ϕ) = In(pn(ϕ), ϕ) that is we replace the value of In close to a
shell by its value on the shell.

3. We make a Taylor expansion of Ω0(p) = Ω0(p, ϕ) around p = pn(ϕ) to first order:
Ω0(pn(ϕ)+εp, ϕ) = Ω0(pn(ϕ), ϕ)+Ω′

0(pn(ϕ), ϕ)εp+O(ε2p). The prime is the derivative
w.r.t. p, i.e. Ω′

0 = ∂
∂pΩ0.

By definition of pn(ϕ), we have 2Ω0(pn(ϕ), ϕ) = nν and therefore nν − 2Ω0(p, ϕ) =
−2Ω′

0(pn(ϕ), ϕ)εp + O(ε2p). Inserting all this into (2.58) (we do not write out the ϕ
dependence of pn, In and Ω′

0) yields

I(t,p) = −i
∑

n≥n0

In(pn)e−2iΩ′
0(pn)(p−pn)t − 1

2Ω′
0(pn)(p− pn) . (2.61)

To finally arrive at the pair density f we take the squared modulus of the above sum:

f(t,p) = 1
2 |I(t,p)|2 =

∑
n≥n0

|In(pn)|2 sin2 [Ω′
0(pn)(p− pn)t]

[Ω′
0(pn)(p− pn)]2

+ mixed terms. (2.62)

The “mixed terms” all contain periodic factors and, by a heuristic argument, these are
proportional to the amplitude E0/ν of A. This is where the switching-on/off comes into
play again: If we switch off slowly enough, the amplitude is reduced in a quasi-static way.
This also causes the “mixed terms” to go to zero, so that we have

f(toff,p) = 1
2
∑

n≥n0

|In(pn)|2 sin2 [Ω′
0(pn)(p− pn)tflat]

[Ω′
0(pn)(p− pn)]2

. (2.63)

Note that the time argument on the l.h.s. is toff = tflat + 2tramp while on the r.h.s. it is tflat.
We effectively only used the switching-on/off to make the oscillating mixed terms in (2.62)
go to zero. To see how this happens we look at a full numerical solution of Eq. (2.29)

8The symbol dxe denotes the smallest integer greater or equal to x. For example, d3.4e = 4, d−5.6e = −5,
d6e = 6.
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Figure 2.7: Plot of the time evolution of f for certain values of p⊥ and p‖ referring to a point on
a ridge. Parameters are E0 = 0.2Ec, ν = 0.5m, tramp = 5T , tflat = 10T . We choose
our momenta so that we are on a shell for the given parameters, i.e. p⊥ = 0.6920m
and p‖ = 0. The switching-off sets in at t = 15T and makes the oscillations go to
zero. The residual density remains constant for t > 20T .

in Fig. 2.7, where the complete time evolution of f for one point on a ridge is shown.
One can see large oscillations at intermediate times, their maxima growing with time, but
upon switching off they vanish to leave the residual density behind. This ties in with the
remark we made about the necessity for a switching-off that is slow enough, at least over a
few oscillations of the underlying field. Imagine we instead suddenly switched off in the
middle of the oscillations. We might get any value between about 5 × 10−5 and 5 × 10−3,
depending on where exactly we switched off, which is clearly unphysical and due to the
spike in the E field this sudden switching-off would produce. Careful readers may observe
that we did not use our usual frequency ν = 0.02m and flat-top time tflat = 50T for this
plot, but instead ν = 0.5m and tflat = 10T . Otherwise the oscillations would have been
too large and rapid to be depicted in a meaningful way.

The switching-on/off process is investigated more thoroughly in [85]. It shows the above
results more rigorously, gives error estimates and also looks at other possible functions to
modulate the oscillations with (like a Gaussian or super-Gaussian).

The resulting phase space distribution f from Eq. (2.63) seems to oscillate over the entire
phase space for variations of tflat. But when we take a closer look at one summand we see
that

sin2 [Ω′
0(pn)(p− pn)tflat]

[Ω′
0(pn)(p− pn)]2

= t2flat
sin2 [Ω′

0(pn)(p− pn)tflat]
[Ω′

0(pn)(p− pn)tflat]2
p→pn−−−→ t2flat (2.64)
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Figure 2.8: A zoom into the region of the n = 651 peak in the left panel of Fig. 2.5. Red:
tflat = 20T ; green: tflat = 40T ; blue: tflat = 60T .

because limx→0 sin x/x = 1. So the peak of a shell increases ∝ t2flat, while its width decreases
∝ 1/tflat. One can see both claimed time dependencies in Fig. 2.8. Exactly on a shell for a
fixed value of n we get (writing out the ϕ dependence)

f(toff, pn(ϕ), ϕ) = 1
2 |In(pn(ϕ), ϕ)|2t2flat + const, (2.65)

where “const” here means “independent of tflat”.

Our two main results of this section can be summarized as follows.

1. Close to a shell the momentum dependence of the residual density is f(toff,p) ∝
sin2[b(p− pn)]/[b(p− pn)]2.

2. The peak of the shell grows ∝ t2flat, while its width shrinks ∝ 1/tflat.

Since some unsystematic approximations were made in the derivation of Eq. (2.63) on top
of already employing the LDA, we need to compare the result carefully to the numerical
simulation. We cannot yet compare the exact formulas with the numerics, because we
lack a way of calculating In(pn) (this will be the subject of the next section), but their
summarized form can be. The t2flat dependence should appear as a straight line in a
log-log plot of f over tflat, and that is exactly what we see in the left panel of Fig. 2.9 for
tflat & 10T . The curve deviates from a straight line for smaller values of tflat, but that is
to be expected, since some of our approximations are not valid for this parameter region
and the contributions from the switching-on/off process will dominate when tramp � tflat.
In that regime, a quasi-static approximation can be made which effectively enlarges the
tflat-region and which can also be applied to Gaussian-type pulses [85].
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Figure 2.9: Plot of the tflat dependence of f(toff). Parameters are E0 = 0.2Ec, ν = 0.02m,
tramp = 5T . We choose our momenta so that we are on the n = 651 shell in the left
panel of Fig. 2.5, i.e. p⊥ = 0.298 593 3m and p‖ = 0. Left: 1 < tflat/T < 103, log-log
scales; right: 0 < tflat/T < 16000, linear scales.

For completeness’ sake we also show the long term time evolution of f in the right
panel of Fig. 2.9. The apparent functional form of the density is f = a sin2(btflat) for
some parameters a and b. Informally it is clear the unlimited growth implied in the t2flat
dependence will be curbed by the Pauli-blocking factor 1 − f in the QKE (2.29) (whose
effect is better understood in its integro-differential form (2.30) and which arises from the
fermion statistics). It is less obvious, why the density should not saturate at some level,
but instead decline again to zero. For an explanation and derivation of this we refer to
appendix B.3. The t2flat behavior is only valid for f � 1 so that the LDA can be applied,
and is also the first term of the Taylor expansion of the sin2 function. From this and
Eq. (2.65) we can conclude ab2 = |In|2/2, so our approximation gives a constraint on the
parameters of the full solution, but cannot determine them completely. This oscillating
long term behavior is reminiscent of Rabi oscillations in (fermionic) two-level systems
and was investigated in more detail in [96, 97]. It is, however, probably not relevant for
experimental observations, since it would require unrealistically large laser intensities and
pulse durations before it would set in.

We conclude that the time dependence of the full solution is well captured by our approxi-
mation. We can similarly compare the momentum dependence, as is shown in Fig. 2.10.
We plot the full solution that was already shown in Fig. 2.5, but zoom into the region of the
n = 651 peak. Overlaid over this black curve is a fit of the numerical data to our derived
shape a sin2[b(p−pn)]

[b(p−pn)]2 with variable parameters a, b and pn. The data and our predicted curve
agree well close to the shell and deviate farther out. But keep in mind this is a log plot:
The smaller peaks to the sides do not contribute much to the overall density, the deviations
there are thus not as important as the agreement at the main peak. The relative error
between the integrals over each curve, restricted to the p⊥ range in this window, is just
0.5%

Both the comparison of the time evolution in Fig. 2.9 and the momentum dependence in
Fig. 2.10 validate our analytical derivation and the (sometimes non-systematic) approxi-
mations that were made.
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Figure 2.10: A zoom into the n = 651 peak region in the left panel of Fig. 2.5 (black curve).
In red is a fit of a sin2[b(p − pn)]/[b(p − pn)]2 to this data, a = 8.312 × 10−4,
b = 1.135 × 103/m and pn = 0.2986m.

2.5.3 Total pair number

From Eq. (2.63) it is straightforward to derive a formula for the total pair number n which
is defined as

n(toff) =
∫ d3p

(2π)3 f(toff,p) =
∫ dp‖dp⊥

(2π)2 p⊥f(toff, p⊥, p‖)

=
∫ dϕdp

(2π)2 p
2 cosϕf(toff, p, ϕ).

(2.66)

We cannot naively multiply the phase space factor p2 onto the f given in (2.63), because
each term in the sum was derived under the assumption that p is close to pn. The factor
would blow up this error and make the integral not converge. Instead, we replace p2 → p2

n

in each summand to get

n(toff) = 1
2

∫ dϕdp
(2π)2

∑
n≥n0

p2
n cosϕ|In(pn)|2 sin2 [Ω′

0(pn)(p− pn)tflat]
[Ω′

0(pn)(p− pn)]2

= π

2 tflat
∑

n≥n0

∫ dϕ
(2π)2 cosϕpn(ϕ)2|In(pn(ϕ), ϕ)|2

Ω′
0(pn(ϕ), ϕ) .

(2.67)

We again inserted the ϕ dependence after the second equality sign to make it explicit. This
formula has a nice interpretation: We can calculate the total number of produced pairs by
integrating over a single shell and then summing over all shells. The integrand for each
shell is made up out of its amplitude |I|2, its width Ω′

0 and the phase space factor p2
n. It is
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2.6 Calculating the amplitudes In

interesting to note that, while the peak of each ridge grows ∝ t2flat, the total pair number n
only grows ∝ tflat. This is because the width of each ridge is proportional to 1/tflat.

2.6 Calculating the amplitudes In

In the preceding section, we derived an approximation for f which depends on two quantities:
the amplitudes In and the derivative of the effective energy Ω′

0, both evaluated on a shell.
While Ω0 is given by a simple integral, which cannot be simplified much further, In is more
complicated. For its evaluation we will proceed as follows: We exploit the periodicity of
the integrand in (2.57) to deform the integration contour into the complex t-plane. When
the contour passes close to a singularity of the integrand, we can employ the method of
steepest descent to calculate the integral. The residue theorem alone is not applicable
because our integrand has branch cuts emerging from the poles of the integrand.

A similar analysis was done in [98]. Complex integration with critical poles and branch cuts
appears generically in the context of pair production, it is not dependent on the approach
via the quantum kinetic equation. For example, similar techniques are also employed when
studying worldline instantons [61–63] or when using WKB-type approximations [59, 60].
This confirms the importance of the zeros of Ω (which are the poles of the integrand) in
the generic setting. In chapter 3, we will see that one can give the dynamically assisted
Schwinger effect a nice interpretation in terms of how the second field influences the location
of said zeros.

2.6.1 Singularity and integration contour

We will once again leave the ϕ dependence implicit. On a shell, Eq. (2.57) reduces to9

In(pn) = 1
T

T/2∫
−T/2

dt eE(t)ε⊥
Ω(t, pn)2 e2iΘ(t,pn). (2.68)

The integrand will have a singularity when Ω2 = 0. This is indeed the case for four points
ti in the strip −T

2 ≤ Re(ti) ≤ T
2 , namely in counter clockwise order t0, −t∗0, −t0 and t∗0

with

t0 = 1
ν

arccos
[
ν

E0

(
p‖ + iε⊥

)]
, arccos z = π

2 + i ln
(
iz +

√
1 − z2

)
. (2.69)

This looks like a case for the residue theorem, but unfortunately one fact prevents its
use: Ω, being the square root of Ω2 has a branch cut emerging from each ti, extending to
infinity. This prevents us from closing a contour around any ti. We will instead choose the
contour depicted in Fig. 2.11 together with the zeros and branch cuts mentioned above.
Our original integration path was on the real axis from −T/2 to T/2, labeled Γ1 in the

9We also shift the integration interval by −T/2 to make the equations more symmetric. The integrand
is T -periodic, which makes this shift valid. If it were evaluated off a shell, it would not necessarily
be periodic, because then 2Ω0 6= nν for integer n, which makes Θ non-periodic and thus the entire
integrand.
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Re t0

Im t
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Γ1

Γ2

Γ3Γ4

Figure 2.11: Schematic plot of the upper complex t-plane, showing two of the zeros of Ω2 (dots
labeled by t0 and −t∗0), the branch cuts emerging from them (dashed lines) and the
integration contour chosen (red line, direction marked by arrows, partial contour
paths labeled with Γi).

figure. We form a closed contour by first following Γ2 to infinity, coming back along Γ3 to
swing around t0 so that the pole lies outside the contour and head off to infinity again. We
mirror this to the left to close the contour. The integrand is holomorphic within the region
enclosed by this contour, since the only poles lie outside it. Since the integrand is periodic,
the contributions from Γ2 and Γ5 cancel leaving us with (symbolically)

∫
Γ1

= −
∫

Γ3
−
∫

Γ4
.

The shape of Γ3 and Γ4 is arbitrary, as long as their endpoints are fixed and they do not
cross the branch cuts. The method of steepest descent that we will employ is based on
the following observation: The real part of Ω is always greater than zero, since it is a
square root (and we follow the standard convention of placing the branch cut of the square
root along the negative real axis). Therefore Im Θ → +∞ as Im t → +∞ and the factor
e2iΘ rapidly goes to zero. On the other hand, Θ is stationary around t0 via the latter’s
definition: Ω(t0)2 = 0 =⇒ Ω(t0) = Θ̇(t0) = 0. We therefore choose a path infinitesimally
close to t0 (symbolized by the cusp of Γ3 around t0 in Fig. 2.11) and following which Im Θ
grows the fastest moving away from t0. This is the path of steepest descent.

We do, however, not need to derive a parametrization for the path because, again, the
precise form of Γ3 and Γ4 is irrelevant: deforming them does not change the value of
the integral along them, due to Cauchy’s theorem. The above discussion is merely about
making our next steps plausible.

2.6.2 Expanding the integrand and closing the contour

Since it is established that contributions to the integral along Γ3 and Γ4 are concentrated
next to the poles t0 and −t∗0, we expand the integrand around both points. But we must be
careful to preserve the asymptotic behavior of Θ as Im t → +∞. Otherwise we would add
contributions far away from the poles, rendering the expansion invalid for approximating
the integral.
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2.6 Calculating the amplitudes In

Expanding Q is straightforward: Ω(t)2 = 2iε⊥eE(t0)(t− t0) + O
(
(t− t0)2), therefore

Q(t) = eE(t)ε⊥
Ω(t)2 = 1

2i(t− t0) + O
(
(t− t0)0

)
. (2.70)

For the exponent we use10

Θ(t) =
t∫

0

dt′Ω(t′) =
t0∫

0

dt′Ω(t′) +
t∫

t0

dt′Ω(t′)

= Θ(t0) +
t∫

t0

dt′
√

2iε⊥eE(t0)(t′ − t0) + O
(
(t− t0)5/2

)

= Θ(t0) + 2
3

[
2iε⊥eE(t0)(t− t0)

]3/2

2iε⊥eE(t0) + O
(
(t− t0)5/2

)
.

(2.71)

We cannot combine the common factor 2iε⊥eE(t0) into one expression since for complex
numbers z1 and z2 in general √

z1z2 6= √
z1

√
z2 and we also cannot make a simple Taylor

expansion for Θ around t0, both of which is obstructed by the branch cut of the square
root function.

Let us define two shorthands: J for the part of our integral along Γ3 with the integrand
expanded around t0 and z = 2iε⊥eE(t0) to get from Eq. (2.68)

J = 1
T

∫
Γ3

dt
e2iΘ(t0) exp

(
4
3 i[z(t− t0)]3/2/z

)
2i(t− t0) = e2iΘ(t0)

2iT

∫
Γ̃3

dx
exp

(
4i
3zx

3/2
)

x
. (2.72)

The second equality sign follows from the substitution x = z(t−t0). The pole in the x-plane
(where also the branch cut emerges) is at x = 0. There are two lines emerging from zero
on which the exponent is strictly negative and goes to −∞.11 We choose the integration
path Γ̃3 to follows these lines and swing around the pole similar to Γ3 in the t-plane. It
is depicted schematically in the left panel of Fig. 2.12. Knowing this we make another
substitution, y = 4i

3zx
3/2. This closes the contour because both endpoints are mapped to

−∞ and removes the branch cut, while the pole stays, as one can see in the right panel
of Fig. 2.12. The final closed path is traversed in clockwise order, which accounts for a
−1 below. With the integral so transformed, we can finally use the residue theorem to
evaluate J :

J = e2iΘ(t0)

2iT

∮
dy2

3
ey

y
= −2πe2iΘ(t0)

3T . (2.73)

This procedure can be done the same way for Γ4 around the pole −t∗0: the result is just
−J∗. Adding both contributions we get

In(pn) = −J + J∗ = 4πi
3T Im e2iΘ(t0). (2.74)

10Such an expansion in fractional powers of the expansion parameter is called a Puiseux series.
11Showing this requires some care and rests upon the fact that Re(E(t0)) > 0.
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Figure 2.12: Schematic plot of the integration contours in the x and y-planes defined by the
substitutions in the text.

2.7 Physics from the amplitudes

Equation (2.74) is remarkably simple: Find the shell momentum pn from Eq. (2.59) for
given values n and ϕ, from that compute t0 and then Θ at that location. Insert it
into (2.74) to get In which serves as the main input for all the analytical properties derived
in section 2.5. We thus have to evaluate a simple integral in the complex plane, which is
considerably simpler than solving the full quantum kinetic equations. This integral is also
much simpler than the low density approximation. The quantity Θ(t0) lends itself well as
a simple handle on the properties of the pair density f in phase and parameter space. We
need to get a feeling for the former in order to understand the latter.

To do this, we will evaluate Θ(t0) in the special case p‖ = 0 which is equivalent to ϕ = 0.
This is sensible as it contains all the relevant physics, as will become clear later on. First,
we specialize the location of the root from Eq. (2.69) to this case:

t0 = T

4 + iT

2π arsinh
(
νε⊥
E0

)
. (2.75)

The perpendicular energy ε⊥ now depends on the chosen shell number n, but we will leave
that implicit. Any path in the complex t plane from 0 to t0 is equally good for computing
the integral, provided it does not cross the branch cut. We will go from 0 to Re t0 and
Re t0 to t0. This yields

Θ(t0) =

T/4∫
0

dt+
t0∫

T/4

dt


√
ε2⊥ + e2E2

0
ν2 cos2(νt). (2.76)

Because we set p‖ = 0 we get the simple cos2 term under the root. Since cos2 is T/2-
periodic, the first integral (which is just Θ(T/4)) is in fact Θ(T )/4. But since we are on
a shell we also have Θ(T ) = T · Ω0 = nπ. For the second integral we use the shorthand
δ = νε⊥/eE0, which is just the Keldysh parameter scaled by ε⊥/m, δ = γ

√
1 + p2

⊥/m
2.
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2.7 Physics from the amplitudes

Now, we reparametrize the path and use some trigonometric identities to get

Θ(t0) = nπ

4 + i
ε⊥
ν

arsinh δ∫
0

dx
√

1 − 1
δ2 sinh2 x

= nπ

4 + i
ε⊥
ν
δ

1∫
0

dx

√
1 − x2

1 + δ2x2 .

(2.77)

We refactor the δ
∫

dx . . . term into a function g(δ). It cannot be expressed in terms of
elementary functions, but with the help of the hypergeometric function F = F2 1 , which
has the integral representation

F (a, b; c; z) = Γ(c)
Γ(b)Γ(c− b)

1∫
0

dt t
b−1(1 − t)c−b−1

(1 − zt)a
(2.78)

for Re c > Re b > 0. With this

g(δ) = π

4 δF
(

1
2 ,

1
2 ; 2; −δ2

)
. (2.79)

This function was introduced in [98] with a slightly different notation. Note that the
assumptions made in [98] to integrate over phase space, namely that the frequency ν be so
low that the peaks are quasi-continuous, are not satisfied in our case, see also [99]. For the
dynamic phase at the pole, we get

Θ(t0) = nπ

4 + i
ε⊥
ν
g

(
νε⊥
eE0

)
. (2.80)

Inserting this into Eq. (2.74) gives

In = 4πi
3T sin

(
nπ

2

)
exp

[
−2ε⊥

ν
g

(
νε⊥
eE0

)]
. (2.81)

This formula is consistent with an observation we made earlier. Recall that in the left
panel of Fig. 2.5 the peaks of the even shells do not appear. This is easy to understand
from Eq. (2.81). For even n, sin(nπ/2) = 0 so In = 0. Technically, there is a shell and a
peak at this location, but it has no amplitude and thus does not show up in the plot. In
fact, on a shell In(pn(ϕ), ϕ) has n + 1 roots, which must be symmetrical around ϕ = 0.
Clearly for even n this implies a root at ϕ = 0.

Two similar formulas specializing the Fourier zero mode Ω0 from Eq. (2.54) and its
derivative Ω′

0 to p‖ = 0 can be derived using analogous steps as above and also employing
the hypergeometric function F . We only note the result:

Ω0(p⊥, p‖ = 0) = ε⊥F
(
−1

2 ,
1
2 ; 1; −δ−2

)
,

Ω′
0(p⊥, p‖ = 0) = p⊥

ε⊥
F
(

1
2 ,

1
2 ; 1; −δ−2

)
,

(2.82)

with the same δ as above.12

12It is not quite obvious that the straightforward derivative of the first line in Eq. (2.82) should yield the
second line. Showing this requires the use of some addition theorems for the hypergeometric function,
or the integral representation (2.78).
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Figure 2.13: A zoom into the n = 651 peak region in the left panel of Fig. 2.5 (black curve). See
also Fig. 2.10. In red is a the analytically derived shell shape a sin2[b(p−pn)]/[b(p−
pn)]2 with a = 8.121 × 10−4, b = 1.097 × 103/m and pn = 0.3014m.

We finally have all the ingredients ready to compare the analytics with the numerics. As a
comparison we will again use a zoom into the shell number n = 651 region, as in Fig. 2.10,
since there one can easily compare the three key characteristics we derived: shell position,
peak height and shell shape. Let us note again the parameters used in this example:
E0 = 0.2Ec, ν = 0.02m, tramp = 5T , tflat = 50T .

First we determine the position. The shell defining equation 2Ω0(pn, 0) = 651ν must be
solved numerically with Ω0 given by Eq. (2.82). We get pn = 0.3014m. With this we
can calculate the derivative, again from Eq. (2.82), as Ω′

0(pn, 0) = 6.981 × 10−2. The
amplitude is computed from Eq. (2.81) as In = −8.060 × 10−4i/T . The function to
be compared to the numerics is then a sin2[b(p − pn)]/[b(p − pn)]2 (from (2.63)) with
a = 1

2 |In|2t2flat = 8.121 × 10−4 and b = Ω′
0(pn, 0)tflat = 1.097 × 103/m. The result can be

seen in Fig. 2.13. The biggest difference is between the peak positions, which is about
0.0028m for a relative error of 0.9%. This error is actually introduced in the very first
approximation we make, going from the full quantum kinetic equation (2.29) to the low-
density approximation (2.31). This was verified by solving the LDA numerically, so that
we need not rely on the Fourier analysis that led to the shell defining equation 2Ω0 = nν.
Otherwise we see an excellent agreement between theory and numerics. The peak height is
off by just 2.3%,13 and the derived sin2 x/x2 shell shape fits well close to the peak. The
relative error between the integrals of both curves is 1.6%, slightly higher than the 0.5% of
the fit in Fig. 2.10.

13If we manually correct the peak location in (2.81), the error is just 0.3%.
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Figure 2.14: Comparison of the pair density f as a function of p⊥ at p‖ = 0 with the envelope
E(p⊥) from Eq. (2.83) (dashed curve). Parameters are E0 = 0.2Ec, ν = 0.02m (top
left); E0 = 0.2Ec, ν = 0.05m (top right); E0 = 0.3Ec, ν = 0.02m (bottom left);
E0 = 0.3Ec, ν = 0.05m (bottom right). For all panels tramp = 5T , tflat = 50T . The
top left panel uses the same parameters as the left panel of Fig. 2.5.

In Eq. (2.81), In is not a function of p⊥, since it was derived under the assumption that the
shell defining equation 2Ω0(pn(ϕ), ϕ) = nν holds. Because we set p‖ = 0 this constrains
p⊥ to the fixed value p⊥ = pn(ϕ = 0). The exponential part of In can, however, be treated
as if p⊥ were variable and since by Eq. (2.65) the peak height of a shell is just 1

2 |In|2t2flat,
we can define an envelope in phase space by

E(p⊥) = 8π2

9T 2 exp
[
−4ε⊥

ν
g

(
νε⊥
eE0

)]
t2flat. (2.83)

We compare this envelope with the numerics in Fig. 2.14. The envelope fits the peaks
very nicely for a number of different parameters. That together with the comparison of
the ridge shape in Fig. 2.13 confirms the string of approximations we employed: We have
accurate estimates for peak location, height, width and shape. It also enables us to take a
more concise look at the parameter dependence: The phase space structure of f is quite
involved and the peak heights (and total particle number n) vary over many orders of
magnitude with changing E0 and ν. When we want to focus on that dependence, it is
essential to mask out the “noise” of the phase space intricacies. Since the envelope bounds
f from above and is monotonously decreasing, E(p⊥ = 0) is a good rough measure for
maxp f(toff,p) for the purpose of order-of-magnitude estimation.

The important part of E(0) is the exponent, which can be written using the Keldysh
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parameter γ = Ec
E0

ν
m as −4m

ν g(γ). For γ � 1 we are in the adiabatic regime and for γ � 1
in the multiphoton regime. This should be reflected in E(0). The leading order terms of g
for small and large γ are g(γ) = π

4γ + O(γ3) and g(γ) = ln γ + 2 ln 2 − 1 + O(1/γ2). Thus
the E0 and ν dependence of the exponent and E(0) is

4m
ν
g(γ) ≈ π

Ec

E0
, E(0) ∝ e−π Ec

E0 for γ � 1, (2.84)

4m
ν
g(γ) ≈ 4m

ν

(
ln Ec

E0
+ ln ν

m
+ 2 ln 2 − 1

)
, E(0) ∝

(
E0
Ec

)4 m
ν

for γ � 1. (2.85)

The first limit is the exponential behavior typical of the Schwinger effect, which is non-
perturbative in e or E0, respectively. In particular, the prefactor π of the exponent is
correct. For the second limit, let us recall the Breit-Wheeler effect: In the simplest case,
two photons of frequency ω collide to create an e+e−-pair. In general, multiple photons
may take a part in the collision. These two colliding photons correspond to one quantum
of our homogeneous field with frequency ν = 2ω. Therefore, for the Breit-Wheeler effect
at the pair-production threshold, where ω = m, we have ν = 2m and E(0) ∝ E2

0 . That is
the same dependence that can be calculated for this effect pertubatively using Feynman
diagrams. We see that the dynamical Schwinger effect interpolates smoothly between
these two regimes and non-perturbative and perturbative behavior. It also reproduces
correctly the behavior of the special cases in these parameter regions, the Schwinger and
Breit-Wheeler effects. This separation of regimes by the Keldysh parameter also confirms
our intuition that we laid out below Eq. (2.42).

The dependence of the envelope E(0) on the parameters can be seen in Fig. 2.15. It
shows a contour plot of the negative of the exponential part of E(0), i.e. 4m

ν g
(

νm
eE0

)
. The

parameter space is sometimes also called the “landscape of pair creation”; for a more
detailed discussion, see [100]. There are lines of constant Keldysh parameter depicted as
long dashed lines, in particular for γ = 1, to ease distinguishing the regions of different
regimes. The contour lines of the exponent are parallel to the ν-axis and evenly spaced
from each other in the upper left part where γ � 1, indicating the Schwinger exponential
behavior and independence of ν in Eq. (2.84). In the lower right part, where γ � 1, on
the other hand, we see the contour lines curve, from which we can only gleam it depends
on both E0 and ν, but not easily the power law as in (2.85). Note that small negative
exponents lead to a large E(0) and thus to a large pair density f .

A more detailed picture is provided by looking at cuts in this parameter space for constant
E0 and ν, see Fig. 2.16. Let us first look at the pure field strength dependence at fixed ν
in the left panel. From Eq. (2.84) we expect a straight line in the left part of the plot (the
adiabatic regime) signifying Schwinger-like pair production, which is exactly what we see.
In the right part (the multiphoton regime), Ec/E0 � 1, so ln

(
4m

ν g(γ)
)

≈ ln ln Ec
E0

+ const
which is reflected in the logarithmic curve. This indicates the power-law behavior manifest
in the Breit-Wheeler effect. Conversely in the right panel the exponent is independent
of ν in the left part, therefore the plot is constant there. In the right part, again from
Eq. (2.85) and because ν/m � 1, we have ln

(
4m

ν g(γ)
)

≈ − ln ν
m + ln ln ν

m + const, which
can be seen as the almost straight downward sloping curve.

To show the behavior of E and therefore f over a large region of the parameter space, we
had to make a log plot of the exponent. This implies the right scale, at which to look at
pair production, is in fact ln | ln f |. With different parameters, the pair density varies over
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Figure 2.15: Contour plot of 4 m
ν g(γ), the negative of the exponent of E(0), over the parameter

space. The solid black curves are contour lines at integer powers of 10, the gray
short dashed curves at 100.2, …, 100.8 between them. The long dashed lines are
the loci of constant Keldysh parameter γ. The color map is inverted compared
to Fig. 2.4, because small exponents lead to large f . Therefore the same colors
correspond to each other in this figure and Fig. 2.4. Red means large, blue small f .

just too many orders of magnitude to get an intuition for it otherwise. This also cautions
us to carefully review and take with a grain of salt claims of enhanced particle production.
Increasing f from 10−1500 to 10−500 may be a 101000-fold increase, but the end result is
still minuscule. Indeed, ln | ln 10−1500| = 8.15 and ln | ln 10−500| = 7.05, not an impressive
difference. To overcome the strong exponential suppression of the Schwinger effect, we
must overcome this obstacle.

2.8 Summary

In this chapter we derived the QKE which is a set of coupled ODEs for the quasi-particle
density f . This was done by diagonalizing the QED Hamiltonian via a Bogoliubov transform.
Then we introduced the three types of fields we used, the Schwinger field, the Sauter
pulse and the periodic pulse. We treated the first two ones as simple models for the latter
one and gave analytical solutions to the QKE for them. We motivated the envelope we
chose for the periodic pulse, emphasizing the importance of smoothly switching on and off.
We mentioned some numerical implementation details, in particular how the integration
over the flat-top interval can be done in logarithmic time and thus very fast, enabling
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Figure 2.16: Cuts through the parameter space shown in Fig. 2.15 for ν = 10−2m (left) and
E0 = 10−3Ec (right). The dashed line denotes γ = 1, left of which γ � 1 (adiabatic
regime) and right of which γ � 1 (multiphoton regime). Note that the E0-axis is
reversed in the left panel to have the regimes be on the same side of the γ = 1 line
in both panels.

long-term studies of the pair density which confirmed Rabi-type oscillations. The residual
density turned out to form ridges in the p⊥-p‖ phase space, for whose location we found
a formula. We derived the behavior of f close to these ridges and compared the result
with the numerics. An integral part of this analysis was performing an integration in the
complex time domain via the method of steepest descent. This uncovered the importance
of the zeros of the instantaneous energy in the background field Ω(t,p) for understanding
the residual spectrum f . We derived an envelope for the peaks of f and argued that the
value of this envelope at p = 0 is good measure for the overall particle yield, masking
out phase space intricacies. At last, we gave a large-scale overview over the parameter
space using this particular value of the envelope and showed that in different parameter
regions the periodic pulse shows signatures of purely Schwinger-type pair creation, or of
Breit-Wheeler-type pair creation.
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3 Dynamically assisted Schwinger effect

The key idea in the dynamically assisted Schwinger effect is to superpose two fields with
different scales, namely a strong but slow field 1 with a weak but fast field 2. This was first
put forward in [53, 54]. We laid out the physical intuition behind it in the introduction,
but let us repeat briefly: We can imagine field 1 tilting the electron and positron bands
in the Dirac sea picture. A particle will then tunnel from the lower to the upper band,
leaving a hole (positron) and becoming an electron. The second field will assist this
tunneling by lifting the particle a short distance, thus shortening the tunneling distance
and exponentially increasing the tunneling probability. This is depicted schematically in
Fig. 1.2.

3.1 Superposition of two Sauter pulses

3.1.1 Field model

It is not sensible to superpose two Schwinger fields, as they have no inherent time scale that
one could change. The sum of both would just be the same field but with a higher field
strength. Thus for our first example, we employ two Sauter pulses with their individual A
and E fields given by Eq. (2.40). Their superposition is then

A(t) = −E1τ1 tanh t

τ1
− E2τ2 tanh t

τ2
, E(t) = E1

cosh2 t
τ1

+ E2

cosh2 t
τ2

. (3.1)

This pulse type was the first studied in context of the dynamically assisted Schwinger
effect [53, 54], and also in [60, 101–103]. An interesting variation of this, superposing a
spatial with a temporal Sauter-like inhomogeneity, was investigated in [104]. Note that for
the Sauter-type pulses we use the time constants τi, which are in one-to-one correspondence
to the frequencies νi = 1/τi used for periodic pulses.

The rather sloppy terminology of “strong and slow” and “weak and fast” can be made
more precise with the help of the Keldysh parameters γi = Ec

Ei

1
mτi

. “Strong and slow”
corresponds to γ1 < 1, also called the adiabatic regime, and “weak and fast” to γ2 > 1, the
multiphoton regime. These are absolute quantifiers for each single field. We also want a
relation between them. field 1 is supposed to be “stronger” than field 2, E1 > E2, and at
the same time “slower”, τ1 > τ2. In the E0-ν-plane as depicted e.g. in Fig. 2.15, this means
the parameter point for field 1 must be above and to the left of the dividing γ = 1-line.
The point for field 2 must then be below and to the right of that, and also below and to
the right of the γ = 1-line. Or to put it more succinctly, the directed line from (1/τ1, E1)
to (1/τ2, E2) must have a slope between 0 and −π/2 and cross the γ = 1-line. We thus
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Figure 3.1: Plot of the time evolution of the vector potential (left) and electric field (right) for
the superposition of two Sauter pulses (3.1) for E1 = 0.3Ec, τ1 = 10/m, E2 = 0.02Ec,
τ2 = 2/m. The dashed lines are for the field 1 alone.

have three constraints on our four parameters:

Ec

E1

1
mτ1

< 1, Ec

E2

1
mτ2

> 1, E1 > E2, τ1 > τ2. (3.2)

They are justified because:

1. If both fields are in the same domain (adiabatic or multiphoton), we can expect no
qualitatively new behavior of the pair production. This forces our first two constraints,
since the field with γ < 1 will simply be named field 1.

2. If we suppose some laser realizes our idealized field models, a trade-off will surely have
to be made so that higher field strengths can only be achieved with lower frequencies
and vice versa.

3. In the same vein, there is no reason one should expect a second field with E2 < E1
but τ2 > τ1 to have a noticeable positive influence on pair creation. Being both
weaker and slower, it cannot assist the first field in any way. (If it were both stronger
and faster, we could switch the fields, leaving this argument intact.)

In Fig. 3.1, we show an example time evolution of these fields, where the Keldysh parameters
are γ1 = 1/3 and γ2 = 25. The dashed curves in both plots are for the field 1 alone, cf.
Fig. 2.1. Indeed, for the A field (left panel), the difference between the two is hardly visible.
It can be better seen for the E field in the right panel: the solid line rises in a small bump
over the dashed line around t = 0.1 The change from adding the field 2 when looking at
the time dependence of A and E is thus very small.

One might expect such a small change would have only a small impact on the solution
f of the quantum kinetic equation, but that turns out to be false. A hint of this can
be seen in Fig. 3.2, where we plot the Fourier transform Ẽ(ω) of the electric field E(t).
The maximum is not too much different between field 1 alone (the dashed line) and both
combined (the solid line). Yet field 1 alone falls much faster then both fields combined

1The difference is bigger in the E-field, because E2/E1 > E2τ2/E1τ1 for τ1 > τ2.
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Figure 3.2: Plot of the Fourier transform Ẽ(ω) of the electric field for the superposition of two
Sauter pulses (3.1) for E1 = 0.3Ec, τ1 = 10/m, E2 = 0.02Ec, τ2 = 2/m. The dashed
line is for the field 1 alone.

for large frequencies ω. In the time domain it is just the opposite, the t behavior is set by
field 1 and does not change from the addition of field 2. This means that the superposition
contains more higher-frequency modes. That is to be expected from our “faster” field: Its
narrower peak in the time domain causes a wider peak in the frequency domain. These
higher-frequency modes can potentially enhance pair creation by providing energy for
stimulating the tunneling, as explained above.

3.1.2 Numerical results

To test whether this intuition is correct, we need to calculate f for the two-field case.
Unfortunately, it does not have a known analytical solution in (relatively) simple functions
as does the single field case (see Eq. (2.41)). So we have to turn to numerics. The
implementation works just as for the periodic pulse which we outlined in section 2.4.
The only complication is in the lack of definite switch-on/off times. There is no ton
and toff for which E(t ≤ ton) = E(t ≥ toff) = 0, because the electric field only goes to
zero asymptotically. We overcome this obstacle by setting ton = −tm, toff = tm and
successively increasing tm until the solution becomes stable, i.e. independent of tm. Trying
this out for a few sets of parameters and momenta, and also comparing to the analytical
solutions as a special case, we found the following rule of thumb: tm must be so large,
that E(−tm)/Ec = E(tm)/Ec is a few orders of magnitude smaller than the residual f so
calculated.
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Figure 3.3: Plot of the residual pair density f for the Sauter pulse with two fields as a function
of p⊥ at p‖ = 0 for E1 = 0.3Ec, τ1 = 10/m, τ2 = 2/m and E2 = 0.02Ec (blue),
E2 = 0.04Ec (red), E2 = 0.06Ec (green). The dashed lines are for the first field
switched off, E1 = 0, and the black curve for the second switched off, E2 = 0.

In Fig. 3.3 we show numerical solutions for a set of parameters over p⊥ at p‖ = 0. The
black curve is the baseline, where only the first field active. The parameters E1 and τ1 are
the same as E0 and τ for the green curve in the left panel of Fig. 2.2, but there we plotted
the time evolution, not the final state spectrum. So the p⊥ = 0 point of the black curve
reproduces the out-state (t → ∞) of this green curve.

To this baseline we add the second field with τ2 = 2/m and increasing E2 shown by
different colors. All three chosen E2s put field 2 solidly in the multiphoton regime, with
γ2 = 25, 12.5, 8.3. For small p⊥, the increase in f when increasing E2 is an almost constant
factor (as seen by the almost constant distances of the curves in the log plot). It is thus
superlinear in E2. One might object that this large value of f is entirely due to field 2, but
this is wrong as one can see from the dashed curves. They show the f that results from
only switching on the second field, that is setting E1 = 0. Each dashed curve is between
one and two orders of magnitude smaller than its corresponding solid counterpart, in which
the field 1 is also active. They are also smaller or at most comparable to the black curve.
Also note the different large-p⊥ asymptotic behavior of f for the three different cases. The
unassisted field falls fastest, the assisting fields slowest, and both combined take the middle
ground.

To summarize: fields 1 and 2 on their own produce a moderately large pair density f , as
shown by the black and the dashed curves respectively. But combining both fields yields a
far greater f as both alone, or even as the sum of both single fs, see the solid curves.
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3.2 Superposition of two periodic pulses

3.2 Superposition of two periodic pulses

Our second case is a straightforward generalization of Eq. (2.43):

A(t) = K(t)
[
E1
ν1

cos ν1t+ E2
ν2

cos ν2t

]
,

E(t) = K(t) [E1 sin ν1t+ E2 sin ν2t] − K̇(t)
[
E1
ν1

cos ν1t+ E2
ν2

cos ν2t

]
.

(3.3)

See the text below Eq. (2.43) for an explanation of the envelope K(t). This is similar
to (3.1) and the motivation for choosing such a field outlined there applies here as well.
We will assume ν2 = Nν1 for N ∈ N because that keeps the pulse periodic in the flat-top
regime of K, which will allow us to adapt the analysis based on the Fourier decomposition
from section 2.5.

3.2.1 Numerical results

As in the single field case, we are first going to look at a few examples of numerical solutions,
see Fig. 3.4. The Keldysh parameter of the first field is γ1 = 0.1 and for the second γ2 = 10
in the upper row and γ2 = 6.8 in the lower. The exact parameters can be found in the
figure caption, but for field 1 we chose the same as our model example from the last chapter.
This puts the first field in the adiabatic and the second in the multiphoton regime. In
the left panels, only the first field is turned on, in the right panels, only the second and
in the middle panels, both fields. Both left panels show the same density since only the
frequency of the second field changes between them but its field strength is zero in both.
As expected we see the same spectrum as in the last chapter for the single field, e.g. in
Fig. 2.5 left panel or Fig. 2.14 top left panel.

In both right panels of Fig. 3.4, there is a single sharp peak. In the upper panel, it is
higher and at a larger p⊥ than in the lower due to the larger frequency, ν2 = 0.5m versus
ν2 = 0.34m. This spectrum for the weak and fast field2 looks quite different compared to
the strong and slow field, but they are both equally well described by our Fourier-analytic
approach. The peaks for field 1 alone simply start at smaller values of p⊥ and are closer
together. In the limit γ1 → 0 they become quasi-continuous.

The middle panels of Fig. 3.4 are for the superposition of both pulses. They look very
similar to the left panels, but lifted by a factor of about 100. The difference in peak
locations is minuscule. Our intuition of the second field assisting the first is thus confirmed.
It does not change the spectrum produced by the first field qualitatively, only quantitatively
by lifting the shell structures. The enhancement is also relatively robust to changes of
ν2 = Nν1 from N = 25 (upper row) to N = 17 (lower row). The peak height drops by
factor of 1.5, while for field 2 alone in the right panel it is a factor of 1000.

2We note a caveat about the pulse duration. The envelope function K has a parameter tflat effectively
counting how many oscillations occur in the flat-top regime. These are counted using ν1, even when the
first field is turned off as in this case. So if there are 50 oscillations for field 1 and N = 25, field 2 will
have made 1250 oscillations. This is an easy mistake to make when doing numerics: Simply inserting
the wanted parameters for field 2 into those for field 1 would have field 2 oscillating for only 50 of its
periods.
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3 Dynamically assisted Schwinger effect

In Fig. 3.5, we show more examples, with E2 increasing from 0 to 0.1Ec. The top left and
top middle panels are identical between Figs. 3.4 and 3.5. As one can see, increasing E2
yields only diminishing returns from some point forth, even in absolute terms (that is,
not relative to both pair yields alone; the yield for field 2 alone increases as we increase
E2). The intuition behind this is that field 1 can only be assisted so much before its pair
production potential is “saturated”. In the Dirac-sea picture, the amount the second field
lifts the negative-energy particles is determined by its frequency ν2. The probability for this
by E2. Once that probability gets large, a significant (order of magnitude) further increase
could only come from “double kicks”, i.e. the particle absorbing two quanta of field 2. This
would shorten the tunneling length by the same amount as the first kick, yielding another
factor of exponential enhancement. But that two-step process is so strongly suppressed
that, once E2 became large enough to make it significant, it would have ceased to be a
weak field and entered the γ2 < 1 adiabatic regime, where it behaves not by emitting single
quanta but by tilting the energy bands.

Note that in both Figs. 3.4 and 3.5 the dashed lines depict an envelope similar to the one
in Fig. 2.14. We have not yet derived its form for the two field case. In the single field
case it is given by (2.83). Recall that the key quantity determining the envelope was the
location of the zero t0 in the complex time domain of the quasi-energy Ω(t, p⊥, p‖). In the
two field case, there will turn out to be multiple zeros, so we will first study where they
turn up and how they depend on E2.

3.2.2 Location and movement of the zeros

Like in the single field case, we will set p‖ = 0 to keep things simpler without losing
relevant physical details. If the second field is not turned on, E2 = 0, there is one zero in
the relevant region 0 ≤ Re t ≤ T/2, Im t > 0 given by Eq. (2.69). If E2 > 0 there will be
additional zeros. For some integer k, cos(kx) will be a polynomial of degree k in cosx, the
so called Chebyshev polynomials of the first kind Tk. Applying this to finding our roots we
get

0 = Ω(t,p)2 = ε2⊥ +
(
eE1
ν1

cos(ν1t) + eE2
Nν1

cos(Nν1t)
)2

= ε2⊥ +
(
eE1
ν1

cos(ν1t) + eE2
Nν1

TN

(
cos(ν1t)

))2
.

(3.4)

This is a polynomial of degree 2N in cos(ν1t), having 4N solutions ti with −T/2 ≤ Re ti ≤
T/2,3 but only N in the relevant region given above. Their precise locations will of course
depend on E2, tracing paths as we increase E2. There are four different cases of how the
zeros move, depending on the remainder of N modulo 4. We characterize them by how the
main zero, already present from the first field alone, moves:

N = 4n + 0 The main zero moves down and right, the rest of the zeros scattered asym-
metrically around (upper left panel of Fig. 3.6).

N = 4n + 1 The main zero moves straight down, the rest are symmetric around it (upper
right panel of Fig. 3.6).

3We do not attach a subscript to the period T of field 1. Its definition is the same as in the one field case:
T = 2π/ν1.
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Figure 3.6: Schematic plot of the movement of the zeros of Ω2 when increasing E2 in Eq. (3.3).
Upper left: N = 4n + 0; upper right: N = 4n + 1; lower left: N = 4n + 2; lower
right: N = 4n + 3 for some n ∈ N. The blue point is the only zero when E2 = 0.
The arrow indicates the way that main zero moves when E2 increases.

N = 4n + 2 Just as the case N = 4n + 0, except the main zero moves to the left and
down, instead of right and down (lower left panel of Fig. 3.6).

N = 4n + 3 The main zero first moves straight up, then collides with a new zero mov-
ing down. They then move symmetrically to the left and right respectively, and
downwards. The rest of the zeros are symmetric around them (lower right panel of
Fig. 3.6).

In the first three cases, the main zero will continue to have an imaginary value smaller then
the other zeros. The fourth case is odd, in that the main zero first moves up, and then
becomes two zeros once the field strength E2 passes some threshold. Yet even here their
imaginary value is smaller then the rest’s. A schematic representation of the movement of
the zeros just described can be found in Fig. 3.6.

As long as E2 is sufficiently smaller than E1, the imaginary value of the main zero(s) will
be much smaller than that of the others’. The contribution of each zero to f is ∝ e− Im ν1ti .
Consequently, if field 2 is really just an assisting field, the main zero will give the main
contribution to f , all others being suppressed exponentially. If E2 gets too large, all zeros
will line up at equal Im ti. That is to be expected, because in that case one can simply
neglect E1 and we are back in the one-field case, but with a “skewed” base frequency of ν1
instead of Nν1 as would befit field 2 alone. Then we basically just zoomed out of Fig. 2.11,
with all the other zeros that are due to the periodicity visible. Summing over all of them
will yield a factor of N , combining with the prefactor ν1 to give the previous result.

Distinguishing between the four cases of zero movement is just bookkeeping without
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3 Dynamically assisted Schwinger effect

additional physical insight. We will therefore restrict ourselves to N = 4n+1, since it is the
simplest. Additionally the enhancement will be the largest in this case. In the other cases,
the main zero does not move down as much, or it will even move up first (for N = 4n+ 3),
leading to the paradoxical situation that the second field diminishes the pair yield due to
some destructive interference.

3.2.3 Envelope for the two field case

All the derivations we did in the sections 2.5 and 2.6 are still valid since they only depend on
the field being periodic in the flat-top regime, and Ω having a number of zeros from which
branch cuts extend. Then, by the method of steepest descent, we arrived at Eq. (2.74)
which gives us the amplitude In from the value of Θ(t0) at the root t0. This amplitude
enters into the formula for the spectrum of f(toff), Eq. (2.63), and the envelope (2.83)
follows from it. No we have multiple zeros, but the only change we have to introduce is to
extend Eq. (2.74) by a sum over all roots ti in the relevant region, i.e. 0 ≤ Re ti ≤ T/2 and
Im ti > 0. The adapted formula is

In(pn) = 4πi
3T

∑
i

Im e2iΘ(ti) (3.5)

and we have not yet introduced a further approximation. From our discussion of the
location of the zeros it is clear that one zero (or two in the odd case N = 4n+ 3) will have
an imaginary value smaller than the rest. The terms for each ti in Eq. (3.5) are suppressed
with e−2 Im Θ(ti) ∼ e− Im ti , that is the root with the smallest imaginary value will dominate
the sum. Consequently we only consider the term from that dominating zero and drop
the rest. This zero is also just the main zero from field 1 which moved towards the real
axis upon increasing E2; we will keep calling it t0. Since our focus, as mentioned, is on the
N = 4n+ 1 case and we have also set p‖ = 0, that dominating zero will have Re t0 = T/4.
This allows a simplification of Θ(t0) similar to the one-field case given in Eq. (2.77),

Θ(t0) =

T/4∫
0

dt+
t0∫

T/4

dt


√
ε2⊥ +

(
eE1
ν1

cos(ν1t) + eE2
Nν1

cos(Nν1t)
)2

= nπ

4 + i
ε⊥
ν1

Im ν1t0∫
0

dx

√
1 −

( 1
δ1

sinh x+ 1
δ2

sinh(Nx)
)2

(3.6)

with δi = νiε⊥/eEi. We factor the remaining integral into a function G(δ1, δ2, N). In the
case E2 = 0 that corresponds to δ2 → ∞, G reduces to g as given by Eq. (2.79):

G(δ1, δ2 → ∞, N) = g(δ1). (3.7)

In that case, we were able to give an explicit expression for the function g in terms of the
hypergeometric function F2 1 , but that does not work here in general. Nevertheless, with
the function G we can define the desired envelope for the two field case, the generalization
of Eq. (2.83), as

E(p⊥) = 8π2

9T 2 exp
[
−4ε⊥

ν1
G

(
ν1ε⊥
eE1

,
Nν1ε⊥
eE2

, N

)]
t2flat. (3.8)
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Figure 3.7: Left panel: Plot of the integrand in Eq. (3.6) as a function of the imaginary part
of the dimensionless time x = Im ν1t at p⊥ = 0 for the parameters E1 = 0.1Ec,
ν1 = 0.02m, N = 25 and E2 = 0 (blue), E2 = 0.01Ec (green), E2 = 0.02Ec (cyan),
E2 = 0.05Ec (red). The curves end at x0 = F−1(1). Right panel: Plot of x0 as a
function of E2 for p⊥ = 0, E1 = 0.1Ec, ν1 = 0.02m and N = 17 (blue), N = 21
(green), N = 25 (cyan), N = 29 (red).

This is the envelope shown as a dashed line in Figs. 3.4, 3.5. Although we still have to
do a numerical integration to evaluate the envelope, it is considerably simpler than the
oscillatory integral from which we started. Only taking into account the main zero in the
sum and the envelope is still a good approximation, as the dashed line hugs the peaks just
as closely as in the single field case.

To see this and understand the enhancement from field 2, define the function F (x) as the
term in the brackets under the root in Eq. (3.6), that is F (x) = δ−1

1 sinh x+ δ−1
2 sinh(Nx).

It is strictly monotonous (thus having an inverse) and F (Im ν1t0) = 1. In terms of this
function the integrand is

√
1 − F (x)2. The integral in (3.6) runs from the maximum of

the integrand at x = 0 to where it is zero at x0 = F−1(1) = Im ν1t0. This can be seen in
the left panel of Fig. 3.7. The area under the curves plotted there is proportional to G. As
the field strength E2 is increased from E2 = 0 for the blue curve, the location of the root
x0 moves further left and the area under the curve gets smaller. Already at E2 = 0.01Ec

(the green curve), the area is about 26% smaller, reducing the value of G at p⊥ = 0 from
0.1563 to 0.1151. This does not look like much, but the difference between the two enters
in the exponential function multiplied by 4m/ν1 and thus lifts the envelope by a factor of
e4·50·(0.1563−0.1151) = 3771.

The value of G depends monotonically on x0, which is just the imaginary part of the root
ν1t0 in the complex plane. The right panel of Fig. 3.7 shows how x0 changes with increasing
E2 and for different values of N . It drops rapidly for even very small E2, because the
combination E2 sinh(Nx) enters F (x). This term grows much faster than E1 sinh x for
the first field, thus even starting much smaller it soon becomes comparable to it and can
lower x0 substantially. This is the key insight why the weak second field can lift the shell
structures by orders of magnitude. The higher the frequency ν2 = Nν1, the larger the
effect, as can be seen by the curves for higher N being lower in the right panel of Fig. 3.7.
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The diminishing returns of increasing E2 are also visible in that the curves’ slope becomes
much lower at large E2.

3.3 Summary

In this chapter we superposed two fields of different field strength and time scales. The
motivation behind this is that a strong and slow field can be assisted by a weak and fast
field to enhance the particle yield by orders of magnitude. We showed this is true for the
superposition of two Sauter pulses with the help of numerical solutions. Then we turned
to periodic pulses, showed numerical examples and then adapted our previous analysis for
one field to this case. This led to a generalized envelope for the peaks of the spectrum.
The enhancement effect can be well understood by the movement of the main zero of
Ω(t,p) upon increasing the field strength of the second field. This movement diminishes an
integral entering in the exponent for the envelope and thus causes the order of magnitude
enhancement even for small field strengths of the second field.
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So far we have considered an external spatially homogeneous electric field driving the
dynamics of the fermions and we studied the e+e−-pairs produced from it. We now want to
look at secondary effects, in particular photons created by these pairs. This is motivated by
the fact that even when dynamically assisting the pair creation as in chapter 3, the residual
density is too small for currently achievable laser fields to be directly experimentally verified.
But as mentioned, the intermediate density is in general orders of magnitude larger than
the residual density. Since photons could also be sourced by these intermediate pairs, there
is the possibility that this large density creates a large observable photon signal. This
would also be interesting from a general QFT point of view: In the standard interpretation
of QFT only asymptotic states can be meaningfully assigned a particle content. What they
represent at intermediate times is not clear. If the asymptotic photons could provide a
“snapshot” of the fermions at finite times this could shed light on to what extent they are
“real” or “quasi”-particles.

In the probe limit, the background field has no dynamics of its own and is not influenced
by the produced pairs. We want to take this one step further by coupling the fermions
to a quantized photon field. It will split in two parts, a semiclassical and a quantum
part. The former will turn out to be a homogeneous electric field, just as the background
field. We can thus add it to the former, which produces a backreaction of the fermions
on the background field. This has already been studied in [105–108], so we focus on the
second quantum part. We will calculate it in first-order perturbation theory, as in standard
QED, and its interpretation is that of photons radiated from the homogeneity region of
the background field.

A different approach to ours for studying the photons is deriving equations of motion for
correlation functions, which form the so called BBGKY hierarchy, see [109–111].

4.1 Backreaction

4.1.1 Normal order and mean-field current

Let us recall our second-quantized Hamiltonian that we diagonalized in the operators Cr

and Dr with the help of the Bogoliubov transform, see Eq. (2.25). The vacuum expectation
value (VEV) of this Hamiltonian has a well-known divergent term, just as in “normal”
QED. There one gets rid of this divergence by normal-ordering the Hamiltonian, denoted
by :H:. One computes the normal order by rearranging all crs and drs and their adjoints
so that all creation operators appear to the left of all annihilation operators. Whenever one
has to exchange two operators, one inserts a minus sign to respect the fermion statistics.
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For example, :c†
rcs: = c†

rcs but :crc
†
s: = −c†

scr. The VEV of every operator normal-ordered
this way is zero, thus also for our H: 〈0| :H(t): |0〉 = 0. In standard QED this is an
intuitively correct result, since the ground state energy does not change with time, and
we set it to zero by this procedure. In strong-field QED, however, with the ground state
time dependent and the background field creating particles there should be, in general, a
non-zero ground state energy. Having it zero at all times is thus undesirable.

A different approach is not normal-ordering w.r.t. the “small” operators cr and dr, but to
the “big” ones, Cr and Dr. We denote this by •H•. For our Hamiltonian, this yields

•H(t)• =
∫ d3p

(2π)3

∑
r

Ω(t,p)
[
C†

r(t,p)Cr(t,p) +D†
r(t,−p)Dr(t,−p)

]
, (4.1)

〈0| •H(t)• |0〉 = (2π)3δ(0)
∫ d3p

(2π)3 2f(t,p)Ω(t,p). (4.2)

The factor (2π)3δ(0) can again be identified with the volume of the system. An educated
guess for determining the energy of the system would go like this: We take the number of
pairs (f), multiply it by two (for particle and anti-particle) and by the effective energy
(Ω). Then we sum over all momentum modes (the integral) to get the total energy. This is
exactly our result in Eq. (4.2), which tells us that our modified normal-ordering prescription
• . . . • is reasonable and gives physical results. We can define the local energy density ε so
that 〈0| •H(t)• |0〉 =

∫
d3xε(t,x) holds by setting

ε(t,x) = 2
∫ d3p

(2π)3 f(t,p)Ω(t,p). (4.3)

We now apply this to the current by defining the current operator as jµ(t,x) =
•Ψ̄(t,x)γµΨ(t,x)•. Since it will be often referenced later, we give its VEV a symbol
of its own, jµ, and call it the mean-field part of the operator j. It is a c-number and with
Ψ from Eqs. (2.8) and (2.22) we find j0 = j1 = j2 = 0 and

j3(t,x) = 2
∫ d3p

(2π)3

[
f(t,p)

p‖ − eA(t)
Ω(t,p) + u(t,p) ε⊥

Ω(t,p)

]
. (4.4)

Note that without our adapted normal order, j0 6= 0, which is not sensible: the external
field cannot create net charge. The current (4.4) is the same as found in [105] from the
conservation of energy, 1

2E(t)2 + ε(t) = const, and Maxwell’s equation Ė(t) = −ej3(t).

4.1.2 Equation of motions

We will keep using the symbol A for our background field, and we introduce A to designate
the operator valued radiation field. The Heisenberg equation of motions for full QED are
now coupled equations for the fermion field operator Ψ and the boson field operator A:

i∂tΨ(t,x) = γ0
[
−γ
(
i∇ + eA(t,x)

)
+m

]
Ψ(t,x),

�A(t,x) = ej(t,x) + ejex(t,x),
(4.5)

where the current j is defined by the procedure outlined above as jµ = •Ψ̄γµΨ•. The
external current jex is a c-number in one-to-one correspondence with the external field A.
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4.1 Backreaction

Their precise relationship depends on the renormalization which we will do later. Spitting
j into its VEV j and a rest jq, j = j + jq, motivates a similar split for A: A = A + Aq.
We split the two equations (4.5) qua definitione into three:

i∂tΨ(t,x) = γ0
[
−γ
(
i∇ + eA(t,x) + eAq(t,x)

)
+m

]
Ψ(t,x), (4.6)

�A(t,x) = ej(t,x) + ejex(t,x), (4.7)
�Aq(t,x) = ejq(t,x). (4.8)

Putting jex into Eq. (4.7) so that it drives the dynamics of A is arbitrary (we could also
have let it drive Aq through (4.8)) but sensible, since both A and j are c-numbers. That
guarantees A to also be a c-number. We can then interpret A as the “classical” part of the
electromagnetic field, consisting of our background field A and the backreaction from the
created pairs, e.g. the Coulomb force between separated charges. In contrast, Aq contains
the “quantum” part1 and refers to the radiation photons.

This split so far does not help us solving the equations. Therefore, we assume Aq has no
interaction with the fermions, i.e. our system is transparent to the photons. This decouples
Eq. (4.8) from both (4.6) and (4.7), resulting in the unperturbed equations

i∂tΨ(t,x) = γ0
[
−γ
(
i∇ + eA(t,x)

)
+m

]
Ψ(t,x), (4.9)

�A(t,x) = ej(t,x) + ejex(t,x). (4.10)

Equation (4.9) is just the same as the Dirac equation (2.6) but with A replaced by A. The
only difference to the dynamical Schwinger effect explored in chapter 2 is the addition of
j in Eq. (4.10). Without j and only jex in (4.10) one would have A = A and Eq. (4.9)
would reduce to Eq. (2.6), which in turn leads to the equation of motion for the Bogoliubov
coefficients (2.21) and the quantum kinetic equation (2.29). Since the external field and
current are spatially homogeneous, so are j and A and we can carry out the same derivations
to reduce Eq. (4.9) to the QKE, but with A replaced by A. Furthermore we can insert the
current (4.4) into Eq. (4.10). Altogether we get four coupled equations2

ḟ(t,p) = Q(t,p)u(t,p),
u̇(t,p) = Q(t,p)(1 − f(t,p)) − 2Ω(t,p)v(t,p),
v̇(t,p) = 2Ω(t,p)u(t,p),

Ä(t) = 2e
∫ d3p

(2π)3

[
f(t,p)

P‖
Ω(t,p) + u(t,p) ε⊥

Ω(t,p)

]
+ ejex(t),

(4.11)

the three original quantum kinetic equations and one additional describing the backreaction
and influence of the external field/current. The auxiliary quantities are

P‖ = p‖ − eA(t),

Ω(t,p) = Ω(p − eA(t)) =
√
m2 + p2

⊥ + P 2
‖ ,

Q(t,p) = eE(t)ε⊥
Ω(t,p)2 = −eȦ(t)ε⊥

Ω(t,p)2 ,

(4.12)

and the initial conditions f(ton) = u(ton) = v(ton) = A(ton) = Ȧ(ton) = 0. This set of
equations is not well defined, however, because the integral for the mean field current (4.4)

1Hence the subscript.
2Actually three for each p plus one, but we are counting liberally.
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is divergent. One can determine the degree of divergence from the asymptotic large |p|
behavior of f and u. Expanding both in powers of 1/|p|, inserting into (4.11) and comparing
equal powers, we find the leading terms

f = 1
8(eȦ)2 p

2
⊥

|p|6
+ O(|p|−5) and u = −1

4eÄ
p⊥
|p|4

+ O(|p|−4). (4.13)

Thus the integral is logarithmically divergent due to the term ∝ u in the integrand. We
regularize this similarly to [105] by writing3

u = u+ eÄ
4
ε⊥
Ω4 − eÄ

4
ε⊥
Ω4 (4.14)

and including the second term on the r.h.s. into the momentum integral, while splitting the
third off into a separate integral. The additional terms have the right asymptotic behavior
to cancel the divergence, letting us define a regularized version of (4.11) (suppressing time
and momentum arguments)

Ä = 2e
∫ d3p

(2π)3

[
f
P‖
Ω + u

ε⊥
Ω + eÄε2⊥

4Ω5

]
− e2ÄI(Λ) + ejex,

I(Λ) = 2
∫

|p|≤Λ

d3p

(2π)3
ε2⊥

4Ω5 .
(4.15)

We made the integral finite by introducing a momentum cutoff Λ which in the end must be
sent to infinity, Λ → ∞. Now we bring the term ∝ I(Λ) on the other side of the equation and
define the renormalization factor Z = 1/(1 + e2I(Λ)), along with the renormalized charge
eR =

√
Ze and field AR = A/

√
Z. Note that eRAR = eA and only this combination enters

in the first three equations of (4.11), which are thus not affected by the renormalization. A
fully renormalized version of Eq. (4.11) is then

ḟ = Qu, u̇ = Q(1 − f) − 2Ωv, v̇ = 2Ωu,

ÄR = 2eR

∫ d3p

(2π)3

[
f
P‖
Ω + u

ε⊥
Ω + eRÄRε

2
⊥

4Ω5

]
+ eRjex,

(4.16)

with

P‖ = p‖ − eRAR, Ω =
√
m2 + p2

⊥ + P 2
‖ , Q = −eRȦRε⊥

Ω2 . (4.17)

Now that the equations are renormalized, we can identify the background field. It couples
to the external current through the renormalized charge, Ä = eRjex. For typographic
reasons we rename eR → e from now on.

In the following we will need a variant of Eq. (4.16), where we replace the QKE part corre-
sponding to Eq. (2.29) with one for the Bogoliubov coefficients, see Eq. (2.21). Both (2.29)
and (2.21) are equivalent,4 so this is permissible. Additionally we need to replace f → 2|β|2
and u → −2 Re(α∗β) in the backreaction part and get

α̇ = −iΩα+ 1
2Qβ, β̇ = −1

2Qα+ iΩβ,

Ä = 2e
∫ d3p

(2π)3

[
2|β|2

P‖
Ω − 2 Re(α∗β)ε⊥Ω + eÄε2⊥

4Ω5

]
+ ejex.

(4.18)

3The asymptotic behavior of f and u and thus the regularization is not correct in [105], because the
asymmetry in p⊥ and p‖ was not taken into account.

4To see this, see appendix B.2.
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4.2 A formula for the photon spectrum

We now want to determine the photon spectrum resulting from the quantum part of
the electromagnetic field Aq. In this we follow [50, 51], where this was done for a time
dependent effective mass resulting from the chiral phase transition. This mass takes the
role of our background field and drives the time evolution of Ψ producing pairs. The rest
of the logic is the same, although the backreacting A part was not addressed in [50, 51].

Consider a solution of Eq. (4.8) which we expand in spatial Fourier modes as

Aq(t,x) =
∫ d3k√

2ω(2π)3

∑
λ

[
aλ(t,k)ελ(k)eikx + c.c.

]
(4.19)

with ω = |k| the photon frequency and ελ(k) the two polarization vectors (λ = 1, 2) for
each wave-vector k. If Aq were a free field, i.e. �Aq = 0, then aλ(t,k) = aλ(k)e−iωt,
where aλ(k) are the base bosonic operators building up the Fock space. In particular
aλ(k) |0〉 = 0.5 The full equation (4.8) can be generated by an interaction Hamiltonian

Hint(t) = −e
∫

d3xAq(t,x)jq(t,x) (4.20)

via Heisenberg’s equations of motion. This suggests solving (4.8) with the help of Dyson’s
series in a standard QED perturbation series. We restrict ourselves to the non-trivial
leading order and arrive at (omitting a few steps and intricacies of shuffling operators back
and forth between pictures)

aλ(t,k) = aλ(k)e−iωt + i

t∫
t0

dt′
[
Hint(t′), aλ(k)e−iωt

]
+ O(e2)

=

aλ(k) + i
e√
2ω

t∫
t0

dt′
∫

d3xε∗
λ(k)jq(t′,x)eikx

 e−iωt + O(e2).

(4.21)

The renormalized QKE with backreaction (4.16) together with Eq. (4.21) constitutes a
solution to the original operator equations (4.5) up to order O(e), but with the mean-field
part of the current taken into account exactly. Since the first order correction in Eq. (4.21)
is ∝ eε∗

λ, the charge renormalization as described above does not change it.

Let us now turn to the expectation value of a†
λ(t)aλ(t). For its evaluation it is important

to note jq = j − j = •Ψ̄γΨ• − 〈0| •Ψ̄γΨ• |0〉 = :Ψ̄γΨ:. That is, the difference between
our “improved” normal order of the current and its VEV is just the standard normal order.
This is also the current used in [50, 51] from the outset and because of this the mean-field
part is neglected there. Note the spatially Fourier transformed current in Eq. (4.21),∫

d3xjq(t′,x)eikx. We can express that current with the spinor field operator from Eq. (2.8)
as ∫

d3xjq(t′,x)eikx =
∫ d3p

(2π)3 :ψ̄(t′,p)γψ(t′,p − k):. (4.22)

5Technically speaking, aλ(t, k) is in the Heisenberg picture of time evolution, while aλ(k) is in the
Schrödinger picture and aλ(k)e−iωt in the Interaction picture. We do not, however, distinguish between
pictures typographically, as we assume no confusion will arise.
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In computing the expectation value from Eq. (4.21), all the mixed terms drop out leaving
eventually

〈0| a†
λ(t,k)aλ(t,k) |0〉 = e2

2ω
∑
ij

εiλ(k)εj∗
λ (k)

t∫
t0

dt1
t∫

t0

dt2
∫ d3p1

(2π)3

∫ d3p2
(2π)3

× 〈0| :ψ̄(t1,p1)γiψ(t1,p1 − k):†:ψ̄(t2,p2)γjψ(t2,p2 − k): |0〉 .

(4.23)

The expectation value of the normal ordered currents can be computed more easily by first
observing that from the decomposition (2.22) the relation

:ψ̄(t,p)γψ(t,p − k): |0〉 =
∑
rs

ūr(t,p)γvs(t,−p + k)c†
r(p)d†

s(−p + k) |0〉 (4.24)

follows. The remaining operators create two delta functions, δ(0) and δ(p1 − p2), when
Eq. (4.24) is inserted into Eq. (4.23). This cancels one momentum integration. The two
time integrals turn out to be the complex conjugate of each other and are grouped together
as the squared modulus of one time integral. When all is sorted out, we arrive at

〈0| a†
λ(t,k)aλ(t,k) |0〉 =

e2

2ω(2π)3 (2π)3δ(0)
∫

d3p
∑
r,s

∣∣∣∣∣∣
t∫

t0

dt′v̄r(t′,−p)ελ(k)γus(t′,p − k)e−iωt′

∣∣∣∣∣∣
2

.
(4.25)

Here ur and vr are the solutions of Dirac’s equation that we used in the derivation of the
QKE and which follow from the Bogoliubov coefficients through Eq. (2.20). We once again
encounter the divergent volume factor due to the spatial homogeneity of our system. It
forces us to norm our photon spectrum to the volume. We also want to send t0 → −∞
and t → ∞.6 For this we need to regularize the time integral by a factor that adiabatically
switches the interaction with the radiation field on and off. Otherwise, the photon spectrum
would be non-zero even without an external field. Therefore, we let

t∫
t0

dt′ → lim
ε→0

∞∫
−∞

dt′e−ε|t′| (4.26)

in Eq. (4.25). Finally we can define and compute the differential photon spectrum fγ(k)
as

fγ(k) = 1
(2π)3V

∑
λ

〈0| a†
λ(t,k)aλ(t,k) |0〉

∣∣∣t→∞

t0→−∞

= e2

2ω(2π)6

∫
d3p

∑
λ,r,s

∣∣∣εiλ(k)Crsi(p,k)
∣∣∣2 (4.27)

with

Crsi(p,k) = lim
ε→0

∞∫
−∞

dt e−ε|t|v̄r(t,−p)γius(t,p − k)e−iωt. (4.28)

6Note that both t0 and t are independent of the switch-on/off times of the external field A, ton and toff.
Also t0 has no relation to the zero of Ω in the complex plane that we also called t0.
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4.2.1 Evaluation of Crsi

To evaluate Crsi from Eq. (4.28) which we want to plug into (4.27) to compute fγ , we have
to first solve (4.18). For this we will neglect the backreaction, that is ignore the second line
of Eq. (4.18) and set A = A; or, to put it differently, we simply use the original equation
for the Bogoliubov coefficients (2.21). One might wonder why we went through the trouble
of implementing the backreaction, when we ignore it for computing the photon spectrum.
The answer is twofold: First, it is the correct approach since, in particular, we used the
correctly normal ordered current. Second, it was needed to carry out the renormalization.
Neglecting the properly renormalized equation is then a systematic approximation, in
contrast to leaving it out a priori.

For evaluating Crsi from Eq. (4.28), the limiting procedure ε → 0 poses a problem. It is
difficult and expensive to implement numerically. One would have to cache the solutions
of α and β from which ur and vr are computed at all time steps, then compute the time
integral for different ε and extrapolate the limit. This forces a fixed set of points ti on
which to evaluate the integrand, foiling attempts of our chosen integrator to be more
intelligent. Additionally we have to integrate over a large time interval to correctly capture
the asymptotic oscillatory behavior (and we would have to do extra analysis to avoid aliasing
issues in the integration). An alternative would be doing the entire time evolution again
for each ε, but that seems even more prohibitively computationally expensive. (Remember
that we have to do this for a probably very large number of momenta p, over which we
also have to integrate in Eq. (4.27).)

We therefore seek to do the limit analytically, with a remainder to be evaluated numerically.
For this we need to look at the asymptotic form of ur and vr before the external field was
switched on at ton and after it was switched off at toff. This makes the time evolution of α
and β simple before switching on and after switching off. Define Pon/off = p − eA(ton/off)
as the canonical momentum before/after switching on/off. Then from Eq. (2.21) we get

α(t ≤ ton) = e−iΩ(Pon)(t−ton), β(t ≤ ton) = 0,
α(t ≥ toff) = e−iΩ(Poff)(t−toff)α(toff), β(t ≤ ton) = eiΩ(Poff)(t−toff)β(toff)

(4.29)

and with these inserted into Eq. (2.20)

ur(t ≤ ton,p) = e−iΩ(Pon)(t−ton)ur(Pon),
vr(t ≤ ton,−p) = eiΩ(Pon)(t−ton)vr(−Pon),
ur(t ≥ toff,p) = e−iΩ(Poff)(t−toff)α(toff,p) ur(Poff)

+ eiΩ(Poff)(t−toff) β(toff,p) vr(−Poff),
vr(t ≥ toff,−p) = −e−iΩ(Poff)(t−toff)β∗(toff,p)ur(Poff)

+ eiΩ(Poff)(t−toff) α∗(toff,p)vr(−Poff).

(4.30)

The time independent base spinors ur(p) and vr(p) are given by Eq. (2.14). Now that
we know the behavior of the solutions ur(t) and vr(t), we can carry out the limiting
procedure in the definition (4.28) of Crsi. We split the time integral into three parts,∫ ton

−∞ +
∫ toff

ton
+
∫∞

toff
, and use the expressions (4.30) to do the half-infinite integrals. For
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example, the first summand is

ton∫
−∞

dt e−ε|t|v̄r(t,−p)γius(t,p − k)e−iωt

=
ton∫

−∞

dt eεte−iΩ(Pon)(t−ton)e−iΩ(Pon−k)(t−ton)e−iωtv̄r(−Pon)γius(t,Pon − k) (4.31)

= v̄r(−Pon)γius(t,Pon − k)eεton−iωton

ε− iΩ(Pon) − iΩ(Pon − k) − iω
ε→0−−−→ i

v̄r(−Pon)γius(t,Pon − k)
ω + Ω(Pon) + Ω(Pon − k)e−iωton .

The integral
∫∞

toff
can be done in the same way. The middle integral is over a finite length

of time, therefore the limit ε → 0 can be done immediately. Collecting all terms gives

Crsi(p,k) =
toff∫

ton

dt v̄r(t,−p)γius(t,p − k)e−iωt + i
v̄r(−Pon)γius(Pon − k)
ω + Ω(Pon) + Ω(Pon − k)e−iωton

−iα(toff,p)α(toff,p − k) v̄r(−Poff)γius(Poff − k)
ω + Ω(Poff) + Ω(Poff − k)e−iωtoff

−iα(toff,p)β(toff,p − k) v̄r(−Poff)γivs(−Poff + k)
ω + Ω(Poff) − Ω(Poff − k)e−iωtoff

+iβ(toff,p)α(toff,p − k) ūr(Poff)γius(Poff − k)
ω − Ω(Poff) + Ω(Poff − k)e−iωtoff

+iβ(toff,p)β(toff,p − k) ūr(Poff)γivs(−Poff + k)
ω − Ω(Poff) − Ω(Poff − k)e−iωtoff .

(4.32)

This is as far as analytical considerations will take us. Now, for a given A field we have to
solve Eq. (2.21) numerically and with this solution do the remaining time integral in (4.32)
also numerically. The values of α and β at the end of the numerical solution are used to
compute the remaining terms arising from the asymptotic behavior in (4.32).

4.2.2 Small- and large-frequency behavior of Crsi

When we let ω → 0, most terms in Eq. (4.32) are of order O(1),7 except the two in the
third and fourth line proportional to αβ. For them we need to look at the denominators
ω ± (Ω(Poff) − Ω(Poff − k)). To the lowest non vanishing order Ω(Poff − k) = Ω(Poff) −
Poff · k/Ω(Poff) and inserting this in the denominators in Eq. (4.32) yields

Crsi(p,k) = −iα(toff,p)β(toff,p)

 v̄r(−Poff)γivs(−Poff)
ω + Poff·k

Ω(Poff)
+ ūr(Poff)γius(Poff)

ω − Poff·k
Ω(Poff)


+ O(ω0).

(4.33)

The new denominators in the brackets look suspicious, but in fact ωΩ(Poff) > |Poff · k|,
so they can only become zero when ω does. By writing k = ωek we can factor ω out as

7Since Eq. (2.21) is a well posed problem, both α and β are at least continuous in the momentum argument
p. Therefore, α(toff, p − k) ω→0−−−→ α(toff, p).
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4.2 A formula for the photon spectrum

ω±Poff ·k/Ω(Poff) = ω[1 ±Poff ·ek/Ω(Poff)] which makes this even clearer. Asymptotically
for small ω, Crsi ∝ 1/ω with the constant of proportionality only dependent on p and the
direction of k, ek. Inserted into Eq. (4.27) we see this constant gets squared and integrated
over all p, turning it into another constant only depending on ek. Therefore,

fγ(k) = e2c(ek)
ω3 + O(ω−2) (4.34)

with all constants except e2 collected into c(ek). This behavior is a typical QED infrared
divergence. Note that although the total number of photons

∫
d3kfγ is also divergent, the

total energy
∫

d3k ωfγ remains finite.8

How can we interpret this divergence? Inspecting the terms in Eq. (4.32), the divergence
can be traced back to lines three and four. These are proportional to v̄rγivs and ūrγius,
which are amplitudes for scattering of a quasi-anti-particle to quasi-anti-particle and quasi-
particle to quasi-particle respectively while emitting a photon. The divergence can thus
be interpreted as bremsstrahlung from virtual quasi-particles. Handling this divergence
proceeds in the same way as in standard QED. Informally speaking: Since every photon
detector has a minimal energy resolution ωmin, any photon with ω < ωmin is unobservable
to this detector. One cannot then distinguish between a particle and a particle accompanied
by such a photon. By identifying both scenarios as one state, the divergence moves to the
out-state of the particle and is canceled by higher-order loop contributions. The details of
this can be found in any textbook on QFT, e.g. [112].

For the case ω → ∞ we need to look at the original equation (4.28) defining Crsi. The scalar
product between the spinors becomes independent of k and therefore also independent of
ω for large k, and we are left with a Fourier transform F̃ (ω) of some function, which we
call F (t). There is a general argument about the large-ω expansion of F̃ (ω). By repeatedly
applying partial integration,

F̃ (ω) =
∞∫

−∞

dtF (t)e−iωt = − i

ω

∞∫
−∞

dtF ′(t)e−iωt = − 1
ω2

∞∫
−∞

dtF ′′(t)e−iωt, (4.35)

we can generate ever more inverse powers of ω. This only stops when F (n)(t) is not
differentiable anymore for some value n. For example, if F is four times continuously
differentiable, then F̃ (ω) = c/ω4 +O(ω−5) with some constant c. In our case, A is infinitely
often differentiable, which carries over to the Bogoliubov coefficients and the base spinors
ur(t,p), vr(t,p). Thus, our F is in C∞(R)9 which means F̃ shrinks faster than any power of
1/ω, that is at least exponentially. As promised above, this also guarantees the integrability
of the total energy in the large ω regime.

By the same argument, one can show that Crsi(p,k) falls faster than any power of |p|. (This
behavior comes from the hidden factors ∼ eipt in vr and us in Eq. (4.28).) This guarantees
the convergence of the momentum integral in Eq. (4.27), as long as the background field A
is at least continuous. If we used, for example, two step functions for A, then C would
only fall as fast as 1/p and the whole integrand as 1/p2, which would be non-integrable

8Barring unexpected large ω behavior. But without spoiling later results: fγ behaves well in this other
regime, so no further problems arise.

9The absolute value function in e−ε|t| would obviously spoil this, but the precise form of the regulator
function is not relevant, and we can replace it with a C∞ variant for the purpose of this argument.
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4 Photon signature

in the large-p domain. In that case, one would have to use a regulator, most simply
realized by just cutting of the momentum integration at some large value, see [50, 51]. A
discontinuity is there physically motivated as an instantaneous mass shift, but in our case
this would introduce delta-like spikes in the electric field, which are clearly unphysical.
This is therefore not relevant for us and thus we do not need the momentum cutoff. Our
fields will always make Eq. (4.27) integrable.

4.3 Application of the photon spectrum formula

4.3.1 Numerics

The remarks we made about solving the QKE in section 2.4 still apply. Additional
complexity comes from calculating the quantities Crsi as a time integral over some function
depending on the Bogoliubov coefficients and then doing the momentum integral over p.
The first one is straightforwardly achieved with the analytical split of the infinite time
integration domain in Eq. (4.32). We do the remaining finite integral by “adjoining” the
corresponding simple one-dimensional ODE to our already existing set of ODEs (2.21).
This allows the solver to better control the steps it takes and increases both accuracy and
speed compared to for example first computing the coefficients on some grid and then
adding those terms up.

The momentum integral in (4.27) is three-dimensional and cannot be further reduced by
symmetries. To compute it we use the Vegas algorithm from the Cuba library [113]. As its
name suggests, it is a Monte Carlo algorithm, which will prove especially useful when using
the periodic pulse as input. As a rule of thumb, the integrand in (4.27) will look similar to
the corresponding pair spectrum. That is, smooth for the Saute pulse, but exhibiting sharp
ridges as in Fig. 2.4 for the periodic pulse. Integrating over such an intricate structure in
three dimensions is only feasible with Monte Carlo methods. Still, the periodic pulse needs
about an order of magnitude more points in the p plane to achieve the same accuracy
as the for Sauter pulse. Since the resulting spectrum in the k plane is also much more
intricate, one needs an order of magnitude more resolution in it. We thus need about 100
times as much time to produce a cut in the momentum plane, or a factor of 1000 for the
entire plane. This is why we will mainly restrict us to the Sauter pulse for the numerics,
with only a few results for the periodic pulse.

As a first example we will look at the photon spectrum generated by a single Sauter pulse
as given by Eq. (2.40). Like for the pair spectrum, this runs into the slight problem of the
Sauter pulse not having sharp a ton and toff. We solve it in the same way by varying them
and verifying the result is independent of their precise value. This then yields asymptotic
matching times which are “large enough” to give us the correct result.

4.3.2 Numerical results

First we show a contour plot over the momentum plane for a single parameter point in
Fig. 4.1. One can clearly see the infrared singularity as ω → 0. Furthermore the spectrum

62



4.3 Application of the photon spectrum formula

10−1110−11

10−910−9

10−710−7

10−510−5

10−310−3

10−110−1

101101

103103

10−5 10−4 10−3 10−2 10−1 10010−5

10−4

10−3

10−2

10−1

100

k⊥/m

k
‖/

m

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

Figure 4.1: Contour plot of the residual photon phase-space distribution fγ over the k‖-k⊥ plane
for the Sauter pulse with E0 = 0.2Ec and τ = 2/m. The solid black curves are
contour lines at integer powers of 10.

is rather smooth and isotropic, which carries over from the pair spectrum of the Sauter
pulse. The anisotropy between k⊥ and k‖ increases for larger values of E0. For smaller ω,
the contour lines are at an equal distance, indicating a polynomial dependence of fγ on
ω. Farther out they are closer together. This is where our predicted small-ω asymptotics
(∝ ω−3) change over to the large-ω behavior (faster than any polynomial decline).

This can be more clearly seen in Fig. 4.2, where the blue curve depicts fγ . In addition,
we plot the different contributions to fγ arising from the split (4.32). While there are two
contributions to Crsi – the integral over the intermediate time, when the electric field is
turned on, and the asymptotic terms – there are three for the final photon spectrum, since
it involves |Crsi|2: the squared modulus of the intermediate part is shown as the green
curve, that of the asymptotic part as the cyan curve and the interference term between both
as the red curve. The asymptotic term follows our predicted ω−3 behavior for small values
of ω. Interestingly, even after it deviates from it for ω > 1 × 10−3m, the full spectrum
continues falling ∝ ω−3. We ascribe this to the very large matching times ton and toff
we used in the numerics, which essentially shifts some part of the asymptotics into the
intermediate terms. The intermediate and mixed contributions, on the other hand, only
diverge as ω−1. This is obvious for the former, while for the latter one would expect ω−2,
but the interference of the complex terms actually cancels that out.

As for the large-ω behavior, the individual terms continue falling with some power of
ω, since they are defined by cut off integrals, which are in effect Fourier transforms of
discontinuous functions (see our discussion of this in section 4.2.2). However, coherently
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Figure 4.2: Plot of the residual photon phase-space distribution fγ as a function of k⊥ at k‖ = 0
for the Sauter pulse with E0 = 0.2Ec and τ = 2/m. The blue curve is the full result.
The green curve depicts the contribution from the intermediate integral, the cyan
curve from the asymptotic terms and the red curve from the mixed terms.

adding them up cancels out almost everything and lets fγ fall faster than every power of
ω. The numerical investigation actually yields exponential behavior, i.e. fγ ∝ e−ω/m as
ω → ∞.

Separating the contributions does thus not provide a clear signal of the intermediate
large particle yield, as we hoped. This should manifest as the intermediate contribution
dominating the total spectrum in some region of the momentum space, but instead we
see it is dominated by the asymptotic terms for ω → 0. For ω → ∞ the intermediate and
asymptotic terms are of almost the same magnitude, with their exponentially shrinking
difference accounting for the spectrum. Between these two regimes, the intermediate
contribution is always smaller than the asymptotic one and also produces no distinguishable
features in the spectrum. This leads to the conclusion that the intermediate quasi-
particles are indeed non-physical, since their large occupancy leaves no trace in the photon
spectrum.

Figure 4.3 shows the ratio of the photon to pair numbers at a fixed momentum as a contour
plot over the parameter space. For the photons, we chose the momentum k⊥ = 10−4m,
k‖ = 0 and for the pairs p = 0 (which is where f has its maximum for the Sauter pulse).
The number of photons is much greater than the number of pairs, even at readily observable
energies in the optical range like our chosen ω = 10−4m. This could be a viable path for
detecting the dynamical Schwinger effect even when the residual pair density is too low
for detection. The ratio gets larger for smaller ω, but then one runs into the problem of
detecting very low frequency photons, which ties in with the treatment of the infrared
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Figure 4.3: Contour plot of fγ(k⊥ = 10−4m, k‖ = 0)/f(p = 0), i.e. the ratio of the photon and
pair spectrum at two points in phase space for the Sauter pulse, over the parameter
space. The solid black curves are contour lines at integer powers of 10, the gray short
dashed curves at 100.2, …, 100.8 between them. The long dashed lines are the loci of
constant Keldysh parameter γ.

divergence. Also note there is no obvious simple dependence of fγ on f with their ratio
varying over orders of magnitude. If, for example, one imagined a scenario where the
residual pair density appeared fully formed and then the electrons and positrons started
annihilating with some momentum dependent cross section, the resulting photon spectrum
should not explicitly depend on E0 and τ but only implicitly through its linear dependence
on f . Since f(p = 0) is a good indicator of the overall pair spectrum, the depicted ratio
should not vary as much as it does. This implies that intermediate quantum effects play a
severe role, and a semi-classical approach is inadequate for explaining what is going on.

Since we have to rely on the numerical solutions to generate this plot, we can only take the
parameters as low as E0 = 0.1Ec and τ = 10/m, in contrast to e.g. Fig. 2.15. Nonetheless
the smooth pattern allows us to extrapolate to the rest of the parameter plane. In particular,
for γ � 1, we have the apparent relation ln fγ = a lnE0/Ec + b lnmτ + c (as can be seen
from the straight contour lines in this region).

Finally we look at the photon signature of the dynamically assisted Schwinger effect. We
will use again our familiar setup: The superposition of two Sauter pulses as given by
Eq. (3.1) and that of two periodic pulses from Eq. (3.3). The resulting spectra are plotted
in Fig. 4.4. We see the same pattern of orders of magnitude enhancement from the second
field (red curves) compared to the first field alone (blue curves). This is especially true at
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Figure 4.4: Plot of the photon spectrum over k⊥ at k‖ = 0 for the superposition of two Sauter
pulses (dashed curves) and two periodic pulses (solid curves). Parameters: E1 =
0.1Ec, ν1 = 0.5m, ν2 = 2m and E2 = 0 (blue), E2 = 0.05Ec (red). Additionally for
the periodic pulse tflat = 50T and tramp = 5T .

larger values of ω with the second field apparently making the coefficient of the exponential
decay smaller. The spectra for the Sauter pulse (dashed curves) show the smooth behavior
we saw above in Fig. 4.2. In contrast for the periodic pulse, we see remnants of the
ridge structures from the pair spectrum, see e.g. Fig. 3.5, although the peaks are not as
pronounced. The location of the peaks follows no easily discernible pattern, in particular,
they seem to have no relation to the base frequency ν1. The greater numerical difficulties
that we mentioned for the periodic pulse can be seen in the bigger numerical noise in
the solid curves. We are nonetheless confident in these numerical results as they are
consistent with those for the Sauter pulse and earlier calculations and were cross-checked
with different algorithms and meta parameters like cutoff for the numerical integration
and desired accuracies for the solution of the ODEs.

4.4 Summary

In this chapter, we coupled the fermion dynamics that is driven by a background field to a
quantized photon field. We motivated the correct normal order to be used for the current
that arises from the pair density. That current has a vacuum expectation value causing a
classical backreaction to the background field which must be renormalized. This lead to
modified equations for the Bogoliubov coefficients with which we calculated the photon
spectrum that the quantum part of the current sources. The resulting spectrum showed a
typical QED infrared divergence which, however, can be dealt with in the standard way. In
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4.4 Summary

the ultraviolet, the photon yield drops exponentially for well behaved external fields. We
identified terms that arise from an intermediate time integration, where the external field is
switched on and the quasi-particle density is high, and asymptotic terms, which only depend
on the final pair spectrum. Despite this split, we found no evidence the quasi-particles leave
a clear signal in the photon spectrum, which confirms the standard QFT interpretation
that only final states have physical meaning. But that also diminishes the prospect of
detecting the dynamical Schwinger effect through a signature of the large intermediate pair
density. In comparing the photon to the pair spectrum, we saw the former does not depend
in a simple way on the latter. In particular, a model where quasi-particles and antiparticles
annihilate in a semiclassical manner is inadequate in explaining the photon spectrum. The
Sauter pulse leads to a smooth photon spectrum, while the periodic pulse produced a peak
structure, which resembles their respective pair spectra, although the correspondence is
not one to one. Exploring the superposition of pulses with different parameters, we found
an enhancement effect similar to the dynamically assisted Schwinger effect from chapter 3:
the second field increases the photon yield by orders of magnitude.
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5 Conclusion and outlook

In this thesis, we investigated the dynamical and dynamically assisted Schwinger effect.
Our main tool was the quantum kinetic equation which we derived from diagonalizing
the time dependent QED Hamiltonian via a Bogoliubov transform. We saw that taking
the background electric field to be periodic produces shell structures in the phase space
of produced pairs. This is in contrast to the smooth spectrum resulting from the Sauter
pulse. We found analytical expressions well approximating this spectrum, in particular the
position, height and width of the shells. Most information about them is encoded in the
zeros of the quasi-energy Ω in the complex time domain. As we restricted us to spatially
homogeneous fields that were nonetheless intended to serve as a model for colliding laser
pulses, one avenue for future work would be loosening that restriction by employing more
realistic background fields and extending these results. We expect no qualitatively new
behavior would occur for oscillating fields, but the analysis would likely be much more
involved, since an inhomogeneous electro-magnetic field implies one has to deal with the
full Dirac equation, which is a partial differential equation in contrast to the ordinary
differential QKE. The groundwork for such a treatment was laid in appendix C.

For the dynamically assisted Schwinger effect we confirmed earlier results by other authors,
who used a superposition of Sauter pulses, for periodic pulses. We found parameter sets for
which the pair yield can be increased by 3–4 orders of magnitude. We gave an explanation
for that in terms of the already mentioned zeros of Ω. The further the main zero moves
towards the real axis upon increasing the field strength of the second field, the larger
the pair yield of the combined fields will be. The distance to the real axis enters in the
exponential function, explaining why already a small field strength has orders-of-magnitude
effects. Besides the generalization for the single field case, an obvious open question is
whether the superposition of three fields can further increase the particle production. This
line of investigation was already started in [85].

Despite the enhancement in the dynamically assisted Schwinger effect, we still need
unrealistically high field strengths or frequencies to reach a measurable residual pair
yield. Since the intermediate quasi-particle number is much larger than the residual, we
wondered whether these quasi-particles can produce photons when we couple our system
to a quantized radiation field. This proved to be true, but unfortunately no clear signal
emerged which could serve as a verification of the dynamical Schwinger effect for pairs
at intermediate times. Nonetheless the photon numbers are much greater than the pair
numbers, thus potentially more easily observed, and we could also show an analog to the
dynamically assisted Schwinger effect. Further research could focus on different secondary
probes that could exploit the quasi-particle numbers. Also, in our analysis we neglected
the backreaction, which should not change the result in the sub-critical regime, but could
lead to interesting new phenomena otherwise, when properly incorporated.
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A A toy model for particle creation

We are going to explore the core concepts and techniques that come into play in the main
text by investigating a toy model. Despite its simplicity, it exhibits many of the important
characteristics of the more involved field theoretical model. Our notation will be similar to
that employed for Dirac spinors, for example we write u, v for our base vectors to connect
to the standard notation ur(p), vr(p).

We employ a variant of the ubiquitous two-level system, that is our Hilbert space is two
dimensional, H = C2, and we choose our first-quantized Hamiltonian as

h(t) = E

(
cos 2ϕ(t) sin 2ϕ(t)
sin 2ϕ(t) − cos 2ϕ(t)

)
, ϕ(t) =


0, t < 0
ωt, 0 ≤ t ≤ τ

ωτ, τ < t

. (A.1)

Our Hamiltonian is constant for t < 0 and t > τ . We call h(t < 0) the free Hamiltonian. If
τ = nπ/ω, n ∈ N we even have h(t > τ ) = h(t < 0), that is h returns to its free form. The
eigenvalues of h(t) are +E, −E and are constant. The corresponding eigenvectors are

U(t) =
(

cosϕ(t)
sinϕ(t)

)
, V (t) =

(
− sinϕ(t)
cosϕ(t)

)
,

h(t)U(t) = EU(t) , h(t)V (t) = −EV (t) ,
(A.2)

and they form a basis of H for all t. Another distinguished base is formed by solutions to
Schrödinger’s equation with specific initial conditions, that is we demand

i∂tu(t) = h(t)u(t) , i∂tv(t) = h(t)v(t) ,
u(0) = U(0) = ( 1

0 ) , v(0) = V (0) = ( 0
1 ) .

(A.3)

The transformation between these two bases must necessarily be unitary and is thus
parametrized by two complex numbers, α and β, with |α|2 + |β|2 = 1. It reads

u(t) = α(t)U(t) + β(t)V (t) ,
v(t) = −β∗(t)U(t) + α∗(t)V (t) .

(A.4)

This is called the Bogoliubov transformation, and α and β the Bogoliubov coefficients.
Instead of solving the Schrödinger equation, we instead derive an equation for these
coefficients, since it will be easier to solve and to connect to observables. Inserting one
equation of (A.4) (both lead to the same set of equations) into (A.3) and using (A.2) we
find

∂t

(
α(t)
β(t)

)
=
(

−iE 0
0 iE

)(
α(t)
β(t)

)
, t < 0, t > τ ,

∂t

(
α(t)
β(t)

)
=
(

−iE ω
−ω iE

)(
α(t)
β(t)

)
, 0 ≤ t ≤ τ ,

α(0) = 1 , β(0) = 0 .

(A.5)
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Figure A.1: Plot of the modulus of α(t) (red) and β(t) (blue) given by (A.6) as a function of
time. Parameters are ω = 0.8E and τ = 2/E (solid) as well as τ = π/ω = 5π/4E
(dashed).

The time evolution is trivial for t < 0 and t > τ , when our Hamiltonian is constant. We
can easily solve this set of coupled equations, resulting in

α(t) =


e−iEt , t < 0
cos Ωt− iE

Ω sin Ωt , 0 ≤ t ≤ τ(
cos Ωτ − iE

Ω sin Ωτ
)

e−iE(t−τ) , τ < t

,

β(t) =


0 , t < 0
− ω

Ω sin Ωt , 0 ≤ t ≤ τ

− ω
Ω sin Ωτ eiE(t−τ) , τ < t

,

Ω =
√
E2 + ω2 .

(A.6)

A plot of these solutions is shown in Fig. A.1. Note that, although h(t > τ) is the
free Hamiltonian for the dashed lines where τ = π/ω, the system does not return to
|α(t > τ)| = 1, |β(t > τ)| = 0, the initial state. It is indeed farther away from the initial
state than the solid line, for which the Hamiltonian does not return to be free. If we wanted
to reach the initial state, we would need to set τ to for example τ = π/Ω = 5π/

√
41E, but

then the Hamiltonian would not be free.

To study particle creation, we need to second-quantize the system. We do this in the
standard way: Write a general solution ψ(t) of Schrödinger’s equation in terms of u(t)
and v(t), and promote the coefficients to creation/annihilation operators with Fermi-Dirac
statistics, that is

ψ(t) = c u(t) + d†v(t) , {c, c†} = {d, d†} = 1 , (A.7)
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with all other anticommutators zero. The vacuum is defined by c |0〉 = d |0〉 = 0. The
Fock space thus created is very simple, F(H) = C4 with base vectors |0〉, c† |0〉, d† |0〉 and
c†d† |0〉. The second-quantized Hamiltonian is then H(t) = ψ†(t)h(t)ψ(t). The value of
the Bogoliubov transform can now be seen by noting that the operator ψ may as well be
expanded in the base U , V : ψ(t) = C(t)U(t) +D†(t)V (t). Since both representations must
be equal, the Bogoliubov transform from U , V to u, v implies one from c, d† to C, D†:

C(t) = α(t)c− β∗(t)d† ,

D†(t) = β(t)c+ α∗(t)d† .
(A.8)

Crucially, this transform diagonalizes the Hamiltonian:

H(t) = E
(
C†(t)C(t) −D(t)D†(t)

)
. (A.9)

On the other hand, expanding in the operators c and d, it contains off-diagonal terms. One
can easily verify that C and D obey the same canonical anticommutation relations as c
and d. Thus they are creation/annihilation operators for some quasi particles. These quasi-
particles can only be interpreted as real ones for t < 0 or t > τ , when the first-quantized
Hamiltonian is constant. The vacuum corresponding to C and D will be different from |0〉
and time dependent. We will call it |Ω(t)〉. It is defined by C(t) |Ω(t)〉 = D(t) |Ω(t)〉 = 0.
By inserting C and D from Eq. (A.8) one can check that

|Ω(t)〉 = (α(t) + β∗(t)c†d†) |0〉 (A.10)

up to an irrelevant phase. The vacuum persistence amplitude is the overlap between the
two vacua and with the above we easily find 〈Ω(t)|0〉 = α∗(t).

How can we now define the particle number? There are two obvious ways: How many
quasi-particles does the vacuum contain, and how many particles does the time dependent
vacuum contain? Luckily, both questions yield the same answer, and since our toy model
was chosen so simple, the answer is also the same for particles and anti-particles:

〈0|C†(t)C(t) |0〉 = 〈Ω(t)| c†c |Ω(t)〉 = |β(t)|2 ,
〈0|D†(t)D(t) |0〉 = 〈Ω(t)| d†d |Ω(t)〉 = |β(t)|2 .

(A.11)

Comparing again with Fig. A.1, we see that the particle number is just the square of the
function plotted in blue. In particular, even if the first-quantized Hamiltonian returns to its
initial (free) state, a residual particle number will still remain. Also, the second-quantized
Hamiltonian will not return to be free.

We end this exposition with a brief remark about normal ordering, which is useful to
motivate our reasoning about the correct current to use for coupling to a radiation field
in chapter 4. For an operator A, let :A: denote the standard normal ordering w.r.t. c
and d: Move all c (d) to the right of all c† (d†), changing sign with every swap to respect
the fermionic statistics. It is clear, that the expectation value of the ground state energy
computed with this normal ordering is 〈E〉(t) = 〈0| :H(t): |0〉 = 0. Intuitively however, we
would expect a non-zero value, since the creation of particles should add energy to the system.
Computing without any normal ordering we get 〈E〉(t) = 〈0|H(t) |0〉 = E

(
1 − 2|β(t)|2

)
.

This is better, but for t = 0 we get 〈E〉(0) = E where we would expect zero, since without
particles the system contains no energy. Also in field theory, this term would become the
well known infinite vacuum energy, which we need to subtract.
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A A toy model for particle creation

The correct way is consequently to normal order w.r.t. the operators C and D. We will
denote this prescription by •A•. The normal ordered Hamiltonian is then •H(t)• =
E
(
C†(t)C(t) +D†(t)D(t)

)
and 〈E〉(t) = 〈0| •H(t)• |0〉 = 2E|β(t)|2. This corrects the

deficiencies of both previous attempts. It is also the result one would have guessed: energy
per particle times number of particles times two (for particle + anti-particle). We conclude
that the correct way to compute expectation values is to normal order the operator
corresponding to the observable according to the prescription • . . . •.
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B Some mathematical remarks about the
quantum kinetic equation

B.1 Properties of the base spinors

The aim of this section is to show the that Eqs. (2.15), (2.16) and (2.17) hold. First, we
note the explicit form of the two eigenspinors to γ0γ3 with eigenvalue −1, R1 and R2:

γ0γ3 =
(

−σ3 0
0 σ3

)
=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , R1 =


1
0
0
0

 , R2 =


0
0
0
1

 . (B.1)

Next, from the explicit form of the first-quantized Hamiltonian (2.10), it is easy to show
that

h(p)2 = Ω(p)2, (B.2)
R†

rh(p)Rs = −pzδrs. (B.3)

The equations (B.2) and (B.3) are used to check the orthogonality, taking u and v
from (2.14). First for u†

rus (which works the same for v†
rvs):

ur(p)†us(p) = R†
r[Ω(p) + h(p)]2Rs

2Ω(p)(Ω(p) − pz) = R†
r[2Ω2 + 2Ωh]Rs

2Ω(Ω − pz) = R†
r[Ω + h]Rs

Ω − pz
= δrs.

(B.4)

For u†
rvs (same for v†

rus):

ur(p)†vs(−p) = R†
r[Ω(p) + h(p)][−Ω(p) + h(p)]Rs

2Ω(p)
√

Ω(p)2 − p2
z

= R†
r[−Ω2 + h2]Rs

2Ω
√

Ω2 − p2
z

= 0. (B.5)

This proves Eq. (2.15).

We can similarly show that ur and vr are eigenvectors of h,

h(p)ur(p) = h
Ω + h√

2Ω(Ω − pz)
Rr = Ωh+ Ω2√

2Ω(Ω − pz)
Rr = Ω(p)ur(p), (B.6)

h(p)vr(−p) = h
−Ω + h√

2Ω(Ω + pz)
Rr = −Ωh+ Ω2√

2Ω(Ω + pz)
Rr = −Ω(p)vr(p) (B.7)

which proves Eq. (2.16).
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B Some mathematical remarks about the quantum kinetic equation

For the last property first observe

d
dtur(P (t)) = eE(t) ∂

∂P‖(t)ur(P (t)) = eE(t) ∂

∂pz

∣∣∣∣
p=P (t)

ur(p). (B.8)

To carry out the partial derivative we first calculate it for the denominator

∂

∂pz

1√
2Ω(p)(Ω(p) − pz)

= −1√
2Ω(Ω − pz)3

[
pz

Ω (Ω − pz) + Ω
(
pz

Ω − 1
)]

= 1
2Ω2

√
Ω − pz

2Ω

(B.9)

and the remaining terms

∂

∂pz
(Ω(p) + h(p))Rr =

(
pz

Ω + γ0γ3
)
Rr = −Ω − pz

Ω Rr. (B.10)

Adding both up using the product rule we get

∂

∂pz
ur(p) = ∂

∂pz

Ω + h√
2Ω(Ω − pz)

Rr =

√
Ω − pz

2Ω

[Ω + h

2Ω2 − 1
Ω

]
Rr

= 1
2Ω2

√
Ω2 − p2

z

−Ω + h√
2Ω(Ω + pz)

Rr = ε⊥
2Ω2 vr(−p).

(B.11)

This together with Eq. (B.8) yields

d
dtur(P (t)) = eE(t)ε⊥

2Ω(P (t))vr(−P (t)). (B.12)

Together with a similar calculation for vr(−P (t)) this proves Eq. (2.17).

B.2 Lifting the quantum kinetic equation to the Lie algebra

Both the equation for the Bogoliubov coefficients (2.21) and the QKE (2.29) derived from
it can be cast into matrix form which enables further analysis. We define two matrix
differential equations

U̇ = MU, Ȯ = NO,

U,M ∈ C2, O,N ∈ R3,

M =
(

−iΩ Q
2

−Q
2 iΩ

)
, N =

0 −Q 0
Q 0 −2Ω
0 2Ω 0

 ,
U(ton) = 1, O(ton) = 1.

(B.13)

Then, by setting

(
α
β

)
= U

(
1
0

) 1 − f
u
v

 = O

1
0
0

 , (B.14)
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B.2 Lifting the quantum kinetic equation to the Lie algebra

α, β fulfill Eq. (2.21) and f , u, v Eq. (2.29). Since M is skew-Hermitian, M † = −M , U
must be unitary, U †U = 1, and similarly, since O is skew-symmetric, NT = −N , O must
be orthogonal, OTO = 1. Furthermore, detU = 1 because trM = 0 and detO = 1 because
detO(ton) = det 1 = 1 and detO is constant.

The deeper reason for such a behavior is because the skew-Hermitian matrices of trace zero,
su(2), form the Lie algebra of the Lie group SU(2), the unitary matrices of determinant one
(both in two dimensions). Similarly, the skew-symmetric matrices (which must necessarily
be traceless), so(3), form the Lie algebra to the Lie group O(3), the orthogonal matrices
(both in three dimensions). The group O(3) has two connected components, one where
detO = −1, and one where detO = 1 which is a Lie group of its own called SO(3). The
initial condition makes our O belong to SO(3).

Both mentioned Lie algebras each have three generators. Let Si generate su(2) and Ti

so(3). One can use different representations of those generators; we fix

S1 = 1
2

(
0 i
i 0

)
, S2 = 1

2

(
0 1

−1 0

)
, S3 = 1

2

(
−i 0
0 i

)
,

T1 =

 0 0 1
0 0 0

−1 0 0

 , T2 =

 0 0 1
−1 0 0
0 0 0

 , T3 =

0 0 0
0 0 −1
0 1 0

 . (B.15)

The generators fulfill [Si, Sj ] =
∑

k εijkSk and [Ti, Tj ] =
∑

k εijkTk, so both Lie algebras are
isomorphic. We group the generators into symbolic 3-vectors, S and T , which together
with the 3-vector J defined below allow a compact notation for M and N :

M = J ·S = QS2 + 2ΩS3 =
(

−iΩ Q
2

−Q
2 iΩ

)
,

N = J ·T = QT2 + 2ΩT3 =

0 −Q 0
Q 0 −2Ω
0 2Ω 0

 ,
J =

 0
Q
2Ω

 .
(B.16)

Any solution U and O can be written as the exponential of some Lie algebra element. Let
that be parametrized by a vector θ, then U = exp(θ ·S) and O = exp(θ ·T ). In general, if
X(t) is some time-dependent matrix, then one can show

d
dte

X(t) =
∑

n

[X(t), Ẋ(t)]n
(n+ 1)! eX(t), (B.17)

where [. . . , . . . ]n is the n-times iterated commutator. For our (isomorphic) Lie algebras
[a·S, b·S] = (a × b)·S and therefore

[θ ·S, θ̇ ·S]0 = θ̇ ·S,
[θ ·S, θ̇ ·S]2n+1 = (−1)nθ2n(θ × θ̇)·S,
[θ ·S, θ̇ ·S]2n+2 = (−1)nθ2n(θ × (θ × θ̇)

)
·S.

(B.18)
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B Some mathematical remarks about the quantum kinetic equation

This allows summing the series in Eq. (B.17) for X = θ ·S:

d
dte

θ·S =
[
θ̇ + 1 − cos θ

θ2 θ × θ̇ + θ − sin θ
θ3 θ × (θ × θ̇)

]
eθ·S . (B.19)

Inserting this into Eq. (B.13) with M taken from Eq. (B.16) we find

θ̇ + 1 − cos θ
θ2 θ × θ̇ + θ − sin θ

θ3 θ × (θ × θ̇) = J =

 0
Q
2Ω

 . (B.20)

A more concise version of Eq. (B.20) is obtained by writing θ = θn with n a unit vector.
This leads to

θ̇n + sin θṅ + (1 − cos θ)n × ṅ = J =

 0
Q
2Ω

 . (B.21)

Notably the same solution θ(t) to Eq. (B.20) (or (B.21)) yields solutions of both equa-
tions (2.21) and (2.29). This shows that they are just different ways to write the same
underlying equation for the coefficients θ of the generators in their respective Lie algebras.
Equations (B.20) and (B.21) can therefore be thought of as a “lift” of the differential
equations (B.13) from the Lie group to the Lie algebra.

B.3 Long term evolution of f for a periodic field

In section 2.5 we saw that in the low-density approximation the phase space distribution
f will grow with t2flat on a shell. We also remarked that this growth cannot last forever,
because f ≤ 2, and even before the validity of the LDA would be in question. We will
study the true long-term behavior of f using the matrix valued differential equation (B.13)
for the Bogoliubov coefficients, and for the sake of simplicity, we set ton = 0. Because we
only consider a periodic field, the matrix M is also periodic, i.e. M(t+ T ) = M(t) with
the period T . By Floquet’s theorem, the solution matrix U can be written as a product of
a periodic matrix and an exponential,

U(t) = P (t)eRt, (B.22)

with P (t+ T ) = P (t). In particular from the initial condition U(0) = 1 we find P (0) = 1.
Therefore, when t is an integer multiple of T , t = nT with n ∈ N, we have P (nT ) = 1 and
U(nT ) = enT R. We can again decompose R into the generators Si: R = r ·S. With a bit
of algebra one can find (r ·S)2 = −r2/2, which enables us to sum the exponential:

U(nT ) = enT R = cos
(
nTr√

2

)
1 +

√
2
r

sin
(
nTr√

2

)
r ·S. (B.23)

From Eq. (B.14) we see

β =
(
0 1

)
U

(
1
0

)
=

√
2
r

sin
(
nTr√

2

)
ir1 − r2

2 , (B.24)
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which we can insert into f = 2|β|2 to get (upon observing r2 = r2
1 + r2

2 + r2
3)

f =
(

1 − r2
3
r2

)
sin2

(
nTr√

2

)
. (B.25)

To connect this to the periodic field with switching-on/off, we will argue heuristically (for
a more thorough discussion see [85]). The short-term oscillations of f , as for example seen
in Fig. 2.7, are carried by the matrix P . The long-term behavior and thus the accumulated
residual density are carried by eRt. The deviation of P from the unit matrix should be
proportional to the instantaneous amplitude of the field, E(t). If we let this amplitude go
to zero slowly enough in the switching-off process, that is over a large number of oscillations,
P will go to 1. Then the residual f is given by (B.25), but with nT replaced by tflat. This
then yields the result for the long-term time evolution seen in the right panel of Fig. 2.9.
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C Generalized Bogoliubov transform

C.1 Linear transformation of creation and annihilation operators

This section develops the theory of general linear transformations of fermionic creation/an-
nihilation operators. The Bogoliubov transformation as well as the time evolution in a
background field are special cases thereof, so we deem it prudent to understand the generic
case first before specializing further.

Suppose we have a set of fermionic annihilation operators ei with some general index i,
which could for example be composed of momentum and spin, i = (r,p). The sum over i
would then be understood as the sum over spin and integration over the momentum, with
a corresponding Kronecker delta:

∑
i

=
∑

r

∫ d3p

(2π)3 , δij = (2π)3δrsδ(p − q). (C.1)

We denote by the vector e the collection of all those operators, and by e† the collection of
the corresponding creation operators.1 A general linear transformation mixing e and e†,
which results in new operators f is given by (see e.g. [114, 115] and section 2.4 in [116])

f = µe + νe†, fi =
∑

j

µijej +
∑

j

νije
†
j ,

f † = µ∗e† + ν∗e, f †
i =

∑
j

µ∗
ije

†
j +

∑
j

ν∗
ijej .

(C.2)

We want to restrict that transformation, so that f obeys the canonical anticommutation
relations when e does and vice versa, i.e. {ei, ej} = δij ⇐⇒ {fi, fj} = δij . This gives the
following constraints for the matrices µ and ν:

µµ† + νν† = 1, µνT + νµT = 0,
µ†µ+ (ν†ν)∗ = 1, µ†ν + (ν†µ)∗ = 0.

(C.3)

The second line is equivalent to the first, so there are only two independent equations. We
list it because it is needed for simplifying some expressions further on. These constraints
also guarantee the invertibility of the transformation (C.2) with the inverse given by

e = µ†f + νT f †,

e† = µT f † + ν†f .
(C.4)

For further technical reasons, we also want µ to be invertible, i.e. µ−1 must exist.
1This dagger only affects the components of that vector; it does not change it from column to row or vice

versa.
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C Generalized Bogoliubov transform

The transformation (C.2) can be implemented by a unitary operator, the so called squeeze
operator S through

f = S†eS, S = exp
[
−ie†σe

]
exp

[1
2e†ρ†e† − 1

2eρe

]
. (C.5)

By a slight abuse of notation, eσe stands for the bilinear product
∑

ij eiσijej ; analogously
for e†σe and e†σ†e†. Because the ei are fermionic, we can restrict ρ to be skew-symmetric,
ρT = −ρ. We also restrict σ to be Hermitian, σ† = σ. Then both exponentials are unitary
and also S as the product of both. To evaluate f from (C.5) we need the following iterated
commutators[1

2eρe − 1
2e†ρ†e†, e

]
2n

= (−1)n|ρ|2ne,[1
2eρe − 1

2e†ρ†e†, e

]
2n+1

= (−1)n|ρ|2nρ†e†,[
ie†σe, e

]
n

= (−iσ)ne,

(C.6)

with |ρ| =
√
ρ†ρ.2 With this we can employ a variant of the Baker-Campbell-Hausdorff

formula (also known as Hadamard’s lemma) which states eXY e−X =
∑

n[X,Y ]n/n! to
get

f = S†eS = e
1
2 eρe− 1

2 e†ρ†e†
∞∑

n=0

[
ie†σe, e

]
n

n! e
1
2 e†ρ†e†− 1

2 eρe

= e−iσ
∞∑

n=0

[
1
2eρe − 1

2e†ρ†e†, e
]

2n

(2n)! + e−iσ
∞∑

n=0

[
1
2eρe − 1

2e†ρ†e†, e
]

2n+1
(2n+ 1)!

= e−iσ cos |ρ|e + e−iσ sin |ρ|
|ρ|

ρ†e†.

(C.7)

Note that the notation sin |ρ|/|ρ| is sensible, since any two functions of the same matrix
|ρ| commute. The matrix σ generates an “internal” unitary transformation, only mixing
creation with creation and annihilation with annihilation operators, while ρ makes them
mingle amongst each other. Comparing Eq. (C.2) with Eq. (C.7), we see

µ = e−iσ cos |ρ|, ν = e−iσ sin |ρ|
|ρ|

ρ†. (C.8)

The invertibility of µ is then guaranteed if every eigenvalue of |ρ| is < π/2. The µ and ν thus
defined by ρ and σ through the unitary transformation S already fulfill the constraints (C.3).
The first is simple:

µµ† + νν† = e−iσ cos2 |ρ|eiσ + e−iσ sin |ρ|
|ρ|

ρ†ρ
sin |ρ|

|ρ|
eiσ

= e−iσ
(
cos2 |ρ| + sin2 |ρ|

)
eiσ = 1.

(C.9)

For the second we note ρ†|ρ|2T = |ρ|2ρ† (due to ρT = −ρ), therefore for any even function
of |ρ|: ρ†f(|ρ|2)T = f(|ρ|2)ρ†. This applies to both cos |ρ| and sin |ρ|/|ρ| and we get

µνT + νµT = e−iσ cos |ρ|ρ†T
(sin |ρ|

|ρ|

)T

e−iσT + e−iσ sin |ρ|
|ρ|

ρ†(cos |ρ|)T e−iσT

= e−iσ
(

− cos |ρ|sin |ρ|
|ρ|

ρ† + sin |ρ|
|ρ|

cos |ρ|ρ†
)

e−iσT = 0.
(C.10)

2Since ρ†ρ is a positive definite matrix, this square root is uniquely defined.
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C.1 Linear transformation of creation and annihilation operators

The relation (C.8) between ρ, σ and µ, ν is invertible (except for the branch cuts of the
logarithm, when computing σ from e−iσ). First we calculate |ρ|, then e−iσ (from which σ)
and at last with both the complete ρ:

|ρ| = arccos
√
µ†µ , e−iσ = µ(µ†µ)−1/2, σ = i log e−iσ, ρ = ν†e−iσ |ρ|

sin |ρ|
.

(C.11)

Note that we needed µ to be invertible, as we demanded, to invert Eq. (C.8). We see
that the transformations (C.2) and (C.5) changing e to f are equivalent as long as µ is
invertible and all eigenvalues of |ρ| are < π/2.3 We will always assume this and use both
transformations interchangeably from now on.

Let us denote the vacuum of the operators ei by |0e〉 and that of the fi by |0f 〉. All the
operators annihilate their respective vacuum, ei |0e〉 = 0 and fi |0f 〉 = 0. From Eq. (C.5)
we easily see |0f 〉 = S† |0e〉. An important quantity is the vacuum persistence amplitude
(VPA) cV , the overlap between |0e〉 and |0f 〉

cV = 〈0f |0e〉 = 〈0e|S |0e〉 = 〈0f |S |0f 〉 . (C.12)

We evaluate the new vacuum |0f 〉 with the following ansatz

|0f 〉 = S† |0e〉 = exp
[1

2eρe − 1
2e†ρ†e†

]
|0e〉 != cV exp

[1
2e†τe†

]
|0e〉 . (C.13)

This is justified since eee†τe†/2 |0e〉 ∝ e†ee†τe†/2 |0e〉 and therefore f |0f 〉 = (µe+νe†) |0f 〉 =
0 for the right µ and ν. We must determine τ and cV in the ansatz (C.13) from ρ. To do
this, we employ the following trick. Define a vector depending on s ∈ [0, 1] by

|s〉 = exp
[
s

2eρe − s

2e†ρ†e†
]

|0e〉 != f(s) exp
[1

2e†g(s)e†
]

|0e〉 . (C.14)

Behind the second equals sign is an analogous ansatz as above for |0f 〉. The function
f(s) is a scalar and because |s = 1〉 = |0f 〉, f(0) = 1 and f(1) = cV ; g(s) is a matrix and
g(0) = 0 and g(1) = τ . Our strategy is to compare the derivatives for both expressions of
|s〉 to derive a differential equation for f and g. Solving these and evaluating at f(1) and
g(1) we will get cV and τ . The derivative of the first expression is

d
ds exp

[
s

2eρe − s

2e†ρ†e†
]

|0e〉 =
(1

2eρe − 1
2e†ρ†e†

)
exp

[
s

2eρe − s

2e†ρ†e†
]

|0e〉

=
(1

2eρe − 1
2e†ρ†e†

)
f(s) exp

[1
2e†g(s)e†

]
|0e〉 .

(C.15)

The second equals sign is using the ansatz (C.14). The derivative of the second expression
is

d
dsf(s) exp

[1
2e†g(s)e†

]
|0e〉 =

(
f ′(s) + f(s)1

2e†g′(s)e†
)

exp
[1

2e†g(s)e†
]

|0e〉 .

(C.16)
3Interestingly this restriction is not needed for bosonic operators, where µ is always invertible and cosh

takes the place of cos in Eq. (C.7).
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C Generalized Bogoliubov transform

Setting both equal and multiplying from the left by e−e†g(s)e†/2 we get4

f(s) exp
[
−1

2e†g(s)e†
] 1

2eρe exp
[1

2e†g(s)e†
]

|0e〉 − f(s)1
2e†ρ†e† |0e〉

= 1
2f(s) tr

(
ρg(s)

)
|0e〉 − 1

2f(s)e†g(s)ρg(s)e† |0e〉 − 1
2f(s)e†ρ†e† |0e〉

!= f ′(s) |0e〉 + f(s)1
2e†g′(s)e† |0e〉 .

(C.17)

By comparing all the linearly independent vectors component wise we find the desired
differential equations

f ′(s) = 1
2 tr

(
ρg(s)

)
f(s), f(0) = 1,

g′(s) = −g(s)ρg(s) − ρ†, g(0) = 0.
(C.18)

Solving these and evaluating at s = 1 yields

τ = −tan |ρ|
|ρ|

ρ† = −µ−1ν,

cV =
√

det cos |ρ| =
√

det |µ|.
(C.19)

All put together we get the beautiful5 formula

e
1
2 eρe− 1

2 e†ρ†e† |0e〉 =
√

det cos |ρ| e− 1
2 e† tan |ρ|

|ρ| ρ†e†
|0e〉 . (C.20)

In summary for the new vacuum we get two equivalent expressions, once expressed in ρ,6
and once in µ and ν:

|0f 〉 =
√

det cos |ρ| e− 1
2 e† tan |ρ|

|ρ| ρ†e†
|0e〉 =

√
det |µ| e− 1

2 e†µ−1νe† |0e〉 . (C.21)

Having both vacua at our disposal, we can calculate expectation values and matrix elements
with them. For example, the number of all old particles in the new vacuum is

〈0f | e†e |0f 〉 = 〈0f | (f †µ+ fν∗)(µ†f + νT f †) |0f 〉 = 〈0f | fν∗νT f † |0f 〉
= tr(νν†)

(C.22)

which is the same as the number of new particles in the old vacuum

〈0e| f †f |0e〉 = tr(νν†). (C.23)

These calculations are straightforward: For example, when we have an expectation value
w.r.t. 〈0f | . . . |0f 〉, we express all sandwiched operators in terms of fi and f †

i using Eq. (C.4).
Then we can use the standard Wick’s theorem to get the result (C.23).

Computing matrix elements is a bit harder, because there the operators get sandwiched
between different vacua. Suppose we want to compute 〈0f |ABCD |0e〉 with operators A,

4Note that all bilinear products of the form e†τe† commute with all e†
i . Also note that we again used

Hadamard’s lemma.
5Beauty is in the eye of the beholder.
6The new vacuum does not depend on σ, since this matrix, as mentioned, only creates an internal

transformation among creation and annihilation operators.
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ab/cV e e† f f †

e 0 1 νT µ†

e† 0 ν†µ†−1 ν†µ†νT ν†

f 0 µ†−1 µ†−1νT 1
f † 0 0 0 0

Table C.1: All generalized contractions between the operators e, e†, f and f † scaled by the
vacuum persistence amplitude cV = 〈0f |0e〉.

B, C and D linear in e, e†, f and f †. The trick is to express them only in terms of e and
f †. This can be done because from Eq. (C.2), the constraints (C.3) and our assumption
that µ be invertible we find

e† = ν†µ†−1e + µ∗−1f †,

f = µ†−1e + νµ∗−1f †.
(C.24)

Therefore every such operator A can be split into a “positive” and “negative” part,
A = A(+) +A(−) =

∑
i a

(+)
i f †

i +
∑

i a
(−)
i ei with some coefficients a(+)

i and a(−)
i . Importantly

〈0f |A(+) = 0 and A(−) |0e〉 = 0. This is already enough to prove a generalized form of
Wick’s theorem involving generalized contractions. For our example, this allows us to
compute the value of the operators sandwiched between the two vacua as7

〈0f |ABCD |0e〉 = ABCD −ABCD +ABCD (C.25)

with the contraction defined as

AB = 〈0f |AB |0e〉 . (C.26)

By knowing every such contraction between e, e†, f and f † we can calculate every matrix
element. The most fundamental one to which the others can be reduced is

eif
†
j = 〈0f | eif

†
j |0e〉 =

{
ei, f

†
j

}
〈0f |0e〉 = cV µ

†
ij . (C.27)

The contractions will turn out to be proportional to cV = 〈0f |0e〉. For completeness’
sake, we list them all in table C.1 (scaled by cV ). Because e†, e† and f , f anticommute,
the matrices of their contractions must by skew-symmetric. This is guaranteed by the
constraints (C.3).

C.2 Second quantization

We can use the machinery developed in the previous section to compute the dynamics
generated by a time dependent Hamiltonian in the second-quantized Fock space by reducing
them to the dynamics in the base Hilbert space. It is crucial to keep the Heisenberg and
Schrödinger picture separate. We therefore consistently attach a subscript S to every

7The sign is due to the operators being fermionic. We have to make all contracted operators adjacent,
introducing a −1 every time we have to swap two operators to that end.
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operator in the Schrödinger picture. Operators in the Heisenberg picture remain bare.
Every index here is understood the same as in the preceding paragraph to possibly be
composed of multiple sub-indices, some of which may be continuous.

The starting point is some time dependent Hamiltonian h(t) acting on some Hilbert space.
Since this is a first-quantized operator, we denote it by a small h to distinguish it from the
second-quantized H(t). We assume ḣ(t ≤ 0) = 0 and call h(t ≤ 0) the free Hamiltonian. We
also want h(t) to have a spectrum not bounded from below, so that we can describe particles
and anti-particles with it. The model for this is of course the free Dirac Hamiltonian. Thus
at all times h(t) has an eigenbasis comprised of Ui(t) and Vi(t) with eigenvalues ε+i (t) and
ε−i (t), that is

h(t)Ui(t) = ε+i (t)Ui(t), h(t)Vi(t) = ε−i (t)Vi(t). (C.28)

Another canonical basis is formed by solutions ui(t), vi(t) to Schrödinger’s equation

i∂tui(t) = h(t)ui(t), ui(0) = ui = Ui(0),
i∂tvi(t) = h(t)vi(t), vi(0) = vi = Vi(0).

(C.29)

We let both bases coincide at t = 0 as the initial condition and name these vectors ui and
vi by a slight abuse of notation. This is sensible since for t ≤ 0, Ui(t ≤ 0) = Ui(t = 0) = ui

and ui(t ≤ 0) = e−iε+
i (t=0)tui (similarly for Vi(t) and vi(t)), i.e. the time evolution before

the time dependence of the Hamiltonian is switched on is simple. A unitary matrix
transforming one basis into the other must necessarily exist:

ui(t) =
∑

i

Uj(t)B++
ji (t) +

∑
i

Vj(t)B−+
ji (t),

vi(t) =
∑

i

Uj(t)B+−
ji (t) +

∑
i

Vj(t)B−−
ji (t).

(C.30)

The transformation (2.20) is a special case of this. The matrices B±± can be computed
with the scalar product u†v between two vectors u and v in the first-quantized Hilbert
space

B++
ij (t) = U †

i (t)uj(t), B−+
ij (t) = V †

i (t)uj(t),

B+−
ij (t) = U †

i (t)vj(t), B−−
ij (t) = V †

i (t)vj(t).
(C.31)

Second quantization proceeds by creating a field operator ΨS , which is simply a linear
combination of the base vectors with fermionic creation/annihilation operators

ΨS =
∑

i

(
ci,Sui + d†

i,Svi

)
. (C.32)

The coefficients ci,S are annihilation operators for particles, the d†
i,S creation operators for

anti-particles. This is the well known trick that solves the Dirac-sea problem in the quantum
field theoretical setting. Note our labeling convention in the attached subscript S. The field
operator obeys the relation {ΨS ,Ψ†

S} = 1. The “1” acts on the space spanned by the ui

and vi, the first-quantized Hilbert space. The vacuum is defined by ci,S |0〉 = di,S |0〉 = 0.

With the field operator, we can lift the Hamiltonian to its second-quantized form HS(t) =
Ψ†

Sh(t)ΨS . Both ΨS and HS(t) are in the Schrödinger picture. Despite that, HS(t)
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carries an explicit time dependence inherited from h(t). The Schrödinger equation in its
second-quantized form is best formulated in terms of the time evolution operator U :8

i∂tU(t) = HS(t)U(t), U(t = 0) = 1. (C.33)

This time evolution allows us to move between the Schrödinger and Heisenberg picture. For
any operator A (even having an explicit time dependency) we define A(t) = U †(t)AS(t)U(t).
We can apply this to ΨS to form Ψ(t) and to HS(t) resulting in H(t) = Ψ†(t)h(t)Ψ(t).
If ḢS(t) commuted with HS(t) (e.g. when HS is time independent), HS(t) would also
commute with U(t) and HS(t) = H(t). Using Eq. (C.33) it is easy to see Ψ(t) obeys
Heisenberg’s equation of motion

i∂tΨ(t) = [Ψ(t),H(t)] = h(t)Ψ(t). (C.34)

We can decompose Ψ(t) in the three different bases we encountered, thereby shifting the
time dependence between the operators and base vectors:

Ψ(t) =
∑

i

(
ci(t)ui + d†

i (t)vi

)
=
∑

i

(
ci,Sui(t) + d†

i,Svi(t)
)

=
∑

i

(
Ci(t)Ui(t) +D†

i (t)Vi(t)
)
.

(C.35)

From the second form it is clear, that the Heisenberg equation of motion (C.34) is equivalent
to the Schrödinger equation (C.29) in first quantization. As per our convention, ci(t) =
U †(t)ci,SU(t) (same for di). The operators Ci(t) and Di(t) have not yet been introduced.
They are defined by the above expansion, and can be obtained from ci,S and di,S by a
suitable unitary operator B(t). The component expression of that operator is given by the
matrix B±±

ij (t) from Eq. (C.31)

Ci(t) = B†(t)ci,sB(t) =
∑

j

(
B++

ij (t)cj,S +B+−
ij d†

j,S

)
,

D†
i (t) = B†(t)d†

i,sB(t) =
∑

j

(
B−+

ij (t)cj,S +B−−
ij d†

j,S

)
,

(C.36)

or written in matrix notation, with the operators collected into a vector as in the previous
section:9(

C
D†

)
= B±±

(
cS

d†
S

)
=
(
B++ B+−

B−+ B−−

)(
cS

d†
S

)
=
(
B++cS +B+−d†

S

B−+cS +B−−d†
S

)
. (C.37)

The unitarity of the matrix B±±(t) guarantees that B(t) is unitary, from which in turn
the anticommutation relations for C(t) and D(t) follow at all times. We call B(t) the
(generalized) Bogoliubov transform. It is a generalization of Eq. (2.23). This can be seen
by specializing the index i to i = (r,p), r being the spin and p the momentum. Then
B±±

ij (t) = B±±
rs (t,p, q) and by setting(

B++
rs (t,p, q) B+−

rs (t,p, q)
B−+

rs (t,p, q) B−−
rs (t,p, q)

)
= (2π)3δrsδ(p − q)

(
α(t,p) −β∗(t,p)
β(t,p) α∗(t,p)

)
(C.38)

8The time evolution does not, strictly speaking, belong to any picture, therefore it is exempted from our
convention. We also hope no confusion arises between the time dependent eigenvectors Ui(t) and U(t).

9We also suppress the time argument, which we will sometimes do for legibility’s sake from now on.
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cS ,dS c(t),d(t)

CS(t),DS(t) C(t),D(t)

U(t)

B(t)

B
(t)U

†(t)

U
†(t)B

(t)

U(t)

Figure C.1: The different annihilation operators from the text and the unitary transformations
between them. In the left column, the operators are in the Schrödinger picture, in the
right in the Heisenberg picture. The operators in the lower row are the Bogoliubov
transformed versions of those in the upper row.

Eq. (C.36) reduces to Eq. (2.23). We see the Bogoliubov transformation (2.23) is diagonal
in spin and momentum, which reduces Schrödinger’s (i.e. Dirac’s) equation to an ordinary
differential equation, instead of the general partial differential equation. The eigenvectors
Ui(t) = Ur(t,p) (same for Vi(t)) are also easily obtained in this case. In general the
eigenproblem is also a partial differential equation at each time t.

We have to introduce one more set of operators which are the Schrödinger-picture variants
of Ci and Di. They follow from an expansion of ΨS in the base vectors Ui and Vi, similar
to above:

ΨS =
∑

i

(
ci,Sui + d†

i,Svi

)
=
∑

i

(
Ci,S(t)Ui(t) +D†

i,S(t)Vi(t)
)
. (C.39)

Evidently CS(t) = U(t)C(t)U †(t) (same for DS(t)). To not get lost in this maze of
operators and their transformations, we provide an overview in the form of a commutative
diagram in figure C.1. The “big” operators are important, because they diagonalize HS(t)
and H(t):

HS(t) = Ψ†
Sh(t)ΨS =

∑
i

(
ε+i (t)C†

i,S(t)Ci,S(t) + ε−i (t)Di,S(t)D†
i,S(t)

)
,

H(t) = Ψ†(t)h(t)Ψ(t) =
∑

i

(
ε+i (t)C†

i (t)Ci(t) + ε−i (t)Di(t)D†
i (t)

)
.

(C.40)

In terms of the “small” operators, both expansions would contain off-diagonal terms. The
ground state of HS(t) is given by the vacuum |ΩS(t)〉 to Ci,S(t) and Di,S(t), Ci,S |ΩS〉 =
Di,S |ΩS〉 = 0. For H(t) it is |Ω(t)〉 with Ci |Ω〉 = Di |Ω〉 = 0. The vacuum |Ω〉 is not the
time evolution of |ΩS〉, in fact the reverse holds: |Ω(t)〉 = U †(t) |ΩS(t)〉.

Precisely because they diagonalize the Hamiltonian, it is sensible to take these operators
to represent the physical, measurable particles. If for example after some time toff,
ḣ(t ≥ toff) = 0 but h(t) did not return to be the free Hamiltonian, then Ci,S and Di,S would
become time independent and diagonalize the time independent Hamiltonian. Just as ci,S

and di,S diagonalize the free Hamiltonian. Yet Ci,S , Di,S would still be different from ci,S ,
di,S . So in this case there could be no prescription for two observers living in t < 0 and
t > toff saying ci,S , di,S represent measurable particles but Ci,S , Di,S don’t. Consequently
we take Ci,S(t) and Di,S(t) to span our instantaneous Fock space and calculate expectation
values and matrix elements with them.
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C.2 Second quantization

For example, by the standard rules of quantum mechanics, if we want to know the
number of particles of type i the vacuum contains we proceed as follows: Time
evolve the state, i.e. U(t) |0〉, and sandwich the corresponding operator in between,
〈0|U †(t)C†

i,S(t)Ci,S(t)U(t) |0〉 = 〈0|C†
i (t)Ci(t) |0〉. This is easily expressed by convert-

ing the “big” to the “small” operators with the Bogoliubov transformation (C.36) and its
representation matrices B±± as

〈0|C†
iCi |0〉 =

∑
kl

〈0|
(
B++∗

ik c†
k,S +B+−∗

ik dk,S

) (
B++

il cl,S +B+−
il d†

l,S

)
|0〉

=
∑
kl

B+−∗
ik B+−

il 〈0| dk,Sd
†
l,S |0〉 =

(
B+−B+−†

)
ii
.

(C.41)

If we again specialize to the matrices (C.38) we find

〈0|C†
i (t)Ci(t) |0〉 = (2π)3δ(0)δrr|β(t,p)|2 (C.42)

which is just the result from (2.27).

Any sensible expectation value can thus be expressed as

〈0|U †E(CS ,DS ,C
†
S ,D

†
S)U |0〉 = 〈0|E(C,D,C†,D†) |0〉 (C.43)

with some function E of the “big” (Bogoliubov transformed) operators and the initial
vacuum |0〉. Its value then follows from the matrices B±±.

For matrix elements we have to make the connection to the previous section. The
transformation (C.36) is a general linear transformation of operators as given by Eq. (C.2).
We set e to be the concatenation of cS and dS , f of C(t) and D(t). The matrices µ and
ν follow from the B±±(t). Explicitly

e =
(

cS

dS

)
, f =

(
C
D

)
,

µ =
(
B++ 0

0 B−−∗

)
, ν =

(
0 B+−

B−+∗ 0

)
.

(C.44)

The constraints (C.3) are equivalent to the unitarity of B±±. With this we have the entire
machinery of the previous section at our disposal.

The simplest amplitude, for example, is the vacuum persistence amplitude. The initial
state can only be |0〉, while the final state must be the vacuum to the Schrödinger-picture
operators Ci,S and Di,S : |ΩS〉. The VPA is then the overlap between |ΩS(t)〉 and the time
evolution of |0〉, that is cV = 〈ΩS(t)|U(t) |0〉 = 〈Ω(t)|0〉. With the matrices µ and ν from
Eq. (C.44) it follows directly from Eq. (C.19) as

cV = 〈Ω|0〉 =
[
det

(
B++†B++ 0

0
(
B−−†B−−

)∗

)] 1
4

=
√

| detB++|
√

| detB−−|

= | detB++| = | detB−−|.
(C.45)

The last two equality signs follow because the unitarity of B±± implies | detB++| =
| detB−−| (and also | detB+−| = | detB−+|).
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ab/cV cS dS c†
S d†

S C D C† D†

cS 0 0 1 0 0 B†
−+ B†

++

dS 0 0 0 1 BT
+− 0 0 BT

−−

c†
S 0 0 0 BT

−+B
T −1
−− BT

−+B
T
−−B

T
+− 0 0 BT

−+

d†
S 0 0 B†

+−B
†−1
++ 0 0 B†

+−B
†
++B

†
−+ B†

+− 0

C 0 0 B†−1
++ 0 0 B†−1

++ B
†
−+ 1 0

D 0 0 0 BT −1
−− BT −1

−− BT
+− 0 0 1

C† 0 0 0 0 0 0 0 0
D† 0 0 0 0 0 0 0 0

Table C.2: All generalized contractions between the operators cS , dS , c†
S , d†

S , C, D, C† and
D† scaled by the vacuum persistence amplitude cV = 〈Ω|0〉. We put the “signs” of
the matrices into the subscript instead of the superscript to save some space, e.g.
B++†−1 ≡ B†−1

++ .

For a more complex example, consider the amplitude of the vacuum decaying into a particle
and anti-particle. The initial state is simply |i〉 = |0〉. As we explained above, the only
sensible final state is D†

i,SC
†
j,S |ΩS〉. The matrix element is then

〈f |U(t) |i〉 = 〈ΩS(t)|Cj,S(t)Di,S(t)U(t) |0〉 = 〈ΩS |UU †Cj,SUU
†Di,SU |0〉

= 〈Ω|CjDi |0〉 .
(C.46)

It can be evaluated with the generalized Wick theorem from the preceding section, in
particular we need table C.1 with µ and ν taken from Eq. (C.44)

〈f |U |i〉 = CjDi = cV

(
B++†−1B−+†

)
ji
. (C.47)

For another example, let us look at the particle to particle amplitude. With |i〉 = c†
i,S |0〉,

|f〉 = C†
j,S |ΩS〉 we find

〈f |U |i〉 = 〈Ω|Cjc
†
i,S |0〉 = Cjc

†
i,S = cV (B++†−1)ji. (C.48)

An expanded version of table C.1 showing all contractions between the operators can be
found in table C.2.

Every in-state is of the form I(c†
S ,d

†
S) |0〉 and every out-state of the form F (C†

S ,D
†
S) |ΩS〉

for some functions I and F . Thus every amplitude can be written as

〈ΩS(t)|F (C†
S(t),D†

S(t))†U(t)I(c†
S ,d

†
S) |0〉

= 〈Ω(t)|F (C†(t),D†(t))†I(c†
S ,d

†
S) |0〉 .

(C.49)

So of all the contractions in table C.2 we are only going to need those between c†
S , d†

S ,
C, D to compute physical amplitudes. This also explains why the Bogoliubov transform
is defined as the diagonal arrow in the diagram C.1 instead of, for example, as the left
downward arrow, which would make the diagram more symmetrical. But any sensible

90



C.2 Second quantization

quantity we would want to compute, be it expectation value or amplitude, can be expressed
in terms of cS , dS , C, D, their adjoints, |0〉 and |Ω〉. Therefore, the transformation B is
what is needed most often and should be made simple.

We reached the goal of this chapter. We clarified which expectation values and amplitudes
bear physical relevance. Their computation can always be reduced to the matrices B±±.
These can in turn be computed from Eq. (C.31) as the scalar products between the solutions
to the first-quantized Schrödinger equation and the eigenstates to h(t). That means solving
the first-quantized problem provides us with all the information needed to calculate all
second-quantized observables.
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