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Kurzdarstellung

Das Zusammenspiel der thermodynamischen Eigenschaften von stark wechselwirkender

Materie und deren Emission von Photonen wird untersucht. Dazu wird die Lagrange-

dichte des Quark-Meson-Modells (auch: Linear-Sigma-Modell oder Linear-Sigma-Modell

mit Quarks) um einen elektromagnetischen Sektor erweitert. Aus der so erweiterten La-

grangedichte werden auf konsistente Weise sowohl das großkanonische Potential als auch

das erzeugende Funktional der Korrelationsfunktionen ermittelt. Aus ersterem werden die

Phasenstruktur des Modells sowie zahlreiche thermodynamische Eigenschaften berechnet.

Insbesondere wird die Abhänigkeit einiger Orientierungspunkte (kritischer Punkt, Schnitt-

punkte der Phasengrenze mit den Koordinatenachsen usw.) des Phasendiagramms von den

Modellparametern detailiert untersucht.

Mit Hilfe des erzeugenden Funktionals wiederum kann der Photonenpropagator bestimmt

werden, dessen Imaginärteil mit der Emissionsrate von Photonen zusammenhängt. Die

führende Ordnung in einer Entwicklung nach der Anzahl der beteiligten Teilchen und

der Potenz der Quark-Meson-Kopplung lässt sich durch Baumgraphen-Diagramme dar-

stellen, die ebenfalls berechnet werden. Auf dieser Basis wird die Photon-Emissivität in

Abhängigkeit von Temperatur, chemischem Potential und Photon-Frequenz berechnet und

unter verschiedenen Gesichtspunkten analysiert.

Die Abhängigkeit der Teilchenmassen von Temperatur und chemischem Potential hin-

terlässt teilweise ausgeprägte Signaturen in den Emissivitäten der einzelnen sub-Prozesse.

Insbesondere ein Phasenübergang erster Ordnung zeigt sich deutlich, da an diesem die

Emissivität – abhänging von der Temperatur – um einen Faktor der Größenordnung zehn

springen kann. Jedoch finden wir im Rahmen dieser Analyse keine spezifischen Signaturen

in den Photonen-Emissivitäten, die einen kritischen Punkt auszeichnen. Des weiteren wird

untersucht von welchen Parametern die Photonen-Emissionsrate in den Bereichen niedriger

oder hoher Photonen-Frequenzen abhängt. Mit diesen Ergebnissen kann das Verhalten der

Emissivität in Abhängigkeit von Temperatur und chemischem Potential gut verstanden

und zahlreiche Auffälligkeiten in den Emissivitäten erklärt werden.



Abstract

The interplay of thermodynamic properties of strongly interacting matter and its emission

of photons is investigated. For this purpose the Lagrangian of the quark meson model (in

the literature also dubbed “linear sigma model” or “linear sigma model with quarks”) is

extended by an electromagnetic sector. Based on this extended Lagrangian both the grand-

canonical potential and the generating functional of correlation functions are calculated in

a consistent manner. From the former, the phase structure and various thermodynamical

properties are determined. Especially, the dependence of certain landmarks (critical point,

intersections of the phase boundary with the coordinate axes, etc. ) of the phase diagram

with respect to the model parameters is investigated in detail.

With the help of the generating functional in turn, the photon propagator can be computed

whose imaginary part is connected to the emission rate of photons. The leading order of

the result with respect to the number of participating particles and the power of the quark-

meson coupling is expressed in terms of tree level diagrams, which are calculated likewise.

On this basis, the photon emissivity with respect to temperature, chemical potential and

photon frequency is calculated and analyzed addressing various questions.

The dependence of the particle masses with respect to temperature and chemical potential

leaves notable imprints on the emissivities of the individual production processes. Espe-

cially a first-order phase transition can easily be identified, since, there, the emissivity

may jump – depending on the temperature – by a factor of about ten. Contrarily, within

our analysis, we do not find signatures in the photon emissivities that specifically mark a

critical end point. Moreover, it is investigated on which parameters the photon emission

rate depends in the low- and high-frequency regions. With these results the behavior of

the emissivity with respect to temperature and chemical potential can be understood and

many peculiarities of the emissivities can be explained.
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1. Introduction

To our present knowledge all1 physical phenomena at the experimentally accessible energy

or length scales can be traced back to four fundamental forces and their respective inter-

play. These forces are gravity, the electromagnetic force, as well as the weak and the strong

(nuclear) forces. While gravity is best described with a classical theory – the general the-

ory of relativity –, the theories for the remaining three forces are formulated as quantum

field theories. This difference in description reflects the different realms in which they

are “living”: Except for space-time regions with extreme curvatures, such as the neighbor-

hood of black holes, gravity is a comparatively weak force for elementary particles, e.g. the

electromagnetic force between two protons is about 1036 times stronger, rendering gravity

a negligible effect for earth bound particle physics. Nonetheless, in many astrophysical

contexts, such as the Hawking radiation from black holes [Haw75], stability of neutron

stars [SK09, Lat12] or the dynamics of the early universe [She80, KKM05] gravity plays

an essential or even dominant role. The remaining interactions are combined into one

theory, the Standard Model of particle physics [PS95, CG07, O+14]. The fundamental

statement of the Standard Model is that – besides the Poincaré symmetry of the (flat)

Minkowski space-time – the microscopic world is invariant under a set of continuous

internal local symmetries forming (mathematically) a group of symmetry transformations,

which can be decomposed into three fundamental subgroups. Parallel to the decomposition

of the internal symmetry group into fundamental subgroups, the Standard Model can be

decomposed into three sectors corresponding to the respective subgroups. The sector cor-

responding to the largest of these subgroups is responsible for the strong nuclear force and

the respective projection of the Standard Model onto this sector is called Quantum Chro-

modynamics (QCD) – the theory of the strong interaction. In the remaining (electroweak)

sectors, there is a complication, namely the symmetry apparently present at high energies

(≳ 100 GeV) cannot be observed at low energies. Within the Standard Model, this phe-

1 Probably except dark matter and dark energy, which might or might not be understood within this
theoretical framework.
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nomenon is explained via the Higgs mechanism, according to which a weakly2 interacting

scalar field acquires a non-vanishing vacuum expectation which breaks the gauge symme-

try of the electroweak sector down to that of electromagnetism. The projection of the

Standard Model onto this remaining gauge symmetry is called Quantum Electrodynamics

(QED).3 Besides breaking the electroweak symmetry, the Higgs mechanism introduces

mass terms for the elementary particles. We will discuss implications of this issue be-

low. Apart from the gauge symmetries there are further (global) symmetries present in

the various sectors of the Standard Model. In the QCD sector, a particularly important

symmetry is the (approximate) flavor symmetry in the light quark sector. This symmetry

– the “chiral symmetry” – is spontaneously broken both in vacuum and at temperatures

≲ 150 MeV and baryo-chemical potentials ≲ 1 GeV. Currently, a lot of effort is put into

the exploration of the phase diagram both experimentally and theoretically. In Fig. 1.1,

a sketch of the QCD phase diagram is shown. Only two features of this phase diagram

are well established: these are (i) the crossover transition at small baryo-chemical poten-

tial (from lattice QCD calculation, see below) and (ii) the nuclear liquid-gas transition

(from nuclear physics). Not shown is the deconfinement transition (cf. Section 1.1) which

seems to coincide with the chiral transition at small baryo-chemical potential. However,

at finite baryo-chemical potential both transitions might separate. Furthermore, at large

baryo-chemical potential and small temperatures, perturbative QCD reveals that there are

several color superconducting phases. Other peculiarities of the phase diagram such as a

first-order phase transition (FOPT in Fig. 1.1) ending at a critical end point (CEP) or

further phases might or might not be present. It is thus an important theoretical task to

work out signatures for these possible features of the phase diagram that might show up

in experiments.

In the corresponding experiments, nuclei are brought to collision creating a region of highly

compressed strongly interacting matter that rapidly expands and eventually fragments into

a large number of (mostly unstable) hadrons. However, a minor portion of the produced

particles is not strongly interacting, but solely couples electromagnetically to the medium.

These electromagnetic probes provide valuable information about the hot interior of the ex-

panding strongly interacting medium. This work combines both the chiral phase transition

and the emission of photons, both based on the same model and a common approxima-

tion scheme. It is primarily aimed at digging out the connection between the chiral phase

2 “weak” is here not referring to the strength of the interaction, but to one of the fundamental forces
(the weak nuclear force).

3 Several authors use the term QED only for the theory of electrons and photons. Here, this term is
used to describe the theory corresponding to the residual gauge symmetry at energy scales at which
the electroweak symmetry in the Standard Model is broken via the Higgs mechanism. With the term
’weak interaction’ we refer to the effective interactions corresponding to the broken symmetries.
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T
155 MeV
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QGP
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Figure 1.1.: Sketch of the QCD phase diagram. The black dashed curve marks the
crossover between the QGP and the hadronic phase (denoted by HRG),
and the black solid curves represent first-order phase transitions ending in
critical end points (dots). The lower short solid curve depicts the nuclear
liquid-gas transition (LG), while the upper curve resembles the chiral
transition (χT) which might be partially first-order. The green triangle
marks the region that is accessible with ℓQCD and the green region on
the right denotes the region where perturbation theory is applicable. The
experimentally accessible regions are highlighted in blue. The large blue
“leaf” is accessible in accelerator experiments and the small one via neu-
tron star observations and low energy nuclear physics experiments. The
labels NM and CSC denote the regions, where nuclear matter and color
superconductivity can be found, both in a variety of different phases.

transition and the emission of photons and addresses the question whether and to what

extent peculiarities of the phase diagram, such as a CEP or a curve of first-order phase

transitions, affect the production of photons.

The remainder of this introductory chapter is intended to give an overview over recent

developments and basic facts about topics related to this work to help properly put it into

the context of the research on the strong interaction and hadron physics. At the end of this

chapter the structure of this thesis is outlined and the publications on which the presented

material is based are listed.

1.1. Quantum Chromodynamics

The strong nuclear interaction governs the physics of nuclear matter. It binds the funda-

mental degrees of freedom – quarks and gluons – to the large variety of mesons and baryons

or their excitations – often called resonances – observed in high energy experiments [O+14]

and thus makes QCD one of the corner stones in our understanding of particle physics.
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The QCD Lagrangian at the classical level reads

Lcl
QCD =

∑
f

ψf (iγµDµ −mf1)ψf − 1

4
Ga
µνG

µν
a , (1.1.1)

with ψf denoting the quark field with flavor f ∈ {u, d, s, c, b, t}, mf being the (current)

mass of the quarks with flavor f , Dµ = ∂µ− igλaAµa with the Gell-Mann matrices λa and

the gluon vector potential Aµa being the covariant derivative, and Ga
µν = ∂µA

a
ν − ∂νA

a
µ +

ifabcA
b
µA

c
ν being the field strength tensor with the structure constants fabc of the gauge

group SU(3). The quark fields ψf themselves are elements of a three dimensional internal

vector space with the associated degree of freedom called ’color’. However, for ease of

notation the color index is suppressed in (1.1.1).

Despite its compact form the evaluation of observables in the low-energy regime is notori-

ously difficult. The reason is the energy dependence of the renormalized coupling strength

g which is decreasing for increasing energy scales. In the limit of infinitely large energy

scales the coupling gets arbitrarily small leading to free (i.e. non-interacting) theory of

quarks and gluons – a phenomenon called asymptotic freedom. Conversely, at low energies

the interaction strength becomes large and thus makes a naive perturbative expansion in

the coupling strength impossible. The energy scale at which this happens is called ΛQCD

– the immanent energy scale of QCD being of O (200 MeV). Below this energy scale, the

interaction becomes so strong that it binds all (color-)charged particles into color singlet

states. QCD at low energies is therefore effectively a theory of color-singlet bound states

which can be classified by their spin into baryons (half-integer spin, fermions) and mesons

(integer spin, bosons). The effective degrees of freedom thus transform trivially under the

gauge symmetry hiding it effectively from observation.

At energy scales much larger than ΛQCD, a perturbative (in the coupling g) treatment of

QCD is possible. However, naive summation of Feynman diagrams up to a given loop

order may yield gauge dependent results (e.g. the imaginary part of the gluon self energy

[EHKT88, CHYZ89]). This can be traced back to the thermal masses of the quarks and

gluons which – being proportional to g – make different loop orders contributing para-

metrically to the same order in the strong coupling expansion [BP90]. Such effects can

be accounted for by classifying the external momenta pext as soft (pext ∼ gT ) and hard

(pext ∼ T ) and identifying the subclass of all loop diagrams which lead to a correction of

O (g2T 2/p2ext). If all external momenta are soft, these diagrams (the authors of [BP90]

termed them ’hard thermal loops’) are of the same order as the tree-level amplitude and

have to be evaluated exactly and resummed in order to get a result which includes all de-
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pendencies on the coupling strength up to a given power of g.4 This resummation scheme

is dubbed hard thermal loop (HTL) resummation and can successfully be applied for solv-

ing most of the above mentioned problems with naive perturbation theory (e.g. making

the propagators gauge independent, as they should) [BP90, BI02]. Other problems are

unsolved and can only be avoided for sufficiently weak couplings. Furthermore, it has been

shown that the pressure of a strongly interacting medium composed of quarks and gluons

cannot be calculated in perturbation theory beyond O (g6 ln g) [Lin80].5 Nevertheless, one

may state that at high enough temperatures perturbation theory is applicable to QCD and

analytical results for various quantities can be obtained.

Similar considerations apply to very high densities, because small distances (or equivalently

high densities) correspond, after Fourier transformation, to large momenta for which the

above considerations apply. The analog to the HTL approximation and resummation

scheme is termed hard dense loop (HDL) scheme. One of the most remarkable results at

low temperature and very high densities which rigorously can be derived from QCD in such

a perturbative approach is the occurrence of a so called color-flavor-locked (CFL) phase.

In this phase the SU(3) gauge symmetry of QCD and its approximate SU(3)V flavor sym-

metry form a combined symmetry under which pairs of quarks (“Cooper pairs”, analog

to the Cooper pairs in the BCS theory of superconductivity) are invariant.6 Analogous

to superconductivity the appearance of Cooper pairs is accompanied by a gap in the

excitation spectrum with similar effects as superconductivity in solid state physics, such

as the expulsion of the gauge field modes from the superconductor (Meissner effect). Nu-

clear matter in this phase is therefore called a color superconductor although transferring

the concept of conductivity to color degrees of freedom has some conceptual difficulties

(cf. [Sch03, ASRS08] for a comprehensive discussion of this issue).

At vanishing net baryon densities and – in principle – arbitrary temperatures QCD can be

solved on a finite grid of space-time points. To achieve this one constructs a numerical ap-

proximation to the path integral representation of the QCD partition function. Fermionic

fields can be analytically integrated out yielding real functional determinants depending

on the gluon configurations. At vanishing chemical potential the integrand of the gluon

4 Since any observables within QCD is gauge invariant, all expansion coefficients of such an observable
w.r.t. g cannot depend on the gauge, either. If therefore an observable is calculated such that all (explicit
and implicit) dependencies on g up to a given order are included, the result is gauge independent.

5 This is a genuine non-perturbative (even in the limit of small couplings) aspect of QCD, which can be
traced back to ’super-soft’ magnetic modes p ∼ g2T and moreover cannot be avoided with standard
resummation techniques. For details, see [FHK+11] and references therein.

6 Because of the multitude of possible quark pairs (three colors, three light flavors and two chiralities
for each partner) there are many different possible color superconducting phases. On general grounds
however, it can be shown that in the limit of infinite density the CFL phase is favored.
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path integral is a positive definite function of the gluon configuration and can thus be

interpreted as a probability distribution7 for these configurations. The partition function

is afterwards calculated using Monte-Carlo approaches. Such an approach to the QCD

thermodynamics is referred to under the name of lattice QCD (ℓQCD). The computa-

tional costs of such a calculation strongly scale with the number of grid points and the

inverse fermion masses. State of the art grids are therefore still restricted to grid sizes of

Nτ ×Nx = 4 . . . 8 × 64 . . . 256, with Nτ being the number of grid points in imaginary tem-

poral direction and Nx being that in spatial direction. To improve convergence the action

is typically supplemented with terms vanishing in the continuum limit and suppressing

discretization errors. Also the handling of fermionic degrees of freedom is quite nontrivial.

However, nowadays ℓQCD calculations agree for many important quantities, e.g. the order

(crossover) and temperature (Tc = 154 ± 8 MeV) of the confinement/deconfinement and

chiral transition at vanishing net baryon density [AFKS06, B+12].

Analyzing generalized susceptibilities the field content in the respective temperature re-

gions can be derived [DKM15] confirming from first principles the picture of a strongly

interacting liquid of quarks and gluons (with some admixture from quarkonia and other

hadrons) above the crossover temperature and a gas of hadrons below it. For other quanti-

ties, e.g. the slope of the crossover temperature w.r.t. baryo-chemical potential µB, no final

conclusion can be drawn with present data.

At finite net densities present standard methods of ℓQCD fail, since for non-vanishing baryo-

chemical potential the fermion determinants receive nonzero imaginary parts inhibiting the

interpretation of the integrand of the path integral representation of the partition function

as probability distribution. Several techniques have been developed to overcome this ob-

stacle, e.g. reweighting [FK02], Taylor expansion in µB [KKL+11], analytic continuation

from imaginary µB [dFP02], or density of state methods [FKS07], all of which apply only

for sufficiently small µB/T ratio. With the present data one tentatively may state that the

crossover region seems to stretch at least to µB/T ∼ 2 [DKM15].

1.2. Effective models

At finite net densities no first principle methods are at hand to evaluate observables of

QCD thermodynamics. In order to still capture essential features of QCD thermodynam-

ics at finite net densities a number of different methods is applied besides lattice QCD

calculations (cf. Section 1.1), which are limited to the proximity of the temperature axis.

7 after proper normalization
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The most popular of these are the evaluation of Dyson-Schwinger equations (DSEs)

[RW94, AvS01, Fis06] and the application of the Cornwall-Jackiw-Tomboulis (CJT)

formalism [CJT74].

Less rigorously connected to QCD are effective models which are constructed in line with

symmetries of QCD present at low energies. Because of confinement the relevant degrees

of freedom in this regime are color singlets making the gauge symmetry trivially fulfilled.

Therefore effective models are primarily constrained by the Lorentz symmetry as well as

the global symmetries of QCD, especially the (approximate) chiral symmetry. Besides the

correct global symmetries the field content of such models has to parallel that of low-energy

QCD.

The most important contribution at small baryo-chemical potential comes naturally from

the lightest mesons of QCD. In the light sector, these are the pion and, if additionally

including the strange sector into the consideration, also the kaons and the eta. The ef-

fective models modeling the breaking of chiral symmetry include these fields as pseudo-

Goldstone modes of the broken symmetry. As the low-energy physics of QCD are

governed by dynamics and interactions of these pseudo-Goldstone modes, which in turn

are determined by the pattern of symmetry breaking, the effective models constructed on

the basis of these patterns are expected to give reasonable results. This changes at energy

scales comparable to the mass of the next mesonic states, from which the probably most

important one is the rho meson with a vacuum mass of mρ = 775 MeV [O+14]. More

details concerning the pattern of chiral symmetry breaking, with special emphasis on the

quark-meson model, are given in Chapter 2.

1.3. Heavy-ion collisions

In collider experiments as they are conducted at the large hadron collider (LHC) at CERN,

Geneva, Switzerland and the relativistic heavy-ion collider (RHIC) at BNL, Long Island,

New York, USA or former fixed-target experiments at the super proton synchrotron (SPS)

at CERN as well as the alternate gradient synchrotron (AGS) at BNL and planned in the

future facility for anti-proton and ion research (FAIR) at GSI, Darmstadt, Germany, the

nuclotron-based ion collider facility (NICA) at JINR, Dubna, Russia, and with the heavy-

ion program at the Japan proton accelerator research complex (J-PARC), Tōkai, Japan,

the nuclei of heavy elements are brought to collision at relativistic energies.

The colliding nuclei loose a part of their energy due to inelastic collisions. When the beam

energy is not too large (≲ 10 GeV for colliders [B+01]) the nucleons in the collision zone
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(“participants”) get stopped completely resulting in net baryon densities several times the

nuclear density. For beam energies much larger, the nuclei partially pass through each

other leaving behind a region filled with a large energy density but only small net baryon

density, i.e. with an almost equal number of particles and antiparticles [A+05b, TJGS17].

Evidence for an incomplete stopping was already found at SPS energies (cf. [A+99b] for

measurements at
√
sNN = 17.2 GeV8).

Although the system is initially very far from equilibrium, it quickly thermalizes, e.g. at the

top RHIC energy (
√
sNN = 200 GeV) the equilibration time τeq is estimated as O (0.5 fm/c)

[KBHP16]. After equilibration, the system can be described most easily by local thermo-

dynamical variables, i.e. space-time dependent temperature, entropy density, net baryon

density, energy density, pressure etc. , which obey “almost ideal” hydrodynamical expan-

sion dynamics driven by pressure gradients [RR07, Oll08, Hei09]. In this phase, the dy-

namics are characterized by collective behavior building up correlations between various

observables, e.g. elliptic and higher order flow.

When the energy density falls below a certain threshold corresponding to an energy per

hadron of about 1 GeV [CR99, CORW06] the average collision energy of the constituent

degrees of freedom is too small to allow for conversions between different particle species.

Thus the chemical equilibrium cannot be maintained anymore and the ratios of the particle

species yields are frozen (hence the name “chemical freeze-out”). Thermal equilibrium can

be preserved for some time by elastic collisions between the hadrons until the scattering

rate at some density threshold is too small to keep the rapidly expanding system in thermal

equilibrium (“kinetic freeze-out”). Afterwards the system can be regarded as free streaming

particles that move outward and decay or eventually hit the detectors [Hei09].

Analyzing the particle yields, the temperature and the baryo-chemical potential at the

chemical freeze-out can be determined (see e.g. [ABMRS11] for LHC data). Comparing

various experiments one finds that the chemical freeze-out happens to take place on a

universal curve that can be characterized with the simple requirement that the energy per

hadron is about 1 GeV, cf. [CR99, CORW06]. On this curve, the energy density can be

calculated yielding a maximum at freeze-out conditions corresponding to
√
sNN ∼ 8 GeV

[RC06]. Thus to probe the QCD phase diagram at highest possible baryon densities heavy-

ion beams with rather moderate energies are needed. Especially well suited for this task

will be the beams produced at the upcoming NICA and FAIR projects which will both

work in this energy range [RC16] and have the investigation of the phase diagram and the

search for an CEP on their respective agenda.

8
√
sNN is the energy per colliding nucleon pair in the center-of-mass frame.
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Scanning through the center-of-mass energies per colliding nucleon pair
√
sNN the max-

imally achieved net baryon densities first rise (until
√
sNN ≈ 10 GeV [A+99b, B+01,

TJGS17]) and then fall due to the finite stopping power of the nuclei. At high energies,

most of the nucleons leave the collision zone and leaving behind a region with high energy

density but small net baryon density. Thus by scanning the beam energy, as done e.g. in the

beam energy scan project at RHIC [Das15, McD15, Sol14, A+14a, A+13, A+14c, A+14b,

A+12a, A+12b], different regions of the QCD phase diagram are probed in heavy-ion colli-

sions (HICs). Another adjustable parameter is the system size which can be controlled by

the choice of the nuclei brought to collision as well as by the choice of the centrality class

of the analyzed ensemble of collisions [Gaz08].

Generally speaking one looks in such scans for the non-monotonous behavior of certain

observables. Of particular interest are observables, which can be related to fluctuations of

conserved quantities, such as net baryon density, electric charge or strangeness [AHM00].

Deviations of a conserved quantity from its equilibrium value vanish only due to transport

processes, which are comparatively slow. Thus, traces of certain peculiarities of the distri-

bution of conserved quantities are expected to survive the hydrodynamical evolution and

show up in the detectors [SRS99]. Besides the enhancement of fluctuations at a CEP, which

is present even in equilibrium, the phenomenon of critical slowing down introduces devia-

tions from equilibrium that might survive the subsequent hydrodynamical evolution. These

distributions are often parametrized by their central moments, which usually are combined

to volume independent ratios, such as the scaled variance, the skewness and the kurtosis

[VAGP15]. A lot of effort has been put, both theoretically [SFR11, Fri14, MFR15, K+16]

and experimentally [And16, A+14b, Sol14, LX17], into the evaluation of fluctuations of

conserved quantities on an event-by-event basis, since it can be shown that the generalized

susceptibilities9 are related to the cumulants characterizing the event-by-event distribution

of this quantity [Nah16].

The fluctuation measurements of conserved quantities can be supplemented by the measure-

ment of particle ratio fluctuations, such as the fluctuations of p/K, p/π or K/π, however

only monotonous and slow variations with the beam energy have been found up to now

[A+15].

Besides fluctuation-based measures it has been argued that the enhancement of certain

transport coefficients, such as the bulk viscosity, leaves characteristic imprints of a CEP

in the heavy-ion data [MMY17].

The evolution of the strongly interacting matter produced in a HIC follows approximately

9 These are the (dimensionless) derivatives, χ
(n)
q = Tn−4∂np/∂µn

q of the pressure p w.r.t. the chemical
potential µq associated to the respective conserved quantity q.
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curves with constant entropy per baryon ratio (isentropes) [RR07, Oll08, Hei09]. In [NA05]

it is argued that the QCD critical point acts as an attractor for the isentropes (focusing

effect). This assumption is used in [ABMN08] to propose the behavior of the p/p ratio

w.r.t. transverse momentum as an observable signaling the QCD CEP. Nonetheless, since

the entropy per baryon is not a singular quantity at the CEP, universality arguments are

not sufficient for the occurrence of a focusing effect [FHK+11]. Studies in the context of the

QMM confirm that the focusing effect is not a universal feature, not even within the same

universality class [NSS+10, WK17]. However, as there are notable differences between

the quark hadron phase transition and the QMM transition [SRK14], the possibility of a

focusing effect in QCD matter is not ruled out either.

An interesting study based on the STAR data from the beam energy scan project at

RHIC and the LHC data finds a non-monotonous behavior of a viscous damping coefficient

w.r.t. the collision energy [LTJ+14]. This might point to a CEP located at quite small

baryo-chemical potential. The same conclusion is drawn from two-pion interferometry

data and the position of the CEP is suggested to be at (TCEP, µCEP
b ) = (165 MeV, 95 MeV)

[Lac15]. However this claim is still controversial because of the scaling relations used for

the extraction [ADD16] and because the suggested position is in a region µB/T < 2 that

is claimed to be accessible with various extrapolation schemes from lattice QCD, which

however find no CEP in this region [DKM15].

The CEP search at the SHINE experiment at the SPS, which operates in a fixed target

mode (contrary to the beam energy scan at RHIC using collider setups), has not been suc-

cessful so far. In addition to scanning through beam energies also the type of the colliding

nuclei is varied at SHINE. (Presently, p-p, Be-Be and Ar-Sc have been studied at all avail-

able beam energies and Xe-La and Pb-Pb as well as the remaining beam energies in the

p-Pb system will be studied in the near future.) This makes studies of different system sizes

possible without changing the centrality class. Thereby it introduces another promising

dimension to the phase diagram studies. Besides studying deconfinement signatures as the

“kink”, “horn” and “step” structures – already found by the NA49 collaboration in Pb-Pb

collisions [A+08c] – also fluctuation measures are studied. As the system volume fluctuates

on an event-by-event basis intensive quantities such as the scaled variance of a suitably

chosen observable are of special interest. Furthermore, to avoid uncertainties introduced

by volume fluctuations, so-called “strongly intensive” quantities are needed. However, the

investigation of two of such quantities in the SHINE data yields no clear CEP signature

[And16].

In summary, it can be stated that no unambiguous signals for a CEP have been detected

up to now, which makes the upcoming NICA and FAIR projects especially exciting and
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the task of working out further connections between observable quantities and the phase

structure particularly important.

1.4. Electromagnetic probes

By far the most particles produced in a HIC are strongly interacting. Due to their numerous

scatterings their (momentum-) distributions are similar to the corresponding equilibrium

distributions. The detector signal therefore corresponds to the freeze-out conditions and

can especially be analyzed by means of collective phenomena, such as elliptic and higher

order flow. Electromagnetic probes, such as photons and (di-)leptons, are produced much

less frequently but reach, due to their weak interaction with the surrounding medium, the

detector almost unperturbed thus carrying information about the conditions under which

they were produced to the detectors. This makes electromagnetic probes a valuable tool

for the investigation of the hot and dense interior of the fireball produced in a HIC.

On the other hand the detector signal is a superposition of photons or dileptons coming

from every step of the collision: from binary parton collisions, from the locally equilibrated

stage, and from final state decays, which makes the extraction of the encoded information

a rather complicated task.

The total photon rates (“inclusive photon rates”) are subdivided into rates from decays of

long lived (on the strong interaction scale) mesons (“decay photons”) and the rest (“direct

photons”), the latter ones being furthermore divided into photons from the stage before

local thermal equilibration (“non-thermal” or “primordial” photons) and photons emitted

after (“thermal photons”).

At small transverse momentum pT , the photon spectra are dominated by decay photons

mostly from pions and η-mesons, while at high pT (≳ 6 GeV) photons from the initial

hard processes contribute significantly to the total photon rate. Experimentally these

are deduced from the photon transverse momentum spectra measured in proton-proton

collisions [A+10b, Rey05] and can theoretically be well described with perturbative QCD

(pQCD) calculations [vHGR11]. The region between 1 GeV and 3 GeV is presumably best

suited for the detection of thermal photons from the QGP phase [TRG04].

The central idea behind the investigation of electromagnetic probes from HICs is that the

matter emitting them leaves characteristic imprints in the spectra. A typical example

is provided by the peaks in the dilepton invariant mass spectra at the positions of the

vector meson masses from which masses and decay widths of these mesons can be deduced.

Furthermore, also their modification in nuclear matter, e.g. by comparison of these spectra



12 1 Introduction

for proton-proton and nucleus-nucleus collisions, can be studied giving valuable input for

theoretical considerations [Fri96, FP97, A+08a].

Another illustrative example is the search for a thermal component in the dimuon trans-

verse mass spectra. In the intermediate (transverse) mass range mT = 1−3 GeV, the spec-

tra obtained from proton-proton collisions can well be described by a mixture of Drell-

Yan processes and decays of correlated D and D mesons as well as a background contri-

bution from pion and kaon decays [A+00a]. In Indium-Indium interactions performed at

the SPS at
√
sNN = 158 GeV, however, an excess of dimuons with pT = 1 − 3 GeV was

found that could not be explained by decays. The spectral slope of these excess dimuons

is related to the average temperature of the emitting medium which was analyzed to be

Teff ∼ 190 MeV and thus above the pseudocritical temperature Tc ∼ 160 MeV, signaling

that this emission comes from the QGP phase [A+09a].

Since their penetrating nature provides a tool for the investigation of the interior of the

fireball created in a HIC, electromagnetic probes have been studied in a large number of

heavy-ion experiments. At the BEVALAC at LBL, Berkeley, USA, the DLS experiment

[P+97] was the first experimental set-up for systematically measuring dilepton (dielectron)

production in nucleus-nucleus collisions at relatively low (a few GeV per nucleon) center-

of-mass energy. The excess of the dielectron yields in the low-invariant-mass region was

notoriously difficult to model leading to the designation “DLS puzzle”. The investigations

at low beam energies were followed up by HADES experiment [A+08b] at the heavy-

ion synchrotron SIS18 (“SchwerIonenSynchrotron”) at GSI, Darmstadt, Germany. At

higher center-of-mass energies,
√
sNN ∼ 10 GeV, dielectron measurements were done by

the CERES experiment [A+98, A+03, A+05a] at the SPS and later by the PHENIX [A+10a]

experiment at RHIC. Dimuons were studied with the HELIOS-3 [A+00c] as well as the

NA38 [L+94], NA50 [A+00a], and NA60 [A+09a, A+09b] experiments at the SPS in detail.

The first measurements of direct photons produced in a HIC were done by the CERES

[B+96] and the WA80 collaborations [A+96], both of which were only able to give upper

limits, mostly due to systematic uncertainties. The first successful observation of direct

photons was reported by the WA98 collaboration [A+00b] for central Pb-Pb collisions at

transverse momentum pT > 1.5 GeV, however, still only at the 1 − 2σ confidence level.

With PHENIX [A+12d, A+12c] the search for direct photons was carried on at much

larger center-of-mass energies with the measurement of direct-photon collective flow being

particularly interesting as it is surprisingly large (see below).

In the future, electromagnetic probes will be studied with the CBM experiment [Heu11,

Hö14] (dileptons and direct photons) at the new accelerator complex FAIR as well as with

the multi purpose detector (MPD) at the NICA accelerator complex [Mus11] (dielectrons),
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both measuring in the region of the conjectured CEP of QCD matter. This discussion

of electromagnetic probes in heavy-ion experiments is – of course – not complete. For a

comprehensive review on this issue, see [Tse10] and references therein.

Interestingly the elliptic flow10 v2 of direct photons is comparable to the one of pions at

transverse momenta pT < 3 GeV [A+12c]. This points to late emission times when a mo-

mentum asymmetry for the pions has built up due to anisotropic pressure gradients in the

hydrodynamical stage of the HIC. However, the photon low-pT spectra suggest relatively

high emission temperatures which are present only at early stages of the hydrodynamical

evolution [RvHH14, GHJ+15]. This discrepancy might be resolved either by a “pseudocrit-

ical enhancement” due to the time-evolution of the co-moving volume [vHHR15], different

equilibration times for the gluons and the quarks leading to a transient stage of the evolu-

tion that is dominated by gluons with quarks being produced with some proper time delay

[VKG+16, VGS+16], or by blue-shifted emission from the hadronic phase, which neverthe-

less must be supplemented by tuning several evolution and emission parameters to achieve

hadron dominance in photon emission rates [vHGR11]. Also a strong asymmetric magnetic

background field (such as the magnetic field of the colliding nuclei) might lead to a strong

asymmetry of the photon production at early emission times. Other explanations point to

synchrotron radiation effects from quarks at the surface of the QGP [GSZ13].

Besides the above mentioned pion and η decays, a large variety of channels has been

found to contribute to the photon yields in HICs. In the hadronic phase, these are decay

channels, such as the decays of π, η and η′, or those of the vector mesons ρ, ω and ϕ, meson-

meson, or meson-baryon bremsstrahlung and pion-pion or pion-rho scattering. From the

QPG, photons are emitted in Compton and quark annihilation processes [LBC15]. In the

case of a hot hadronic gas, π/ρ-K scattering contributes with similar strength as π/ρ-π

scattering for temperatures of about 200 MeV [TRG04]. However, for the rapid expansion

dynamics of HICs strange channels contribute less than the light flavor channels [BB10b].

In the QGP phase, the emissivity origins to a large extent from Compton and 2 → 2 an-

nihilation processes with the quarks acquiring a thermal mass ∝ gT that can be accounted

for within the HTL resummation scheme [KLS91, BNNR92]. Collinear photon emission

parametrically enhances certain bremsstrahlung and 3 → 2 annihilation processes, making

the corresponding rates comparable to those from the Compton and 2 → 2 annihilations

[AGKZ98, AGZ00a]. Finally, the interference of multiple scattering processes during the

production time of a collinearily emitted photon (relativistic Landau-Pomeranchuk-

Migdal effect) reduces the rate in certain kinematical regions [AMY02]. The complete

leading-order results (in the strong coupling g), including all these effects for the QGP, are

10 This is the second Fourier coefficient of the azimuthal distribution of a given particle species.
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calculated in [AMY01a].

1.5. Structure of this work

The remainder of this thesis is organized as follows: In the next chapter, an overview

of the quark meson model is given, including its precise definition and a discussion of

the symmetries as well as its relations to various extensions and related models that are

discussed in the literature. Afterwards, in Chapter 3, several relations and formulas that

are used in the calculations are collected. In Chapter 4, a detailed derivation of the

photon production formula is presented as well as the necessary approximations. As an

intermediate step the generating functional of correlation functions is calculated. With

minor changes the generating functional for correlation functions is transformed into the

grand canonical partition function in Chapter 5. Based on this, the thermodynamics of the

model as well as the mass parameters of the fields are calculated and presented in detail.

Afterwards, in Chapter 6, the photon emissivities are presented and discussed extensively.

The main results of this thesis are summarized in Chapter 7.

A large variety of supplementary material is collected in the appendices. In Appendix A,

conventions used in this thesis as well as a list of acronyms and shortcuts is given. In

Appendix B, a number of useful identities and formulas concerning Pauli and Dirac

matrices as well as functional calculus are collected. The Appendices C, F and H contain

rather technical calculations of the derivative expansion of the fermion determinant, the

S-matrix elements and the phase space integrals. In Appendix D, a formula is derived for

the inversion of perturbed matrices that is used for the derivation of the photon emissivity.

In Appendix E, we quote the formulas for the most important thermodynamical quantities

derived within the approximation scheme that is applied in this thesis. For completeness,

in Appendix G the derivation of a central formula for the photon emission is sketched and

its connection to the optical theorem and the unitarity of the S matrix is discussed. In

Appendix I, the approximations for the emission rate discussed in Chapter 6 are explained

in some detail.
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“Photon emission rates near the critical point in linear sigma model”,

PoS CPOD2014 (2015), arXiv:1502.02857 [hep-ph]

[WK16] F. Wunderlich and B. Kämpfer,
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2. The quark-meson model

Due to the high complexity of QCD, several effective models have been put forward aiming

at mimicking certain (conjectured) features or at hoping to have suitable approximations

or both. Among such models are the so called chiral models with the most prominent exam-

ples being the Nambu-Jona-Lasinio (NJL) model and the quark-meson model (QMM),

often also dubbed linear sigma model, both of which can be equipped by a gluonic sector

represented by a Polyakov loop in order to capture confinement-deconfinement dynam-

ics. As this work does not primarily aim at a realistic description of low-energy QCD,

but at the interplay of spontaneous chiral symmetry breaking and photon emission, the

underlying chiral model (the QMM) is not supplemented with such a Polyakov loop,

here.

2.1. Model definition

There are various versions of the QMM available in the literature. Their common feature is

a SU(Nf )×SU(Nf ) flavor-symmetric scalar meson potential with a nontrivial degenerated

minimum. The QMM was invented in 1960 [GML60] in order to model spontaneous sym-

metry breaking and restoration. Later, it was extended with a Polyakov loop in order

to model also the deconfinement transition. In the original version, the field content was

simply an isoscalar Lorentz-scalar field (the σ) and an isovector Lorentz-pseudoscalar

field (the π⃗), which were later identified with the Goldstone bosons of the chiral symme-

try breaking, as well as a doublet of fermions interpreted either as quarks or as nucleons,

depending on the field of study. The main reason for applying this model to photon emis-

sion of strongly interacting matter is that it, one the one hand, is in some sense minimal

but still containing both meson as well as quark fields explicitly and, on the other hand,

shows spontaneous symmetry breaking.
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On the classical level, the model is defined by the Lagrangian

LQMM =Lq + Lkin,m − U, (2.1.1)

Lq = qc
(
i/∂ − g(σ + iγ5τ⃗ π⃗)

)
qc, (2.1.2)

Lkin,m =
1

2
∂µσ∂

µσ +
1

2
∂µπ⃗∂

µπ⃗, (2.1.3)

U(σ, π⃗) =
λ

4

(
σ2 + π⃗2 − ζ

)2
−Hσ, (2.1.4)

with qc = (uc, dc)
T being a flavor doublet and color triplet of fermion fields called quarks,1σ

being a flavor singlet of scalar fields and π⃗ being a flavor triplet of pseudo-scalar fields called

pions. The parameters of the Lagrangian (meson-quark coupling g, four-meson coupling

λ, meson bare mass λζ and symmetry breaking parameter H) can be expressed by means

of the particle masses and the vacuum expectation values, cf. Section 2.3. Since the whole

Lagrangian is diagonal in color space (label c), this simply leads to a triplication of the

fermionic degrees of freedom.

2.2. Symmetry breaking pattern of the QMM in the

chiral limit

Before discussing the chiral symmetries of the QMM, it is helpful to take a look at the

(approximate) flavor symmetries of QCD.

2.2.1. Chiral symmetry of QCD

In the limit of vanishing quark masses mf → 0, the QCD Lagrangian (1.1.1) is invariant

under a set of global flavor symmetries. For the right and left handed quarks, the massless

flavors can independently be mixed according to unitary flavor transformations. The corre-

sponding symmetry group is U(Nf )L×U(Nf )R with L and R denoting on which chirality

(left (L) or right (R) handedness) the unitary flavor transformations act. Conveniently

these symmetry transformations can be rewritten in terms of transformations acting inde-

pendently on vectors (subscript V ) and axial vectors (subscript A) as U(Nf )A × U(Nf )V .

The elements of these groups A ∈ U(Nf )A and V ∈ U(Nf )V are related to L ∈ U(Nf )L

1 The quarks of the QMM differ from the quarks of QCD, although they share some properties. Through-
out this thesis the term ’quarks’ – if not stated elsewise – refers to the QMM quarks and not those of
QCD.
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and R ∈ U(Nf )R according to A = L − R and V = L + R. Furthermore, the unitary

groups U(Nf ) can be decomposed into U(1) and SU(Nf ) subgroups.

Although present at the classical level, quantum effects break the U(1)A symmetry. This

can be interpreted in terms of instantons, which are associated to the tunneling between

locally equivalent but topological different vacuum configurations, characterized by a topo-

logical charge called the instanton winding number [Wei05b]. Thus, the low-energy quan-

tum theory based on Lagrangian (1.1.1) with Nf massless flavors is invariant under the

U(1)V × SU(Nf )V × SU(Nf )A global symmetry group [PW84].

This symmetry has a number of important implications. For instance, meson fields which

can be transformed into each other by virtue of these transformations – so called chiral

partners – necessarily have to possess identical spectral functions, especially the same

masses. An example for such a pair of fields are the ρ and the a1 mesons. Analyzing the

decay of τ leptons into a τ -neutrino and n pions, the axial (for n odd) and vector (for n

even) spectral functions can be compared yielding clearly different results for both cases

[B+98a, A+99a, S+05]. Also other chiral partners exhibit a mass splitting of O (100 MeV).

It can thus be concluded that at low energies (especially in the ground state) the symmetry

is broken to a remnant U(1)V × SU(Nf )V symmetry corresponding to the baryon number

conservation (the U(1) part) and the isospin symmetry (the SU(Nf ) part). According to

the Goldstone theorem, the breaking of the SU(Nf )A symmetry is accompanied by the

appearance of massless modes carrying the same set of quantum numbers as the current

corresponding to this symmetry.

This pattern of symmetry breaking is modified by the nonzero quark masses mf > 0. They

explicitly break chiral symmetry as they couple left and right handed degrees of freedom.

In the up and down quark sector, this symmetry breaking is relatively weak [Wei05b, PS95],

since the up and down quark masses are much smaller than the QCD energy scale ΛQCD.

In the strange quark sector, the traces of the chiral symmetry are much harder to detect,

since – although the strange quark mass is smaller than ΛQCD – both are of the same

order of magnitude, which leads to notable distortions of the patterns derived from the

assumption of chiral symmetry. In the charm, bottom and top quark sectors, the explicit

symmetry breaking is too large for the application of chiral symmetry [PS95, Wei05b]. In

the light quark sector (and with a great deal of caution in the strange sector, too), the

smallness of the quark masses can be applied to derive relations between various quantities

(e.g. meson masses, decay widths, effective couplings etc.) in terms of a perturbative series.

The systematic approach to an effective theory for the set of the lightest mesons, in this

spirit, is termed chiral perturbation theory (χPT). Within χPT (among other approaches)
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a relation between the quark masses and the pion mass can be established:

f 2
πm

2
π =

mu +md

2

⟨
uu+ dd

⟩
, (2.2.1)

with mu,d being the up and down quark current masses, respectively, mπ being the effective

pion mass, fπ being the pion decay constant and ⟨uu⟩ and ⟨dd⟩ being the up and down

quark condensates [GMOR68]. Since the axial part of the chiral symmetry is broken at

low temperatures and densities, the axial current Aµa is not conserved. The matrix element

of its divergence ⟨0|∂µAµa(x)|πb(p)⟩ does not vanish but is proportional to m2
π. Besides the

trivial factors δba and exp{ipx}, the proportionality constant is the above mentioned fπ

[Koc97, Ynd02]. The axial current Aµa is also an important quantity in the weak sector of

the Standard Model. Because the weak interaction maximally violates parity2 (in other

words: chiral symmetry, since parity transformations transform left- into right-handed

particles and vice versa) the weak decay of the pions can be shown to be proportional

to ⟨0|∂µAµa(x)|πb(p)⟩. Hence, although weak and strong interaction are completely inde-

pendent from each other (to our present knowledge), measuring the weak decay width of

the pion gives access to fπ. Evaluating the divergence of the axial current once more, the

coupling strength of the pions to nucleons gπNN can be related to fπ according to the

Goldberger-Treimann relation

gπNNfπ = gaMN , (2.2.2)

with ga = 1.25 being the renormalization constant for the nucleon current measured in the

weak neutron decay and MN being the nucleon mass.

2.2.2. Symmetries of the QMM Lagrangian

Several aspects discussed in the previous section for QCD also apply to the QMM. For

simplicity, we first discuss the symmetries of the model in the chiral limit, where they are

exact. The content of this section can be found elsewhere in the literature, e.g. in [GML60].

However, because of the great importance of the symmetry breaking pattern we collect here

some brief calculations and the main results. In the chiral limit, i.e. for H = 0 in (2.1.4),

the Lagrangian of the QMM (2.1.1) – (2.1.4) possesses a global U(1)×SU(2)×SU(2) flavor

symmetry. This can be seen most easily by considering infinitesimal transformations for

2 The symmetry under space inversions x⃗ → −x⃗.
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the fermion fields

q →q′ = (1 + iϵ+ iτ⃗ α⃗ + iγ5τ⃗ β⃗ + O
(
ϵ2, α2, β2

)
)q, (2.2.3)

q →q′ = q(1 − iϵ− iτ⃗ α⃗ + iγ5τ⃗ β⃗ + O
(
ϵ2, α2, β2

)
), (2.2.4)

with ϵ, αi, βj, (i, j ∈ [1, 2, 3]) being infinitesimal real numbers. The kinetic term of the

fermions (cf. (2.1.2)) is invariant under such a transformation:

Lkin,q = qi/∂q, (2.2.5)

L′
kin,q = qi(1−iϵ−iτ⃗ α⃗+iγ5τ⃗ β⃗)γµ∂µ(1+iϵ+iτ⃗ α⃗+iγ5τ⃗ β⃗)q + O

(
ϵ2, α2, β2

)
, (2.2.6)

= qiγµ∂µ(1−iϵ−iτ⃗ α⃗−iγ5τ⃗ β⃗)(1+iϵ+iτ⃗ α⃗+iγ5τ⃗ β⃗)q + O
(
ϵ2, α2, β2

)
, (2.2.7)

= qi/∂(1 + iϵ+ iτ⃗ α⃗ + iγ5τ⃗ β⃗ − iϵ− iτ⃗ α⃗− iγ5τ⃗ β⃗)q + O
(
ϵ2, α2, β2

)
, (2.2.8)

= Lkin,q + O
(
ϵ2, α2, β2

)
. (2.2.9)

The interaction term is more involved. It can remain invariant only if the fermion trans-

formation is accompanied by corresponding meson transformations σ → σ′ = σ + δσ and

π⃗ → π⃗′ = π⃗ + δ⃗π:

Lint = qg(σ + iγ5τ⃗ π⃗)q, (2.2.10)

L′
int = q(1−iϵ−iτ⃗ α⃗+iγ5τ⃗ β⃗)g(σ+δσ+iγ5τ⃗(π⃗+δ⃗π))(1+iϵ+iτ⃗ α⃗+iγ5τ⃗ β⃗)q

+ O
(
ϵ2, α2, β2

)
.

(2.2.11)

Keeping only linear terms in the infinitesimal quantities α⃗, β⃗, ϵ, δσ and δ⃗π one finds for

δLint ≡ L′
int − Lint

δLint = gq

((
δσ + iγ5τ⃗ δ⃗π

)
+
[
(σ + iγ5τ⃗ π⃗), iτ⃗ α⃗

]
+
{

(σ + iγ5τ⃗ π⃗), iγ5τ⃗ β⃗
})

q

+ O
(
ϵ2, α2, β2

)
,

(2.2.12)

= gq

((
δσ + iγ5τ⃗ δ⃗π

)
− γ5

[
τ⃗ π⃗, τ⃗ α⃗

]
+ 2σiγ5τ⃗ β⃗ −

{
τ⃗ π⃗, τ⃗ β⃗

})
q

+ O
(
ϵ2, α2, β2

)
,

(2.2.13)

where (γ5)2 = 1 as well as the trivial (anti-) commutation relations with scalars were

applied. The (anti-) commutation relations of two Pauli matrices, collected in Appen-
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dix B, lead to

δLint = gq

((
δσ + iγ5τ⃗ δ⃗π

)
− iγ5ϵabcπaαbτ

c + 2σiγ5τ⃗ β⃗ − 2πaβbδ
ab1

)
q

+ O
(
ϵ2, α2, β2

)
.

(2.2.14)

Demanding the first order in the infinitesimal quantities to vanish results in

δσ = 2πaβbδ
ab = 2π⃗β⃗, (2.2.15)

δcπ = ϵabcπaαb − 2σβc ⇔ δ⃗π = π⃗ × α⃗− 2σβ⃗. (2.2.16)

The nature of these mesonic transformations can be recognized most easily when written

in terms of the 4-dimensional vectors ϕ := (σ, π⃗)T and δϕ := (δσ, δ⃗π)T :
δσ

δ1π

δ2π

δ3π

 =


0 2β1 2β2 2β3

−2β1 0 α3 −α2

−2β2 −α3 0 α1

−2β3 α2 −α1 0



σ

π1

π2

π3

 (2.2.17)

=

2β1


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

+ 2β2


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

+ . . .



σ

π1

π2

π3


.

(2.2.18)

Inspecting (2.2.17) one notes that δϕϕ
T = 0 because of the antisymmetry of the infinitesi-

mal matrix, implying the invariance of ϕ2 under the transformation. Thus, the symmetry

must be a subgroup of O(4), which is the group of real transformations keeping the norm of

a 4-dimensional vector constant. Counting the number of generators in (2.2.18), necessary

for constructing the infinitesimal matrix in (2.2.17), reveals that the algebra of the me-

son transformation is 6-dimensional and hence must be holomorphic (or even isomorphic)

to the full O(4) group. Closer inspection shows that all O(4) elements are necessary for

maintaining invariance of Lint under the SU(2) × SU(2) transformation in the fermionic

sector. It is interesting to note that although there is an SU(2) × SU(2) symmetry in

the fermionic sector, only a (smaller) O(4) symmetry in the meson sector is necessary to

balance its effect on the interaction term.

One task remains, namely, to show that the induced transformation on the meson fields

keeps the mesonic part of the Lagrangian invariant. This invariance can be seen most
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easily in terms of the combined meson field ϕ and a general O(4) transformation matrix

O:

Lkin,m =
1

2
∂µϕ

T∂µϕ, (2.2.19)

L′
kin,m =

1

2
∂µ

(
ϕTOT

)
∂µ
(
Oϕ
)

=
1

2
∂µϕ

T∂µϕ, (2.2.20)

where we used the group property OT = O−1 and that O is a global symmetry (i.e. not

depending on the space-time coordinates) for commuting it with the derivatives. The

interaction potential transforms trivially (as discussed above, the transformation keeps

ϕTϕ invariant) since the potential

U(σ, π⃗) =
λ

4
(σ2 + π2 − ζ)2 =

λ

4
(ϕTϕ− ζ)2, (2.2.21)

depends solely on ϕTϕ in the chiral limit.

Another comment is in order here. After demonstrating the U(1)V × SU(2)V × SU(2)A

symmetry, one might ask whether there is another U(1)A symmetry for this model not

discussed yet. This is not the case: The U(1)A symmetry, which is present at the classical

level of light flavor QCD and broken by quantum effects (referred to under the name of

“axial anomaly”), is infinitesimally written as (η ≪ 1)

q →(1 + iγ5η)q, q →q(1 + iγ5η). (2.2.22)

The kinetic term indeed is invariant under this symmetry (commuting /∂ with γ5 changes the

sign in one of the η-terms), but in the interaction part it induces contributions ∝ τ⃗1D and

∝ γ51f (instead of 1D1f and τ⃗ γ5 as the other infinitesimal transformations discussed above

do), which cannot be absorbed into transformations of the meson fields, thus, rendering

the interaction not U(1)A symmetric.

2.2.3. Conserved currents

According to Noether’s theorem any continuous symmetry of the Lagrangian is connected

to a conserved current. This connection is well known and will not be shown here in detail.

The reader is referred to standard textbooks (e.g. [Kug97, Sre07, Wei05a, PS95]) for a

thorough discussion of this subject. For definiteness the transformation of an n-component

field ϕa under a continuous symmetry is written as

ϕa → ϕ′
a = ϕa(x) + ηbG

b
a(ϕ1, . . . , ϕn), (2.2.23)
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with real infinitesimal parameters ηb and the generators Gb
a for the respective symmetry

(indexed by b). With this definition the corresponding Noether current reads

jb,µ = N ∂L
∂(∂µϕa)

Gb
a, (2.2.24)

where N denotes an arbitrarily chosen normalization constant. Applied to the symmetries

of the QMM one gets

jµV = qγµq,

ja,µV = qγµτaq + ϵbcaπb∂
µπc ⇔ j⃗µV = qγµτ⃗ q + π⃗ × ∂µπ⃗,

jb,µA = qγµγ5τ bq − 2πb∂µσ + 2σ∂µπb ⇔ j⃗µA = qγµγ5τ⃗ q − 2π⃗∂µσ + 2σ∂µπ⃗,

(2.2.25)

with the canonical normalization N = 1 for the currents.

2.2.4. Spontaneous symmetry breaking

In the chiral limit, i.e.H = 0, the meson interaction potential (2.1.4) is minimal on the

manifold determined by ϕTϕ = ζ. Including the fermionic sector into the consideration

one finds that the ground state of the model is composed of one of these meson states

and an accordingly chosen fermion state. The mesonic part of the ground state typically is

chosen to be in σ direction, i.e. ⟨σ⟩0 =
√
ζ and correspondingly ⟨π⃗2⟩0 = 0. Having fixed the

value of σ according to (2.2.15) the symmetry SU(2)A corresponding to the infinitesimal

parameters βa cannot be applied anymore without changing the ground state. Only the

remaining U(1)V × SU(2)V transformations leave the ground state invariant. In other

words: The symmetry U(1)V × SU(2)V × SU(2)A is not present in the ground state, but

instead is broken to U(1)V × SU(2)V . The “lost” symmetry SU(2)A transforms within

the infinite set of degenerate ground states. According to the Goldstone theorem this

symmetry is realized by massless fields transforming nontrivially under this symmetry

[Wei05b, GSW62]. In the case of the QMM, these are the π fields.

2.2.5. Explicit symmetry breaking

Traces of the symmetry breaking pattern can be seen even when the chiral symmetry is

broken explicitly by a non-invariant term in the Lagrangian (in (2.1.4), this is the case

for H ̸= 0) provided the symmetry breaking term is small compared to the symmetric

part of the meson potential. This somewhat sloppy formulation means that a typical

σ-dependence of the Hamiltonian ∆Hsb originating from the symmetry breaking term
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(i.e. ∆Hsb ∼ H|σ1 − σ2|) is much smaller than the typical σ-dependence already included

in the chirally symmetric part of the potential ∆Hχ ∼ |U(σ1) − U(σ2)|. Choosing for σ1

and σ2 the vacuum expectation value of the σ field ⟨σ⟩vac and the σ expectation value in

the symmetric phase (⟨σ⟩ = 0 in the chiral limit), respectively, one arrives at

H⟨σ⟩vac ≪
λζ2

4
(2.2.26)

as condition for an explicit symmetry breaking being small, i.e. ∆Hsb ≪ ∆Hχ. With the

parameters of the Lagrangian expressed by the masses and vacuum expectation values of

the fields according to Section 2.3 this condition transforms into

8
(mvac

π )2

(mvac
σ )2

(
1 − (mvac

π )2

(mvac
σ )2

)
(

1 − 3 (mvac
π )2

(mvac
σ )2

)2 ≪ 1, (2.2.27)

which is fulfilled in the limits (mvac
π )2/(mvac

σ )2 → 0 and (mvac
π )2/(mvac

σ )2 → 1. However,

the latter one representing the noninteracting limit λ→ 0 without spontaneous symmetry

breaking at all. It thus can be concluded that the explicit symmetry breaking may be

regarded small if (mvac
π )2 ≪ (mvac

σ )2.

2.3. Parameter fixings

Besides the number of colors (Nc = 3 in the context of modeling low-energy QCD) there

are four parameters in the Lagrangian. Often it is much more convenient to express them

in terms of observables which then can be fixed to reasonable (often: QCD-rooted) values.

These observables are the vacuum masses of the three fields as well as the pion decay con-

stant determined according to PCAC (partial conservation of axial currents) relations. Us-

ing these observables instead of the renormalization scale dependent parameters in the La-

grangian has – besides the independence of the renormalization scale – the advantage that

the results are much better comparable between different approaches (e.g. renormalization

group approaches or the path integral approach in mean field approximation either with

or without vacuum terms, cf. Section 5).

The ground state of the model corresponds to the minimum of the meson potential deter-

mined by

0
!

=
∂U

∂σ
= λ

(
σ2 + π⃗2 − ζ

)
σ −H, (2.3.1)
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0
!

=
∂U

∂πa
= λ

(
σ2 + π⃗2 − ζ

)
πa. (2.3.2)

For non-zero H, (2.3.1) enforces σ2 + π⃗2 − ζ to be non-vanishing, which in turn leads to

πa = πa = 0 in order to fulfill (2.3.2). In mean field approximation as well as in the

linearized fluctuation approximation without vacuum terms, the vacuum masses of the

mesons are related to the second derivatives w.r.t. the fields evaluated in the vacuum state

(T = µ = 0). Thus one gets

(mvac
σ )2 =

∂2U

∂σ2

∣∣∣∣(2.3.1)
(2.3.2)

= λ
(

3σ2 + π⃗2 − ζ
)∣∣∣∣(2.3.1)

(2.3.2)

, (2.3.3)

(mvac
π )2ab =

∂2U

∂πb∂πa

∣∣∣∣(2.3.1)
(2.3.2)

= λπbπa + λ
(
σ2 + π⃗2 − ζ

)
δab

∣∣∣∣(2.3.1)
(2.3.2)

. (2.3.4)

Applying πa = 0 the mass matrix for the pions in vacuum is diagonal and degenerate, thus

all pion fields have the same mass (as they should by symmetry) yielding with (mvac
π )2ab ≡

(mvac
π )2δab

(mvac
π )2 = λ

(
σ2 + π⃗2 − ζ

)∣∣∣∣∣(2.3.1)
(2.3.2)

. (2.3.5)

In the vacuum, the quark mass is given by

mq = gσ
∣∣∣(2.3.1)
(2.3.2)

, (2.3.6)

which can be deduced in various ways, e.g. applying a derivative expansion w.r.t. the meson

fields (cf. Appendix C) and setting ∂σ = ∂π = 0 in the vacuum. Finally, the vacuum

expectation value of the sigma field ⟨σ⟩vac can be related to the pion decay constant. For

the matrix element of the axial current sandwiched between the vacuum and a one pion

state, one can write

∂µ⟨0|⃗jµA|π⃗(p)⟩ = ∂µ⟨0| − qγµγ5τ⃗ q + 2π⃗∂µσ − 2σ∂µπ⃗|π⃗(p)⟩. (2.3.7)

With

⟨0| − qγµγ5τ⃗ q|π⃗(p)⟩ ∝⟨0|TrD,F

[
Gqγ

µγ5τ⃗ π⃗(p)
]
|0⟩ (2.3.8)

and the full quark propagatorGq according to (4.2.10) together with Tr γνγµγ5 = Tr γµγ5 =

Tr γµ = 0, the quark contribution to the current matrix element vanishes. Within the lin-
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earized fluctuation approximation3, the meson sector of the generating functional is Gaus-

sian in the variables πa and ∆ = σ − ⟨σ⟩. Thus correlation functions with odd powers of

these fields vanish. Applying ∂⟨σ⟩ = 0, the only non-vanishing contribution to (2.3.7) is

−2⟨σ⟩∂µ⟨0|∂µπ⃗|π⃗(p)⟩ = −2⟨σ⟩□
√

2δaae
ipx = 6

√
2⟨σ⟩m2

πe
ipx (2.3.9)

yielding upon comparison with the PCAC relation, cf. Section 2.2.1, for the matrix element

of an axial vector current between the vacuum and a single pion state (which formally has

the same structure)

⟨σ⟩vac = fπ. (2.3.10)

Equations (2.3.1), (2.3.2), (2.3.3), (2.3.5), (2.3.6) and (2.3.10) are six equations for the four

model parameters and the two vacuum expectation values of the meson fields. Rearranging

them yields

H = (mvac
π )2⟨σ⟩vac , g =

mvac
q

⟨σ⟩vac
,

λ =
(mvac

σ )2 − (mvac
π )2

2⟨σ⟩2vac
, 2λζ = (mvac

σ )2 − 3(mvac
π )2.

(2.3.11)

The quantities on the right hand side can be fixed to “reasonable values”, e.g. the PDG

values of the respective masses [O+14]. The (QMM-)quark mass reflects the σ condensation

and the coupling of the mesons to the fermionic sector of the model. It is hence a result of

the interactions encoded in the model Lagrangian and thus should not be fixed to the bare

(Standard Model) quark mass (≲ 10 MeV) but rather to an effective (“constituent”) mass,

which is about one third of the nucleon mass. With (2.3.10) the expectation value of the

σ field can be fixed to the pion decay constant. There is some flexibility in the choice of

these parameters, since the model lacks too many degrees of freedom (e.g. gluons, strange

as well as heavier quarks, vector and axial vector mesons etc. ) to reach quantitative

agreement with QCD predictions or experimental data. Thus the values suggested above

for parameter fixing might be taken as a first guess but can be varied over a broad range to

study the model behavior. In this spirit, the impact of the vacuum pion mass parameter

was studied, e.g. in [BK09], that of the vacuum sigma mass parameter in [WK15a] and

that of a wide variation of certain parameter combinations in [WK17] (for the two flavor

model) and [SW09] (for three flavors).

3 See Chapter 4.
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2.4. Relation to other effective models

2.4.1. Extensions of the QMM

For studying the low-temperature properties of the nuclear medium, the QMM is not well

suited, e.g. the pressure at nuclear density at low temperatures is too small compared to

our understanding of neutron star structure [SRK14]. Also, many more mesonic degrees

of freedom are known from experiment. A part of the latter objection can be dealt with

by increasing the number of flavors to three [LRSB00] or four [DATD16] and by including

axial and vector mesons, cf. [PGR10, BSSB14] for a case with two, [PKW+13] for three and

[EGR15, Sas14] for four flavors. However, in order to reproduce the vacuum properties of

the QCD matter correctly the flavor symmetries in the strange and in the charm sector (for

the Nf = 4 models) have to be explicitly broken thus introducing many free parameters

into the model, which have to be fitted to QCD results or meson properties [PGR10]. Often

the QMM is coupled to a Polyakov loop to partially account for the interaction with

the gluon field. For the Polyakov loop, several potentials are discussed in the literature,

e.g. [SPW07, HPS11, LFK+13, SSB16]. A further possibility to partially include the gluonic

degrees of freedom is the introduction of glueballs [SM12].

2.4.2. Other effective models

There is a close connection to the Nambu-Jona-Lasinio (NJL) model [VW91, HK94,

Fuk08, MBC+13], being probably the most widely used chiral effective model with the

Lagrangian

LNJL = q(i/∂ −m)q − g((qq)2 − (qγ5τ⃗ q)2). (2.4.1)

The partition function of the NJL model reads:

Z =

∫
DqDq exp

{∫
d4xLNJL − µqγ0q

}
. (2.4.2)

Applying Hubbard-Stratonovic transformations (cf. [ZJ02])

e−a/2
∫
d4xξi(x)

2

=
1√
2πa

∫
Dϕie−

∫
d4xϕi(x)

2/(2a)−iξi(x)ϕi(x), (2.4.3)
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with ξ1 ≡ qq and ξ2 ≡ iqγ5τ⃗ q and, correspondingly, ϕ1 ≡ σ and ϕ2 ≡ π⃗, we arrive at

Z =

∫
DqDqDσDπa exp

{
q(i/∂ −m− g(σ + iγ5τπ))q − g((σ)2 − (π⃗)2))

}
(2.4.4)

having the same fermionic terms, especially the same fermion-meson interaction terms as

the QMM.

When the fermionic sector Lq is removed from the Lagrangian (2.1.1) one obtains a purely

mesonic model showing the same pattern of symmetry breaking. In the literature, this

model is called the O(4) model or the linear sigma model [PS95, LR00]. Since the O(4)

model and the QMM share the same meson potential, which ultimately is responsible

for the symmetry breaking, the thermodynamics of both models share many common

features. Furthermore, many formal properties, such as renormalizability, are identical in

both cases. However, there exist important differences due to the lack of fermionic degrees

of freedom, e.g. in the high-temperature behavior (dominated by quarks in the QMM) or in

the dependence on the baryo-chemical potential (there is none in the O(4) model). On the

other hand the O(4) model can simply be generalized to the O(N) model (with N ∈ (N))

for which the large N -limit can be taken [LR00].

Another model which is related to the QMM is the non-linear sigma model. The most

straight forward way to obtain its Lagrangian from the QMM Lagrangian (2.1.1)-(2.1.4)

is by imposing the condition C2 = σ2 + π⃗2 to eliminate σ. Effectively this restricts the

pions to the sphere S(3) and makes the kinetic term of the pions a complicated function of

(pion) derivatives and field values leading to nonlinear solutions of the equations of motion

(hence the naming of the model). The connection can elegantly be made manifest by

the introduction of an auxiliary field α introduced again by a Hubbard-Stratonovic

transformation. The mesonic sector Zm of the partition function of the QMM can be

written as [See11]

Zm =

∫
DπaDσDα exp

{
1

2
(∂σ)2 +

1

2
(∂π⃗)2 − U(σ, π⃗, α)

}
, (2.4.5)

U(σ, π⃗, α) =
i

2
α(σ2 + π⃗2 − ζ) +

ϵ

2
α2 −Hσ. (2.4.6)

Setting ϵ ≡ 1/(2λ) one recovers (2.1.4) while in the limit ϵ → 0, (2.4.5) resembles the

mesonic sector of the non-linear sigma model. In more physical terms, the transition from

the QMM to the non-linear sigma model corresponds to sending the σ mass to infinity. It

turns out that this kind of construction leads to a Lagrangian that coincides in leading

order with the Lagrangian obtained with chiral perturbation theory i.e. the systematic
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low-energy expansion of QCD w.r.t. quark masses.

2.5. Advantages of the QMM

As discussed above the two-flavor QMM possesses a U(1)V ×SU(2)V ×SU(2)A symmetry.

This is to be contrasted with the flavor symmetry of two-flavor QCD. The QCD Lagrangian

with two massless quarks is manifestly SU(2)A × U(1)A × SU(2)V × U(1)V invariant at

the classical level. The U(1)A symmetry again is broken by radiative corrections [PW84]

making the flavor symmetry of light QCD isomorphic to that of the QMM.

Besides this satisfying symmetry breaking pattern, the QMM is renormalizable making the

introduction of a cut-off by hand unnecessary (in contrast to the NJL model, where such a

cut-off has to be introduced in order to make finite predictions). Another advantage of the

QMM with respect to the NJL model is that the QMM has mesonic degrees of freedom, so

the mesonic properties are much more directly accessible, e.g. in the NJL model the pion

mass has to be extracted from resonances in loop calculations, while within the QMM the

mass can be extracted from the pion propagator.

Compared to more realistic models incorporating a large variety of mesonic degrees of free-

dom, the QMM is a rather slim model with only a few independent fields. This simplicity

allows to relate thermodynamic properties as well as peculiarities in the phase diagram

to a small number of model parameters. For the more elaborate model versions, such as

those presented in [Sas14, EGR15, KSW16], such a connection is much more difficult to

identify because of the large number of possible dependencies as well as the necessity for

applying fitting procedures in high-dimensional parameter spaces.

Concluding, it can be stated that the QMM combines the correct symmetry breaking

pattern with a small number of free parameters but still explicitly including some relevant

degrees of freedom also present in QCD, both for the high-temperature phase (quarks) as

well as for the low-temperature phase (pions).
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3.1. The MCLERRAN-TOIMELA formula

One of the central formulas needed below in Chapter 4 that allows for connecting the pho-

ton emissivity to thermodynamics is the so-called McLerran-Toimela formula [MT85].

It relates the emissivity ωd7N/d3kd4x to the retarded in-medium photon propagator Gµν
γ,ret

according to

ω
d7N

d3kd4x
=

gµν
(2π)3

ImGµν
γ,ret(k

2 = 0, ω)nB(ω), (3.1.1)

where nB is the Bose-Einstein distribution function and k = (ω, k⃗) is the 4-momentum

of the emitted photons. Although first derived rather technically by studying the elec-

tromagnetic current-current correlation function perturbatively [MT85], it was re-derived

based on very general assumptions without the use of perturbation theory in the strongly

interacting sector [KG06, Gal10]. In Appendix G, this derivation is recalled in some detail,

here, however, only the main ingredients are given.

From the definition of the S matrix one finds that the reaction rate for a transition from

some initial state |i⟩ to some final state |f⟩ is proportional to the square of the absolute

value of the corresponding matrix element | ⟨f |S |i⟩ |2. Furthermore, assuming the emitting

system to be much smaller than the mean free path of the photons the S matrix element can

be written to first order in the electromagnetic coupling in terms of the electromagnetic

current. If, on the other hand, the system is much larger than the mean free path of

the strongly interacting particles and only slowly changing on this scale, translational

invariance can be invoked yielding delta distributions that can be interpreted as energy-

momentum conservation for emission and absorption processes. In the resulting expression,

the spectral functions associated to photon emission processes can be identified which are

finally written in terms of the retarded photon propagator yielding formula (3.1.1).
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Formula (3.1.1) is exact to all orders in the strong interaction, yet only to first order in

the electromagnetic interaction [Gal10]. This poses the probably strongest limitation of

(3.1.1), however, for colliding nuclei, the assumption of the system size being intermediate

between the mean free path for strong and electromagnetic interactions is reasonable.

3.2. Path integrals

3.2.1. Path integral representation of the partition function

One major application of the path integral formalism is the representation of fundamental

field theoretical or thermodynamical quantities based directly on the Lagrangian and thus

manifestly respecting the classical symmetries of the theory, such as Lorentz and gauge

invariance as well as flavor symmetries. A detailed introduction to path integrals and the

derivation of the key formulas goes far beyond the scope of this thesis. We will rather

focus on the path integral representation of the grand canonical partition function itself

and give some formulas which are used in subsequent chapters. For an introduction to the

formalism, we refer to the literature, e.g. [ZJ02, Das06, KG06].

The grand canonical partition function Z is defined as

Z = Tr e−β(Ĥ−µN̂) (3.2.1)

with Ĥ being the Hamiltonian, N̂ the number operator, µ the chemical potential and β the

inverse temperature. For simplicity, we first take a look at a theory with one single scalar

field defined at the classical level by the Lagrangian L = L(ϕ, ∂µϕ). The Hamiltonian is

then obtained with a Legendre transformation

H = π
∂ϕ

∂t
− L(ϕ, ∂µϕ) (3.2.2)

with the canonical momentum π defined by π = ∂L
∂∂0ϕ

. The grand canonical partition

function can be represented by the path integral

Z =

∫
Dϕ
∫

Dπe
∫ β
0 dτ

∫
d3x(π ∂ϕ

∂τ
−H(π,ϕ)+µN ), (3.2.3)

where N = N (ϕ) denotes the number density of the field configuration ϕ. In this thesis,

only Hamiltonians that are quadratic in the canonical momentum are considered, especially

H(π, ϕ) =
1

2
π2 + Hϕ(ϕ). (3.2.4)
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Then the path integral w.r.t. the canonical momentum can be carried out exactly yielding

Z =

∫
Dϕe

∫ β
0 dτ

∫
d3x 1

2
∂ϕ
∂τ

2−Hϕ(ϕ)+µN (3.2.5)

=

∫
Dϕe

∫ β
0 dτ

∫
d3xL(ϕ,∂ϕ)+µN , (3.2.6)

where it was used that if the Hamiltonian can be decomposed according to (3.2.4), then

L = 1/2(∂τϕ)2−H. This easily can be generalized to n fields provided that the Hamiltonian

for each field is quadratic in the canonical momentum

Z =

∫
Dϕ1· · ·

∫
Dϕne

∫ β
0 dτ

∫
d3xL(ϕ,∂ϕ)+

∑
i µiN (i)

(3.2.7)

with the number density N (i) for the field ϕi and µi the corresponding chemical potential.

This will apply for all bosonic fields in this thesis. For the fermionic fields, however, the

canonical momentum cannot be integrated over since the fermionic Hamiltonian is linear

in the canonical momentum. Nonetheless, for the cases interesting for this thesis, the

canonical momentum of the fermionic field ψ can be identified with the adjoint Dirac

field ψ, yielding a factor∫
DψDψe

∫ β
0 dτ

∫
d3xLψ(ψ,∂ψ)+µN (3.2.8)

for each fermion field. Thus, for a theory with b bosonic degrees of freedom ϕi with

quadratic kinetic terms and f fermionic degrees of freedom ψj one obtains for the partition

function

Z =

∫
Dϕ1 . . .Dϕb

∫
Dψ1Dψ1 . . .DψfDψfe

∫ β
0 dτ

∫
d3xL(ϕ1,...ψf ,∂ϕ1...∂ψf )+µN , (3.2.9)

where we restricted ourselves to the case of only one conserved particle number with density

N .1

3.2.2. Path integral representation of the generating functional

Another quantity that will be calculated is the generating functional S of correlation

functions. It can be regarded as a computational trick to obtain in a simple manner the

correlation functions of a field theory. Analogous to the partition function it has a path

1 In (3.2.9) we suppressed a possible multiplicative factor, which can be introduced without changing
the physics as long as it does not depend on physical quantities. However, such a factor also might be
absorbed into the definition of the path integral measure.
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integral representation which strikingly is rather similar to those for the partition function.

For a theory with b bosonic and f fermionic fields this representation reads

S[η] =

∫
Dϕ1 . . .Dϕb

∫
Dψ1Dψ1 . . .DψfDψf

× e
i
∫
d4xL(ϕ1,...ψf ,∂ϕ1...∂ψf )+

b∑
i=0

ηbiϕi+
f∑
j=0

ηfj ψj+ψjη
f
j

(3.2.10)

with the bosonic sources ηbi and the fermionic source ηfj , η
f
j . The similarity of (3.2.9)

and (3.2.10) is an interesting feature of the path integral formalism. In particular, for

the vacuum, i.e. at T = µ = 0, and for vanishing sources ηbi = ηfj = 0 (for all i and j)

the generating functional and the partition function are closely related, the only relevant

difference being that the integral in the exponent is – for the partition function – in

imaginary direction while that for the generating functional of correlation functions is in

real time direction. In order to maintain this connection, one of the central ideas of this

thesis is that approximations to the partition function and to the generating functional

cannot be made independently but have to be consistent to each other.

3.2.3. Path integrals for quadratic action

Since in the subsequent chapters the path integrations have often to be evaluated for

quadratic integrands some relevant results for this case are quoted here. The fundamental

formula for bosonic Gaussian path integrals is

Ib :=

∫
Dϕe−

1
2

∫
d4x

∫
d4yϕ(x)M(x,y)ϕ(y)+

∫
d4zB(z)ϕ(z) =

1√
detM

e
1
2

∫
d4xd4yB(x)M−1B(y)

(3.2.11)

with M−1 being a Green’s function of the operator M defined by∫
d4zM(x, z)M−1(z, y) =δ(x− y). (3.2.12)

If (3.2.11) resembles the generating functional of a theory or at least all parts of it that

depend on the field ϕ, then M−1(x, y) can be identified with the propagator Gϕ(x, y) for

that field. We will only consider cases, where M can be diagonalized by transforming to

the momentum space. Then – after rewriting the functional determinant with the help of

a functional trace – one obtains

Ib =e−T
∑
ωn

∫
d3p 1

2
ln M̃(ωn,p⃗)+

1
2
T 2

∑
ωn,ωk

∫
d3pd3qB̃(ωn,p⃗)Gϕ(ωn,p⃗;ωk,q⃗)B̃(ωk,q⃗), (3.2.13)
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where now the Fourier transformed functions M̃ and B̃ can be regarded as simple func-

tions of ωn and p⃗.

Path integration over fermionic fields, represented by Grassmann numbers, obeys a very

different algebra. However, the resulting formulas for Gaussian path integrals look rather

similar:

If :=

∫
DψDψe−

∫
d4x

∫
d4yψM(x,y)ψ+

∫
d4zB(z)ψ+ψB(z) (3.2.14)

= detMe
∫
d4xd4yB(x)M−1(x,y)B(y), (3.2.15)

with B and B being Grassmann valued functions. If M(x, y) can be diagonalized by

Fourier transformation, one obtains

If =eT
∑
ωn

∫
d3p ln M̃(ω,p⃗)+T 2

∑
ωn,ωk

∫
d3pd3qB̃(ωn,p⃗)Gψ(ωn,p⃗;ωk,q⃗)B̃(ωk,q⃗) (3.2.16)

again with M̃ , B̃ and B̃ denoting the respective Fourier transformed functions.

3.3. Calculating correlation functions in the path integral

framework

3.3.1. Correlation functions

The correlation functions of a theory can be represented within the path integral frame-

work. A comprehensive discussion of this issue is part of many textbooks on quantum

field theory, cf. [PS95, ZJ02, Das06, KG06]. In this section, we therefore simply quote the

relevant formulas. The time ordered n-field correlation function for an interacting theory

with Lagrangian L(Φ) depending on the fields Φ ≡ ϕ1, . . . ϕN with ϕi being any kind of rel-

ativistic quantum field, especially with half-integer or integer spin, is calculated according

to the Gell-Mann-Low formula which has the path integral representation

⟨0| T ϕk1(x(1)) . . . ϕkn(x(n)) |0⟩ =

∫
DΦϕk1 . . . ϕkne

−i
∫
d4xL(Φ)∫

DΦe−i
∫
d4xL(Φ)

(3.3.1)

with DΦ ≡ Dϕ1 . . .DϕN denoting the N dimensional path integral measure over all fields

of the theory and k being a list of arbitrary integer numbers with 1 ≤ ki ≤ N . The

variable x(j) represents the space-time coordinates of the jth field. This formula can be

reformulated by adding source terms ϕj(x)ηj(x) to the Lagrangian. The factors of ϕi under
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the path integral can then be represented by functional derivatives w.r.t. the corresponding

sources which can be pulled out of the integral. The denominator is obtained by setting

all sources ηj zero. Thus, with the definition

Sη := DΦe−i
∫
d4xL(Φ)−ϕj(x)ηj(x) (3.3.2)

and S0 being Sη with all sources set to zero, the n-field correlation function reads

⟨0| T ϕk1 . . . ϕkn |0⟩ =
in

S0

δ

δηkn(x(n))
. . .

δ

δηk1(x(1))
Sη. (3.3.3)

The quantity Sη from which all time ordered correlation functions of the theory can be

calculated by differentiation is called the generating functional of correlation functions.

3.3.2. Partition function and generating functional

As stressed above the partition function and the generating functional formally have quite

similar path integral representations. There are only three differences in the respective

definitions:

(i) There are no source terms for the partition function.

(ii) The term with the chemical potential is missing for the generating functional.

(iii) The integration measure in both cases differs by a factor of i and the limits of the

time integration are different, too (τ ∈ [0, β] vs. t ∈ [−∞,∞].

However, if all sources are set zero and if the partition function is evaluated in the vacuum,

i.e. at T = µ = 0, the only difference remaining is that the partition function is calculated

in Euclidean space i.e. with an imaginary time argument for all fields and the generating

functional for correlation function is defined in Minkowski space. The factor i mentioned

above reflects this difference which can be seen most easily by writing it as
√

det g with g

denoting the metric of the space. Despite the differences the dependence on the fields is

identical implying that for a consistent treatment of dynamics (derived from the generating

functional) and thermodynamics (derived from the partition function) requires for both

quantities to apply the same scheme of approximations, regularizations, renormalization

etc. This is a key observation for this thesis that will later help to define the fermion mass

within the approximation scheme under consideration properly – a task formulated by the

authors of [MME04] and answered here, cf. [WK17].
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formula

In this chapter, an expression for the photon emissivity ωd7N/d3kd4x of the QMM is de-

rived. First the QMM is extended by an electromagnetic sector. Then the generating

functional of correlation functions is calculated including lowest-order meson field fluctu-

ations. These have to be included for consistency purposes since their omission (which

corresponds to the mean field approximation) violates gauge invariance. This is due to the

gauge transformation of the photon field, which is not balanced by the transformation of

pion derivatives if these terms are omitted (as it is, if the derivative-terms are included).

With the generating functional at hand, the photon propagator can be calculated within

these approximations. Its imaginary part is related to the photon emissivity by virtue of the

McLerran-Toimela formula. To obtain the imaginary part of the photon propagator

a dedicated formula is used that was derived in [Wel83], which is applicable since the

propagators corresponding to the approximation scheme used in this work have the same

form as those used in [Wel83].

Finally, the nine dimensional phase space is reduced to four dimensions using delta distri-

butions and symmetry arguments. At the end, the result ready for numerical evaluation

is given. Supplementary material is collected in Appendices C – I.

4.1. Model definition

The central topic to be addressed in this thesis is to which extent the photon signal can

reflect the peculiarities of the phase diagram. In order to discuss this issue for the QMM,

the model Lagrangian (2.1.1) has to be supplemented with an electromagnetic sector. This

is achieved, following [NS06, MCF10, ALZ15], by replacing the partial derivative ∂µ with

U(1)-covariant derivatives Dµ = ∂µ− ieQAµ (e being the electromagnetic coupling and Q
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the charge operator) and by adding the conventional kinetic term for the gauge field (the

photon field) Aµ, with the field strength tensor F µν = i
e

[
Dµ, Dν

]
= ∂µAν − ∂νAµ. This

procedure corresponds to adding the following terms to the Lagrangian (2.1.1):

LeQMM =LQMM + Lkγ + Le,

Lkγ = − 1

4
F µνFµν , (4.1.1)

Le =NcqeQ /Aq + ieAµπ−∂µπ
+ − ieAµπ

+∂µπ− − e2AµA
µπ+π−.

In (4.1.1) the action of the charge operator on the pions π1, π2 and π3 has been evaluated

and the charge eigenstates π± and π0 have been projected out. The invariance of the pion

interaction term in (2.1.2) under chiral transformations requires π1, π2 and π3 not to be

the charge eigenstates, however a change of basis (onto the basis of charge eigenstates) can

easily be performed on the pion fields and simultaneously on the matrices τ such that the

product τ⃗ π⃗ keeps unchanged, i.e. τ 1π1 + τ 2π2 + τ 3π3 = τ+π+ + τ−π− + τ 0π0. The new πa

and τa are then defined according to

τ± =
1√
2

(τ 1 ± iτ 2) , π± =
1√
2

(π1 ± iπ2) ,

τ 0 = τ 3 , π0 =π3.

(4.1.2)

Having defined the model thus far we can go ahead by calculating the Euclidean generating

functional Sη for correlation functions.

4.2. Calculating the generating functional

The derivation in this chapter follows closely that presented in [WK17]. The path integral

representation of the generating functional Sη ≡ S[ησ, η⃗π, ηq, ηq, η
µ
γ ] for the QMM is found

by inserting the corresponding fields into the general formula (3.2.10):

Sη =

∫
DσD3πDqDqD[A]

× exp

{
i

∫
d4xLeQMM(q, q, σ, π⃗) + qηq + ηqq + ησσ + ηπaπ

a + ηγµA
µ

}
,

(4.2.1)

where LeQMM is the Lagrangian given in (4.1.1) and ησ, η⃗π, ηq, ηq, η
µ
γ denote the sources of

the respective fields. (The measure D[A] refers to a path integral over gauge independent

field configurations according to [FP67].) The source term for the pions, η⃗ππ⃗ = η1ππ1+ · · ·+
η3ππ3, can be rewritten in terms of the charged pions according to η⃗ππ⃗ = η−π π

++η+π π
−+η0ππ

0
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with η±π =
√

2
−1

(η1π ∓ iη2π), η0π = η3π and π±,0 as in (4.1.2).

4.2.1. Integrating out the photons

The path integral over the photon field configurations, being quadratic in the fields (for

the gauge fixing, the standard covariant choice Lfix = ξ−1(∂A)2 is made) can be evaluated

exactly (cf. (3.2.11)).

First the action S (supplemented with the gauge fixing term) and the source terms are

split into those terms depending on the photon field and those that are independent:

S =

∫
d4xLeQMM (4.2.2)

=

∫
d4xLQMM +

∫
d4xd4yAµ(x)Mµν(x, y)Aν(y) +

∫
d4xBµA

µ (4.2.3)

with1

Mµν(x, y) = δ(x− y)
[
gµν□−

(
1 − ξ−1

)
∂µ∂ν − e2π+(x)π−(y)gµν

]
(4.2.4)

Bµ(x) = Jγµ(x) + ηγµ(x) (4.2.5)

with the electromagnetic current

Jµγ (z) = −Ncq(z)eQ̂γµq(z) − π+(z)ie∂µπ−(z) + π−(z)ie∂µπ+(z) (4.2.6)

and the photon source ηγµ. Then the photon path integral can be evaluated as given in

(3.2.11) and one obtains

Sη =

∫
DσD3πDqDq

√
det
(
G0
γ

)
µν

× exp

{
i

∫
d4x
(
LQMM − µqγ0q + ηqq + qηq + ησσ + η⃗ππ⃗

)}
(4.2.7)

× exp

{
i

∫
d4zd4z′(Jµγ (z) + ηµγ (z))

(
G0
γ

)
µν

(z, z′)(Jνγ (z′) + ηνγ(z′))

}
,

where the perturbative photon propagator
(
G0
γ

)
µν

is defined by

(
G0
γ

)−1

µν
= Mµν . (4.2.8)

1 In order to bring
∫
d4xLk,γ+Lfix into the form Aµ(x)Mµν(x, y)A

ν(y) Lk,γ and Lfix have to be integrated
by parts.
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The treatment of the photon path integral is part of many textbooks on quantum field

theory, see e.g. [PS95, Sre07] for further details.

4.2.2. Integrating out the fermions

After having dealt with the photons the quarks are integrated out resulting in a functional

determinant, which is written as the exponential of a functional trace (i.e. a momentum

integral of traces over internal – i.e.Dirac and flavor – indices) and an exponential with

source terms:

Sη =

∫
DσD3π

√
det
(
G0
γ

)
µν

× exp

{
i

∫
d4x
(
Lkin,m − U −

(
Tr ln

(
G0
q

)
σ,π

)
(x, x) + ησσ + η⃗ππ⃗

)}
× exp

{
i

∫
d4zd4z′

(
Jµγ (z) + ηµγ (z)

)(
G0
γ

)
µν

(z, z′)
(
Jνγ (z′) + ηνγ(z′)

)
+ ηq(z)

(
G0
q

)
σ,π

(z, z′)ηq(z
′)

}
(4.2.9)

with the quark propagator defined by

(
G0
q

)−1

σ,π
= i/∂ − g(σ + iγ5τ⃗ π⃗). (4.2.10)

Up to now the calculation is exact. But since the remaining mesonic part is not at all

Gaussian, an approximation is necessary in order to proceed.

4.2.3. Derivative expansion of the fermion trace

The term Tr ln
(
G0
q

)
σ,π

in (4.2.9) is expanded w.r.t. derivatives of the meson fields similar

to [AF85] yielding

Tr ln
(
G0
q

)
σ,π

=Tr ln
[
i/∂ −mq(σ, π⃗)

]
+ O (∂σ, ∂π⃗) , (4.2.11)

m2
q =g2(σ2 + π⃗2), (4.2.12)

which coincides with the expression of a massive (with mass mq) non-interacting Fermi

gas. Applying standard steps, cf. e.g. [KG06], (4.2.11) can be evaluated further ultimately
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yielding

Tr ln
(
G0
q

)
σ,π

=
1

3(2π)3

∫
d3p

p2

Eq
(1 + nF (Eq) + nF (Eq)) + O (∂σ, ∂π⃗) , (4.2.13)

E2
q =m2

q + p2. (4.2.14)

Assuming slowly varying meson fields the terms containing meson derivatives can be re-

garded small and are thus excluded from further calculations. Details can be found in

Appendix C.1.1.

4.2.4. Quadratic approximation of the meson potential

The generating functional in (4.2.9) can be regarded as the generating functional of a

purely mesonic theory with the potential V :

V (z) =Ueff(σ(z), π(z)) −
∫

d4z′
(
Jµγ (z)

(
G0
γ

)
µν

(z, z′)Jνγ (z′)

)
, (4.2.15)

Ueff =U(σ, π⃗) − Ωqq(σ, π⃗), (4.2.16)

Ωqq =
1

3(2π)3

∫
d3p

p2

Eq
(1 + nF (Eq) + nF (Eq)). (4.2.17)

Now the effective potential Ueff is approximated by a quadratic potential U defined by the

conditions

⟨U⟩ = ⟨Ueff⟩, (4.2.18)

0 =
∂U

∂σ, π

∣∣∣∣∣σ=v
π⃗=0

, with v determined by 0 =

⟨
∂Ueff(v + ∆, π⃗)

∂∆, π

⟩
. (4.2.19)

The condition (4.2.18) fixes the zero-order coefficients in U and (4.2.19) the first-order

coefficients. For convenience the σ field is shifted by its thermal expectation value v and

the shifted field ∆ = σ − v is used as the new dynamical field. The non-vanishing second

order coefficients (which we name m2
σ and m2

π) have to be chosen according to

∂2U

∂∆2
≡ m2

σ =

⟨
∂2Ueff(v + ∆)

∂∆2

⟩
,

∂2U

∂π2
≡ m2

π =

⟨
∂2Ueff

∂π2

⟩
(4.2.20)

for being consistent to the respective propagator pole mass, calculated for the approximated
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theory with Lagrangian

L = Lkin,m − U(∆, π). (4.2.21)

The second-order mixed term in Ueff vanishes, since Ueff is an even function of π as the in-

spection of (2.1.4), (4.2.12) and (4.2.16) reveals. The thus defined approximative potential

U = ⟨Ueff⟩ +
1

2
m2
π(π⃗2 − ⟨π⃗2⟩) +

1

2
m2
σ(∆2 − ⟨∆2⟩) (4.2.22)

induces via the accordingly approximated partition function Z a probability distribution

for the meson fields

ρ(∆, π⃗) =Z
−1

exp

{∫
d4xLkin,m − U

}
=

1√
2π⟨∆2⟩

exp

{
−∆2

2⟨∆2⟩

}√(
3

2π⟨π⃗2⟩

)3

exp

{
−3π⃗2

2⟨π⃗2⟩

}
,

(4.2.23)

which is independent of the direction of π. Integrating over the angles yields for the

probability distribution

ρ(∆, |π⃗|) =
1√

2π⟨∆2⟩
exp

{
−∆2

2⟨∆2⟩

}√
2

π

(
3

⟨π⃗2⟩

)3

|π⃗|2 exp

{
−3π⃗2

2⟨π⃗2⟩

}
, (4.2.24)

where it was already applied that all relevant functions are even functions of π⃗. This leads

to the following form of the variances (var f = ⟨f 2⟩ − ⟨f⟩2) for the meson fields:

⟨∆2⟩ = varσ =
1

(2π)3

∫
d3p

(
1

2Eσ
+

1

Eσ
nB(Eσ)

)
, (4.2.25)

⟨π⃗2⟩ = 3varπi =
3

(2π)3

∫
d3p

(
1

2Eπ
+

1

Eπ
nB(Eπ)

)
(4.2.26)

with the dispersion relations E2
σ,π = m2

σ,π + p⃗2. With (4.2.24) the ensemble averages ⟨f⟩ of

a meson dependent function can be calculated according to

⟨f(σ, π⃗)⟩ =

∫
dσ

∫
d|π⃗|ρ(σ, |π⃗|)f(σ, |π⃗|), (4.2.27)

where f is only allowed to depend on |π⃗|, since that is the only case relevant for the

calculation. The quark source term in (4.2.9) is treated by expanding
(
G0
q

)
σ,π

w.r.t. the

meson fields (cf. Appendix D) and replacing the meson fields afterwards with the variation
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w.r.t. the corresponding sources.

Equations (4.2.19), (4.2.20), (4.2.25) and (4.2.26) constitute a set of fife equations for the

unknown mσ, mπ, v, ⟨∆2⟩ and ⟨π2⟩. The complete set of equations is given in Appendix E

(Eqs. (E.1.1) – (E.1.6)). For a detailed derivation of this set of equations, see [MME04].

4.2.5. Isolating the electromagnetic contribution to V

Due to the relatively small electromagnetic coupling the electromagnetic contribution in

(4.2.15) is expected to be only a small perturbation of Sη. Therefore the photon propaga-

tor
(
G0
γ

)
µν

is expanded (cf. Appendix D) w.r.t. e2 and afterwards the exponential of the

electromagnetic source term (with the accordingly approximated
(
G0
γ

)
µν

) is expanded up

to linear order of the argument yielding:

exp

{
i

∫
d4zd4z′(Jµγ (z) + ηµγ (z))

(
G0
γ

)
µν

(z, z′)(Jνγ (z′) + ηνγ(z′))

}
= 1 + i

∫
d4zd4z′

(
Jµγ (z) + ηµγ (z)

)(
G
γ

µν(z, z
′)

+ e2
∫

d4z′′G
γ

µρ(z, z
′′)gρκπ+(z′′)π−(z′′)G

γ

κν(z
′′, z′) + O

(
e4
))

(
Jνγ (z′) + ηνγ(z′)

)
+ O

(
J4
γ

)
.

(4.2.28)

Since Jµγ = O (e) the terms up to O (e2) are

exp

{
i

∫
d4zd4z′(Jµγ (z) + ηµγ (z))

(
G0
γ

)
µν

(z, z′)(Jνγ (z′) + ηνγ(z′))

}
= 1 + i

∫
d4zd4z′

(
Jµγ (z) + ηµγ (z)

)
G
γ

µν(z, z
′)
(
Jνγ (z′) + ηνγ(z′)

)
+ i

∫
d4zd4z′d4z′′ηµγ(z)e2G

γ

µρ(z, z
′′)gρκπ+(z′′)π−(z′′)ηνγ(z)G

γ

κν(z
′′, z′)

+ O
(
e3
)
,

(4.2.29)

with G
γ

µρ being the bare photon propagator

(
G
γ

µν

)−1
=
[
gµν□−

(
1 − ξ−1

)
∂µ∂ν

]
(4.2.30)

connected to
(
G0
γ

)
µν

defined in (4.2.8) by
(
G
γ

µν

)−1
=
((
G0
γ

)
µν

)−1
+e2π+π−gµν . Finally, the

fields are replaced by the variations w.r.t. the corresponding sources, i.e. π±(z) → δ/δη∓π (z),

q(z) → δ/δηq(z) and q(z) → δ/δηq(z), and (4.2.29) can be pulled out of the path integral
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(4.2.9).

4.2.6. Integrating out the meson fields

The remaining integrand of the path integrals in (4.2.9) is Gaussian yielding

Sη =
√

det
(
G0
γ

)
µν

√
detGπ

3√
detGσ

× exp

{
i

∫
d4z d4z′

(
Ĵγ

µ
(z)+ηµγ (z)

)(
Ĝ0
γ

)
µν

(z, z′)
(
Ĵγ

ν
(z′)+ηνγ(z′)

)}
× exp

{
i

∫
d4z d4z′ ηq(z)

(̂
G0
q

)
σ,π

(z, z′)ηq(z
′) + ησ(z)Gσ(z, z′)ησ(z′)

+ η+π (z)Gπ(z, z′)η−π (z′) + η0π(z)Gπ(z, z′)η0π(z′)

}
,

(4.2.31)

with
(̂
G0
q

)
σ,π

,
(
Ĝ0
γ

)
µν

and Ĵγ
µ

obtained from
(
G0
q

)
σ,π

,
(
G0
γ

)
µν

and Jµγ by replacing the

fields with the variations w.r.t. the corresponding sources, i.e. σ → δ/δησ, πa → δ/δηπ−a ,

q(z) → δ/δηq(z) and q(z) → δ/δηq(z). The momentum space meson propagators can be

found by an explicit evaluation of the Gaussian meson path integrals:

Gπ
ab(p) =

−iδab

p2 −m2
π

, Gσ(p) =
−i

p2 −m2
σ

(4.2.32)

with a, b ∈ {0,+,−} denoting the charge of the respective pions, b ≡ −b and the mass

parameters according to (4.2.20).

4.3. Calculating the imaginary part of the photon

propagator

4.3.1. Calculating the photon propagator

The full photon propagator (within the above approximations) G can be calculated by

varying Sη w.r.t. the photon sources:

Gγµν(x, y) =
1

S
(−i)2 δ2

δηµγ (x)δηνγ(y)
Sη

∣∣∣∣∣
η=0

. (4.3.1)
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Executing the variations yields

Gγ
µν(x, y) =G

γ

µν(x, y) + e2
1

S

∫
d4zG

γ

µα(x, z)
δ

δη−π (z)

δ

δη+π (z)
gαβG

γ

βν(z, y)Sη

∣∣∣∣∣
η=0

+
1

S

∫
d4z

∫
d4z′G

γ

µα(x, z)Ĵγ
α
(z)Ĵγ

β
(z′)G

γ

βν(z
′, y)Sη

∣∣∣∣∣
η=0

.

(4.3.2)

First the variations w.r.t. the fermionic sources hidden within the Ĵγ terms are executed. To

achieve this the Ĵγ
α
(z) and Ĵγ

β
(z′) are expanded. Furthermore, one notes that any pair of

fermion derivatives which includes both types, δ/δη as well as δ/δη, acting on Sη gives a fac-

tor
(
G0
q

)
σ,π

with the space-time arguments being that of the respective fermion source vari-

ations, since the fermionic sources appear only as exp
{ ∫∫

d4zd4z′ηq(z)
(̂
G0
q

)
σ,π

(z, z′)ηq(z
′)
}

in Sη.

If the external points x and y are represented by the end of the external legs, the variables

of integration z and z′ by dots,
(̂
G0
q

)
σ,π

by a double line connecting its arguments and

the (not yet) evaluated derivatives w.r.t. mesonic sources by small dots, (4.3.2) can be

represented diagrammatically as exhibited in Fig. 4.2 (upper panel).

Inspecting the upper panel of Fig. 4.2 one notes that several diagrams are not connected

which seems rather unconventional for the representation of the photon propagator. It

is worth stressing that the upper panel of Fig. 4.2 represents an intermediate step of

the calculation and that the disconnected parts can (and will) be connected with meson

propagators in the subsequent steps of the calculations. Comparing the upper panel of

Fig. 4.2 with (4.3.2) one can identify the first two diagrams with the first two terms in

(4.3.2). The rest of the diagrams corresponds to the O (e2) contributions of the second line

of (4.3.2) with the derivatives w.r.t. the fermionic sources carried out.

The fermion propagators
(̂
G0
q

)
σ,π

are expanded according to (D.1.6). This expansion follows

from the decomposition of
(
G0
q

)
σ,π

into a part independent of the dynamical fields ∆ and

π (but dependent on the average σ field) and an interaction part that depends on ∆ and

π according to((
G0
q

)
σ,π

)−1

=
((
G0
q

)
v,0

)−1

− g(∆ + iγ5τ⃗ π⃗), (4.3.3)((
G0
q

)
v,0

)−1

=i/∂ − g⟨σ⟩. (4.3.4)

This expansion can be represented diagrammatically as depicted in Fig. 4.1. After expand-

ing the fermion propagators the meson source derivatives are evaluated. Every pair of
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Figure 4.1.: Diagrammatic representation of the quark propagator
(̂
G0
q

)
σ,π

repre-

sented by the double line. Single lines represent
(
G0
q

)
v,0

while the dots

next to the vertices stand for functional derivatives w.r.t.meson sources
and the vertices themselves for either ig or igγ5τa depending on the type
of meson source derivative. Precisely, each vertex with dot stands for the
expression igδ/δησ + igγ5τaδ/δηaπ, with a ≡ −a as in (4.2.32).

derivatives w.r.t. meson sources reduces to a propagator of the respective meson (provided

both variations are w.r.t. the same field sources). The resulting expression can be repre-

sented diagrammatically according to the lower panel of Fig. 4.2. There, each solid line

represents
(
G0
q

)
v,0

and each wiggly line refers to G
γ

µν . For brevity of notation the meson

propagators and vertices are combined such that each dashed line stands for Gσ +Gπ and

each dot means the corresponding vertex factor.

4.3.2. Determining the imaginary part of the photon propagator

The propagators Gπ, Gσ and
(
G0
q

)
v,0

, cf. (4.2.32) and (4.3.4), have the form discussed in

[Wel83]. Following [Wel83] the imaginary part of the diagrams in Fig. 4.2 is calculated by

cutting through each diagram in any possible way that separates the two vertices connected

to external photon lines. Such a procedure leads to sets of (simpler) diagrams (most of

which are at tree-level for the diagrams in the lower panel of Fig. 4.2) corresponding to

processes of the type ϕ1, . . . , ϕa → Φ1, . . . ,Φb+γ with a incoming fields and b+1 outgoing

fields one of which is a photon. Denoting the diagrams in Fig. 4.2 by M(i)
γ→γ and the

diagrams obtained from cutting these by M(i,j)
ϕ1+···+ϕa→Φ1+···+Φb+γ

the imaginary part of the

photon propagator ImGµνγ,ret ∼
∑

i ImM(i)
γ→γ can be expressed according to [Wel83] as

ImGµνγ,ret = 2
∑
a,b

∫
dΩab|M(i,j)

ϕ1+···+ϕa→Φ1+···+Φb+γ
|2

× n
(1)
F/B · · ·n(a)

F/B(1 ∓ n
(1)
F/B) · · · (1 ∓ n

(b)
F/B)(eω/T − 1),∫

dΩab =

∫
d3p1

2E
(1)
p (2π)3

· · · d3pa

2E
(a)
p (2π)3

d3q1

2E
(1)
q (2π)3

· · · d3qb

2E
(b)
q (2π)3

× (2π)4δ

(
k −

∑
i

pi +
∑
j

qj
)

(4.3.5)

with n
(i)
F/B being Fermi or Bose distribution functions (depending on the spin of the

particle i). The upper sign in the (1 ∓ n
(i)
F/B corresponds to Fermi and the lower sign to
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p
= (ig)Gσ(p)(ig) + (igγ5τa)Gπ

ab(p)(igγ5τb)

Figure 4.2.: Diagrammatic representation of the electromagnetic current term in
(4.3.2) after applying the fermion source derivatives and setting the
fermion sources zero (upper panel) and after additionally executing all
meson source derivatives, both written down explicitly as dots next to a
vertex and implicitly contained in the summed fermion propagator (mid-
dle panel). Solid double lines represent the summed fermion propagator(̂
G0
q

)
σ,π

, the double wavy line represents the full photon propagator up to

O
(
e2
)
and O

(
g2
)
, the single solid lines represents

(
G0
q

)
v,0

, single wavy

lines the perturbative photon propagator G
γ
µν , dashed lines represent a

sum over all meson field propagators Gπ, Gσ connected to the fitting ver-
tices (dots), as shown in the lower panel. Arrows on dashed lines denote
the direction of charge flow (they appear only at lines connected to a
photon vertex, so that only charged pions contribute to the diagram, for
which the direction of charge flow is well defined).
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γ

qf ′σ, π±,0

qf γ

qf ′σ, π±,0

qf γ

qf ′π±

qf

γ

σ, π±,0qf ′

qf γ

σ, π±,0qf ′

qf γ

π±qf ′

qf

Figure 4.3.: Tree-level diagrams of the reactions (4.3.6) – (4.3.8). Top row: diagrams
for Compton scattering off quarks; bottom row: annihilations. The
matrix elements for Compton scattering off antiquarks can be obtained
by inverting the direction of the fermion arrows. Note that in the third
column there is no σ meson and no neutral pion, since these are uncharged.
The indices f and f ′ at the external quark lines denote the quark flavor.
Color and spin indices are suppressed for ease of notation.

Bose statistics. The summands in (4.3.5) can be sorted w.r.t. the number of participating

fields (= a + b + 1). The inspection of the phase space regions over which one has to

integrate on the right hand side of (4.3.5) yields that the summands with n + N ≤ 2 are

zero because the phase space vanishes in these cases at least if all fields except the photons

are massive (as it is the case in our model). The first non-zero terms have a + b = 3 and

correspond to 2 → 2 processes

qi + σ, πa → qj + γ (Compton scattering off quarks), (4.3.6)

qi + σ, πa → qj + γ (Compton scattering off antiquarks), (4.3.7)

qi + qj → σ, πa + γ (annihilations) (4.3.8)

with the cut diagrams (denoted M (i,j) in (4.3.5)) collected in Fig. 4.3 and given in Appen-

dix F.
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4.4. Photon emission rate

From the imaginary part of the photon propagator the photon rate can be determined

according to the McLerran-Toimela formula (3.1.1), cf. Appendix G for a sketch of the

derivation. With (4.3.5) we get as the leading terms w.r.t. the number of participating

particles in the above mentioned expansion

ω
d7N

d3kd4x
= 2

gµν
(2π)12

∫
d3p1

2E
(1)
p

d3p2

2E
(2)
p

d3q

2Eq
|M(i,j)

ϕ1+ϕ2→Φ3+γ
|2

× (2π)4δ(k + q − p1 − p2)n
(1)
F/B(p1)n

(2)
F/B(p2)(1 ∓ n

(3)
F/B(q))

(4.4.1)

which resembles the formula for the production of photons in 2 → 2 processes derived from

kinetic theory.

4.4.1. Phase space integration

The final step of the calculation is the evaluation of the phase space integral in (4.4.1). A

detailed calculation can be found in Appendix H. Here, only the most important steps are

pointed out as well as the final result ready for use in a numerical evaluation.

The q integration is evaluated by the use of the three-momentum conserving δ-distribution.

Then the Mandelstam variables s and t are introduced by inserting 1 =
∫

ds δ(s−(p+q)2)

and 1 =
∫

dt δ(t− (q−k)2). Afterwards both pi integrations are transformed into spherical

coordinates and the three remaining δ distributions are applied to calculate two of the

azimuthal integrations and one of the polar integrations. The second polar integration

is trivial since the remaining integrand is independent of this angle. The integrations

w.r.t. the absolute value of the momenta can be transformed into the corresponding energy

integrations. The last step is the simplification of the denominator, which is a straightfor-

ward yet lengthy calculation. After that the final results are:

COMPTON processes

ω
d7N

d3kd4x
=

1

16ω(2π)7

∞∫
s0

ds

s−m2
q

t+∫
t−

dt|M(s, t)|2

×
∞∫

νmin

dν

E+∫
E−

dE
nF (E)nB(ν − E)nF (ω − ν)√

(E − E−)(E+ − E)
,

(4.4.2)
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νmin =
s−m2

q

4ω
+

ωs

s−m2
q

, (4.4.3)

s0 = (mq +mπ,σ)2 , (4.4.4)

u± = m2
q −

s−m2
q

2s

(
(s+m2

q −m2
π,σ) ±

√
λ(s,m2

q,m
2
π,σ)
)
, (4.4.5)

t± = 2m2
q +m2

π,σ − s− u∓, (4.4.6)

∆2 = 4ω(s−m2
q)s(u+ − u)(u− u−)(ν − νmin), (4.4.7)

E± = E ± |∆|, (4.4.8)

E =
(s+m2

q −m2
π,σ)ω(s−m2

q) + (u−m2
q)(2ωs− ν(s−m2

q))

(s−m2
q)

2
, (4.4.9)

where λ is a frequently occurring kinematical function, cf. Appendix B.5, defined by

λ(x, y, z) := x2 + y2 + z2 − 2xy − 2xz − 2yz (4.4.10)

and nB, nF and nF are the distribution functions for bosons, fermions and anti-fermions,

respectively.

Annihilations

ω
d7N

d3kd4x
=

1

16ω(2π)7

∞∫
s0

ds

s−m2
π,σ

t+∫
t−

dt|M(s, t)|2

×
∞∫

νmin

dν

E+∫
E−

dE
nF (E)nF (ν − E)nB(ω − ν)√

(E − E−)(E+ − E)
,

(4.4.11)

νmin =
s−m2

π,σ

4ω
+

ωs

s−m2
π,σ

, (4.4.12)

s0 = max
{

4m2
q,m

2
π,σ

}
, (4.4.13)

u± = m2
q −

s−m2
π,σ

2

(
1 ±

√
s2 − 4smq

)
, (4.4.14)

t± = 2m2
q +m2

π,σ − s− u∓, (4.4.15)

∆2 = 4ω(s−m2
π,σ)s(u+ − u)(u− u−)(ν − νmin), (4.4.16)

E± = E ± |∆|, (4.4.17)

E =
sω(s−m2

π,σ) + (u−m2
q)(2ωs− ν(s−m2

π,σ))

(s−m2
π,σ)2

; (4.4.18)
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anti-COMPTON processes

ω
d7N

d3kd4x
=

1

16ω(2π)7

∞∫
s0

ds

s−m2
q

t+∫
t−

dt|M(s, t)|2

×
∞∫

νmin

dν

E+∫
E−

dE
nF (E)nB(ν − E)nF (ω − ν)√

(E − E−)(E+ − E)

(4.4.19)

and with νmin, s0, u±, t±, ∆, E± and E as for the Compton case.

4.5. BOLTZMANN approximation

In large parts of the phase diagram, it turns out that the distribution functions can be

approximated by their classical analogon i.e. by the Boltzmann distribution function:

nF (E, T, µ) → e−(E−µ)/T , nB(E, T ) → e−E/T . (4.5.1)

With these replacements, (4.4.1) simplifies considerably (see Appendix I) and one obtains

ω
d7N

d3kd4x
= Cb×



eµ/T
∞∫
s0

ds
s−m2

q
e−νmin(s)/Tλ(s,m2

q,m
2
π,σ)σqσ/π→qγ(s) Compton,

∞∫
s0

ds
s−m2

σ,π
e−νmin(s)/T s(s− 4m2

q)σqq→σ/πγ(s) annihilations,

e−µ/T
∞∫
s0

ds
s−m2

q
e−νmin(s)/Tλ(s,m2

q,m
2
π,σ)σqσ/π→qγ(s) anti-Compton

(4.5.2)

with

νmin(s) =
s− (mout)2

4ω
+

ωs

s− (mout)2
(4.5.3)

being the minimal incoming (and outgoing) total energy in the rest frame of the heat bath,

Cb = T (2π)−5/(4ω) and λ defined according to (4.4.10). The rates (4.5.2) are dominated

by the exponential under the integral. The function νmin(s) has a minimum at

s1 = 2ωmout + (mout)2 (4.5.4)
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and there takes the value

νmin(s1) = mout + ω, (4.5.5)

with mout being the mass of the outgoing partner of the photon. The second derivative at

the minimum is

ν ′′min(s1) =
1

4ω2mout
. (4.5.6)

Now, two cases are to be distinguished: (a) s1 ≥ s0 and (b) s1 < s0. Although both cases

lead to very different dependencies of the rates on the photon frequency ω, they are based

on the same recipe, namely νmin is Taylor-expanded around its minimum2 in the domain

of integration up to the first non-vanishing term beyond zero order.

4.5.1. The Gaussian approximation (a)

If s1 ≥ s0 the minimum of νmin is in the domain of integration. Following the above

mentioned recipe νmin is expanded around s1. Because the first derivative vanishes at the

minimum the expansion is evaluated to second order in (s− s1) yielding

e−νmin/T ≈ e−(mout+ω)/T e
−(s−s1)

2

8ω2moutT . (4.5.7)

Assuming a slow variation of |M|2, and the other s-dependent factors in (4.5.2) in the

vicinity of s1, one arrives at

ω
d7N

d3kd4x
= Cg ×


e−(mq−µ)/T

√
mq

λ(s1,m
2
q,m

2
π,σ)σqσ/π→qγ(s1) Compton,

e−mπ,σ/T√
mπ,σ

s1(s1 − 4m2
q) σqq→σ/πγ(s1) annihilations,

e−(mq+µ)/T
√
mq

λ(s1,m
2
q,m

2
π,σ)σqσ/π→qγ(s1) anti-Compton

(4.5.8)

with Cg := T 3/2e−ω/T (2π)−9/2/(4ω). If mσ,π > 2mq then s1 > s0 for all values of ω. In this

case the annihilation rate diverges for ω → 0.

Since s1 depends monotonously on ω but s0 is ω-independent, one can find for any s0 some

value ω1 for which s1(ω) > s0 for all ω > ω1. Therefore, this case can be regarded as the

high (photon) energy approximation of the rates.

2 Since the relevant term in the rate formula (4.5.2) is exp{−νmin/T} this minimum corresponds to
a maximum of exp{−νmin/T} and hence is an estimate for the region where the integrand of the s
integration in (4.5.2) is largest.
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4.5.2. The exponential approximation (b)

When the minimum of νmin is not in the domain of integration, i.e. s1 < s0, a different

approximation has to by applied: In this case νmin is smallest at the lower boundary s0 of

the s integration, which is thus chosen as the expansion point. Since the first derivative

does not vanish there, an expansion up to linear order is sufficient yielding

e−νmin/T ≈ e−a/T−b/T (s−s0), (4.5.9)

a = νmin(s0), (4.5.10)

b =
−ω(mout)2

(s0 − (mout)2)2
+

1

4ω
. (4.5.11)

Assuming that |M|2 and the other s-dependent factors in (4.5.2) vary slowly with s one

obtains.

ω
d7N

d3kd4x
=

T 2

(2π)5


e−(aC−µ)/T (s0−m2

q)λ(s0,m
2
q ,m

2
σ,π)

(s0−m2
q)

2−4ω2m2
q
σqσ/π→qγ(s0) Compton,

e−aA/T
(s0−m2

σ,π)s0(s0−4m2
q)

(s0−m2
σ,π)

2−4ω2m2
σ,π
σqq→σ/πγ(s0) annihilations,

e−(aC+µ)/T (s0−m2
q)λ(s0,m

2
q ,m

2
σ,π)

(s0−m2
q)

2−4ω2m2
q
σqσ/π→qγ(s0) anti-Compton

(4.5.12)

with

aC =
(mq +mπ,σ)2

4ω
+ ω +

ωm2
q

(mq +mπ,σ)2
, (4.5.13)

aA =
max

{
4m2

q −m2
π,σ, 0

}
4ω

+ ω +
ωm2

π,σ

max
{

4m2
q −m2

π,σ, 0
} . (4.5.14)

This approximation is , e.g. , applicable for the Compton processes in the low frequency

limit, since s1 → m2
q and s0 = max{(mq +mσ,π)2,m2

q} ≥ s1.

4.6. DOPPLER shift and center-of-mass photon frequency

The dominant ω dependence of the rate formulas (4.5.12) within the exponential approx-

imation is due to the factor exp{−a/T}, which has – viewed as a function of the photon

frequency ω – a (positive frequency) maximum at

ω2 =
s0 − (mout)2

2
√
s0

=

{
(min

1 +min
2 )2−(mout)2

2(min
1 +min

2 )
if min

1 +min
2 > mout

0 if min
1 +min

2 ≤ mout
(4.6.1)
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Figure 4.4.: Illustration of the Doppler shift generating the (partial) spectra. In the
left panel the ω distribution in the CMS of a q + σ → q + γ reaction is
displayed and in the middle panel the distribution of the ingoing momenta
is shown. In the right panel the function exp{−γrfhcms

√
s0/T} is depicted

with γrfhcms = (ωcms(s0)
2 + ω2

rfh)/(2ωcms(s0)ωrfh) being the γ-factor of the
transformation from the RFH to the CMS (see text). The parts shaded
red correspond to red shifts of the CMS photon frequencies and those
shaded blue to blue shifts while green corresponds only to minorDoppler
shifts. The edges of the shaded regions are located at Doppler factors
ν = ωrfh/ωcms = 7/10 and ν ′ = 10/7. The dashed green curve in the
right panel is the function exp{−aC/T} rescaled by a factor of 0.1 (see
text). All curves are calculated with particle masses corresponding to
T = 65MeV, µ = 295MeV and parameter set A given in Tab. 6.1.

with the mass of the incoming particles denoted by min
1,2 and that of the outgoing partner

of the photon by mout. If the exponential approximation is applicable the spectra are –

to a large extent – determined by collisions at the minimal center-of-mass energy s0. For

an illustrative example, see the left panel of Fig. 4.4, where one may note that the width

of the ωcms distribution is rather small.3 It thus is instructive to analyze the spectral

shape in terms of such collisions, i.e. collisions at s = s0. For 2 → 2 scatterings energy

and momenta of all participants can easily be calculated (cf. (B.5.5) and (B.5.6)). For

minimal center-of-mass energy
√
s =

√
s0, the photon frequency in the CMS is precisely

ω2, cf. (B.5.6).

In the rest frame of the heat bath (RFH) the momenta of the particles obey distribu-

tion functions that are determined by temperature, chemical potential and the respective

mass. This translates into a distribution of the total incoming momentum ptot = pin1 + pin2

for each scattering (middle panel in Fig. 4.4) It is the width of this distribution and not

that of the ωcms distribution (cf. left panel in Fig. 4.4), which determines the width of the

corresponding photon spectrum. For instance, when using parameter set A at (T, µ) =

(65 MeV, 295 MeV) the full width at half maximum (FWHM) of the ωcms-distribution is

3 The term exp{−νmin(s)/T} according to the exponential approximation (4.5.9) is considered as an
estimate for the probability for a scattering to take place with center-of-mass energy

√
s. With (B.5.6)

this can be converted into a probability for the production of a photon with center-of-mass frequency
ωcms. This probability is proportional to the number of produced photons with frequency ωcms.
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FWHM(ωcms) ≈ 25 MeV (left panel of Fig. 4.4) and that of the distribution of the total in-

coming momentum is FWHM(ptot) ≈ 350 MeV (middle panel of Fig. 4.4), which much bet-

ter fits the width of the actual spectrum FWHM(ωd7N/d3kd4xq + σ → q + γ) ≈ 400 MeV

(long-dashed green curve in the right panel of Fig. 6.1). All values as well as the data

displayed in Fig. 4.4 are calculated with the particle masses given in Tab. 6.1 for the

q + σ → q + γ process. It remains to demonstrate that the shape of a photon distri-

bution based solely on the Doppler shift of a narrow ωcms distribution mimics that of

the actual distribution or its approximations. This is done in the right panel of Fig. 4.4,

where the Boltzmann-factor exp{−(Erfh−µ)/T} (solid black curve) with Erfh = γrfhcms

√
s0

is plotted together with exp{−(νmin(s0) − µ)/T} according to (4.5.9) with a = aC as

in (4.5.13). The ω dependence of Erfh (which is obtained by Lorentz-transforming

the total four-momentum in the CMS pcms
tot = (

√
s0, 0⃗)T into the RFH) is solely due to

γrfhcms = (ωcms(s0)
2 + ω2

rfh)/(2ωcms(s0)ωrfh).

This leads to the following interpretation of the spectral shape (cf. Fig. 4.4): The differen-

tial spectra ωd7N/d3kd4x, measured in the RFH, have a maximum at the photon frequency

that equals the center-of-mass frequency, i.e. the maximum of ωd7N/d3kd4x corresponds to

the condition that the RFH and the CMS coincide4. If ωrfh ̸≈ ωcms(s0), CMS and RFH differ

and move relative to each other with velocity v = (ωcms(s0)
2−ω2

rfh)/(ωcms(s0)
2+ω2

rfh) corre-

sponding to a Doppler shift ν = ωrfh/ωcms(s0). Boosting the center-of-mass momenta of

the particles leads to a multiplication of the energies with the corresponding gamma-factor

γrfhcms = (ωcms(s0)
2 + ω2

rfh)/(2ωcms(s0)ωrfh) and thus to a suppression ∼ exp{−γrfhcmsEcms/T}
w.r.t. the rate, when CMS and RFH coincide (i.e. the maximum rate). For the heat bath

being at rest in the frame of an observer (detector) this can be formulated in terms of red

and blue shifts of the photon frequencies:

(i) For the rate at the maximum: RFH and CMS of the collisions with minimal center-

of-mass energy coincide (green regions in the right panel of Fig. 4.4).

(ii) At the low-frequency side of the maximum: In order to measure these photon fre-

quencies, there must be a red shift, i.e. the CMS has to move away from the detector

(red regions in the right panel of Fig. 4.4).

(iii) At the high-frequency side of the maximum: In order to measure these photon fre-

quencies, there must be a blue shift, i.e. the CMS has to move towards the detector

(blue regions in Fig. 4.4).

4 Contrary to the CMS, where all photons produced in minimal center-of-mass 2 → 2 collisions have the
same energy, namely ωcms(s0), the photons measured in the RHF are distributed according to the rate
formulas (4.4.1) or its approximations, such as (4.5.12). Those photons that correspond to the peaks
of the spectra, i.e. that with ωrfh ≈ ω2, have approximately the same photon frequency as in the CMS,
which means they are not Doppler shifted, i.e. CMS and RFH coincide for them
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This discussion should be regarded as an interpretation concerning the form of the photon

spectra to point out what the physical origin of the maximum in the rate is. One major

assumption for this interpretation is that the form (especially the position of the maximum)

is determined by the factor exp{−νmin(s0)/T} only.

The s-dependent factors (in particular, the cross section) may shift the maximum of the

spectrum, but do not change the form of the spectrum qualitatively. If the width of the

Gaussian 2ω
√
moutT (in case (a)) is small or the damping rate of the exponential b/T (in

case (b)) is large, such an assumption is well justified. In the limit T → 0 these conditions

are fulfilled, thus the corrections to the behavior described above vanish and the spectra

get the form of sharp peaks at the kinematically determined positions.

Another interesting feature of the spectral shape is that the height of the maximum of the

function exp{−a/T} is simply

e−a(ω=ω2)/T = e−
√
s0/T = exp

{
−max{min

1 +min
2 ,m

out}
T

}
. (4.6.2)

In principle, it is possible for mout to become larger than the sum of the masses of the

incoming particles. Within the QMM and considering only 2 → 2 processes there are

certain regions of the phase diagram, where 2mq < mσ,π. Then, for the annihilations

the outgoing partner of the photon (which in this case is one of the mesons) can have

a larger mass than both incoming (anti-) quarks together. However, then automatically

s1 > s0, and the Gaussian approximation has to be applied instead of the exponential

approximation, for which this shape of the spectra (and hence position and height of the

maximum) were deduced. Thus, one finds within the exponential approximation for the

maximum of the partial spectrum located at ω2, cf. (4.6.1), that the height is ∝ exp{−(min
1 +

min
2 )/T}.

It is worth pointing out that this discussion relies on kinematics only and thus is applica-

ble to very different underlying theories, e.g. in QED the leading contribution to photon

production comes from electron annihilation into two photons e+ + e− → γ + γ. The

discussion above yields for the position of the maximum in the photon spectrum at T → 0

ω = me, which is what one finds with an exact calculation (cf. [YMK10]).

4.7. Dynamical enhancement mechanism

Having identified the ratio mout/T for large values of ω and the quotient (min
1 + min

2 )/T

for small values of ω (i.e. ω is not too far away from the maxima of the spectra – if there
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are any – which means that ω is of the order of the particles masses mq,σ,π) as the relevant

parameter whose change over the phase diagram modulates the rates, we will now explain

a dynamical enhancement mechanism for the photon rate. With “dynamical enhancement”

we term the relative increase of the rate along different isentropes when one of them goes

through the continuous regions of the phase diagram only, and the other one crosses the

phase transition line.5
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Figure 4.5.: Visualization of the toy model introduced for explaining the dynamical en-
hancement mechanism. Upper left panel: masses of the outgoing partner
of the photon according to (4.7.1), with the parameters m0

1 = 40MeV,
m0

2 = 300MeV, mc = 140MeV and Tc = 74MeV. Upper right panel:
phase fraction of the phase 1 for the expansion path through the first-order
phase transition curve according to (4.7.2), with parameters T x1 = 20MeV
and T x2 = 70MeV. Lower left panel: Rates R divided by the nor-
malization C for the pure phases 1 and 2 according to (4.7.1). Lower
right panel: dynamical enhancement, i.e. the ratio Rpt/Rcont of the rate
Rpt = x(T )R(m1(T ), T ) + (1 − x(T ))R(m2(T ), T ) along a path crossing
the FOPT curve and the rate Rcont(T ) ≡ R2(T ) along a path avoiding
the phase transition.

The enhancement phenomenon is based on the fact that, in the high-frequency region, the

rate is to a large extent determined by the factor exp{−mout/T} (see (4.5.8)). However,

analogous considerations apply also for the low-frequency case. In this case the only

5 The term “dynamical” refers to the fact that the emission is compared for different isentropes, which
are a reasonable estimate for the evolution of the hot and dense strongly interacting medium created
in a heavy-ion collision.
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relevant change in the below discussion is to replace mout by min
1 +min

2 . For the discussion

of the dynamical enhancement, a simplified model is introduced, without µ-dependence

and a linear T -dependence of the masses:

m1,2(T ) =
m0

1,2(Tc − T ) +mcT

Tc
, R1,2 =Ce−m1,2/T (4.7.1)

with m1,2 and R1,2 being the masses of the outgoing partner of the photon and the photon

rate, in phases 1 and 2, respectively. The phase fraction x of the phase 1 for a path through

the phase diagram, which crosses the FOPT curve between temperatures T x1 and T x2 shall

also be linear in T :

x =


1 for T > T x1 ,

T − T x1
T x2 − T x1

for T x2 ≤ T ≤ T x1 ,

0 for T < T x2 .

(4.7.2)

In the upper row of Fig. 4.5 and the left panel in the lower row, these quantities are

displayed. In the lower right panel, the ratio of the rate through a continuous region of the

phase diagram (we choose phase 2) and the rate on a path crossing the phase transition

line are displayed. The latter path enters the phase transition line from phase 1 at T = T x1

and leaves it to phase 2 at T = T x2 . Of course, this toy model is extremely crude, but

it serves to illustrate the mechanism behind the dynamical enhancement: The rate R1 in

phase 1 is larger than in phase 2 by a factor of exp{(m2 − m1)/T}. In the coexistence

region the phase fraction of phase 1 adds a considerable amount to the rate Rpt. The

interplay between the phase fraction of phase 1 (which tends to zero for T → T x2 ) and the

ratio of the rates exp{(m2 − m1)/T} (which diverges at T → 0) produces a peak close

to the temperature, when the respective path leaves the phase transition line (i.e. T x2 in

this toy model). We will see this mechanism working in the QMM, too (see Section 6.2.5

below).



5. Thermodynamics of the quark-meson

model

One major field of application for chiral models of strongly interacting matter, and espe-

cially for the QMM, is to study such matter at finite temperature and densities, where no

first-principle approaches to QCD are applicable. Often, these models can be tuned to yield

a first-order phase transition (FOPT) at low temperatures and finite chemical potential

that terminates in a critical end point (CEP). In this chapter, various thermodynamical

observables of the QMM as well as the masses of the particles are shown w.r.t. temperature

and quark chemical potential. For many applications it is favorable to use the best pos-

sible approximation scheme1 to evaluate the thermodynamics of the model, however, this

thesis does not aim at the best possible approximation but at the connection between

peculiarities of the phase diagram and the associated photon spectra. Of special interest

is a CEP at temperatures which are O (100 MeV) and relatively small chemical potential.

It turns out that some of the approximations frequently done for the QMM, lead to the

CEP being at T ≲ 50 MeV [SW05, NSS+10]. Although being more realistic from a purely

thermodynamical point of view, they are thus less suitable for our purpose. The approxi-

mation schemes discussed in this chapter can therefore be seen as methods for achieving a

threefold goal: Firstly, they provide, in a thermodynamically self-consistent manner, the

pressure p as function of temperature T and quark chemical potential µ. Secondly, the

phase structure, which can be extracted from p(T, µ) includes a curve of FOPTs that ends

at a CEP at TCEP ∼ 100 MeV. Lastly, it is possible to calculate the photon emissivity

consistently to the thermodynamics.

Before proceeding with the presentation of the thermodynamics of the QMM, it is necessary

to introduce some terminology. In principle a symmetry present in a field theory can be

realized in two distinct ways: Either it is an invariance of the physical state (Wigner-

1 “best” in the sense that it is as close as possible to an exact solution
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Weyl realization)2 or as the formation of equivalence classes of states with the symmetry

being the corresponding equivalence relation (Nambu-Goldstone realization)3. The

latter case is often phrased as the symmetry being “spontaneously broken”. In the case of

the QMM the relevant symmetries are the flavor symmetries discussed in Chapter 2. In

the chiral limit (i.e. for H = 0) – where these symmetries are exact – the phases can be

labeled by the respective realization type of the symmetry (i.e.Wigner-Weyl or Nambu-

Goldstone type). For H ̸= 0 thy symmetries are only approximate and the phases not

even separated entirely by a curve of genuine phase transitions. However, for the purpose

of a simple nomenclature the regions of the QMM phase diagram where the (approximate)

symmetries are (approximately) realized in the Wigner-Weyl sense is dubbed pseudo-

Wigner-Weyl (PWW) phase, while the region where it is (approximately) realized in

the Nambu-Goldstone sense is named pseudo-Nambu-Goldstone (PNG) phase.

5.1. Mean field approximation

5.1.1. Derivation of the grand potential

The mean field approximation (MFA) of the QMM is well documented in the literature,

see e.g. [SMMR01, SDF+01, PSD03, SW09, KT09, GT12, SM12, Tiw12, FGP12, CBS14,

SR15]. For completeness we sketch it in this paragraph. The grand potential Ω for the

QMM is given by the following path integral, obtained by specifying the relevant fields in

the general formula (3.2.9):

Ω = − 1

βV
ln

∫
DqDqD3πDσ e

β∫
0

dτ
∫
d3xLq(q,q,σ,π⃗)+Lkin,m(σ,π⃗)−U(σ,π⃗)+µqγ0q

, (5.1.1)

with the inverse temperature β = T−1, the volume V and Lq, Lkin,m and U defined in (2.1.2)

– (2.1.4). Based on the assumption that the largest contribution to the path integral orig-

inates from states corresponding to meson field configurations differing only slightly from

their respective thermal expectation values an approximate solution can be obtained. Any

occurrence of the meson field variable is replaced by the corresponding expectation value

and the meson path integrations are omitted. Since the Lagrangian is space-time indepen-

2 Mathematically this manifests in all generators of the symmetry annihilating the vacuum.

3 This manifests in generators which do not annihilate the vacuum but transform between different states
with identical physical properties.
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dent the expectation values do not depend on the coordinates within this approximation4

and thus the kinetic terms for the mesons vanish, yielding

ΩMFA = − 1

βV
ln

∫
DqDqe

β∫
0

dτ
∫
d3xLq(q,q,σ0,π⃗0)−U(σ0,π⃗0)+µqγ0q

, (5.1.2)

with σ0, π⃗0 being the thermal expectation values of the σ and the π⃗ fields. These have to

be determined by minimizing the potential w.r.t. the fields:

0 =
∂ΩMFA

∂σ0
, 0 =

∂ΩMFA

∂πi0
. (5.1.3)

The curvature of ΩMFA at the minimum is interpreted in terms of mass parameters for the

meson fields according to

(
mMFA
σ

)2
=
∂2ΩMFA

∂σ2
0

,
(
mMFA
π

)2 ≡ (mMFA
πi

)2
=
∂2ΩMFA

∂(πi0)
2
, (5.1.4)

where it was used that by symmetry the masses of all pions coincide.

The mesonic part of the Lagrangian can be pulled out of the path integral and afterwards

the fermionic path integral can be solved in terms of a functional determinant, cf. (3.2.15).

ΩMFA = − 1

βV
ln e

−
β∫
0

dτ
∫
d3xU(σ0,π⃗0)

− 1

βV
ln

∫
DqDqe

β∫
0

dτ
∫
d3xLq(q,q,σ0,π⃗0)

(5.1.5)

= U(σ0, π⃗0) −
1

βV
ln det

[
i/∂ − µγ0 − g(σ0 − iτ⃗π0γ

5)
]
. (5.1.6)

The argument of the determinant is a direct product of a matrix in Dirac space, one in

flavor space and one in functional (configuration) space. Therefore, the determinants can

be evaluated independently yielding after the evaluation of the Dirac and flavor parts of

4 There are, however, calculations showing that periodic modulations of the expectation values can
produce configurations with even smaller free energy in a region close to the chiral transition at not
too large temperatures. These calculations reveal that there is a competition between two contributions
to the free energy having different signs. On the one hand, the modulation of the σ expectation value
modulates the effective quark mass which can lower the total energy and, on the other hand, these
modulations give rise to contributions to the kinetic terms since, by definition, they have non-vanishing
derivatives. Close to the chiral transition the interplay of theses effects can produce thermodynamically
stable periodic field configurations, see [NT05, AIS12, BC15, CBS14]. Besides this configurations, other
types of modulations, such as periodic domain walls and simple or dual chiral density waves, are known
to exist within chiral models [LNT+15].
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the determinant

ΩMFA = U(σ0, π⃗0) −
1

βV
ln det

x

[
(i∂0 − µ)2 − (i∇⃗)2 − g2(σ2

0 + π2
0)
]

(5.1.7)

= U(σ0, π⃗0) −
1

βV
Tr
x

ln
[
(i∂0 − µ)2 − (i∇⃗)2 − g2(σ2

0 + π2
0)
]
, (5.1.8)

where the determinant and the trace is understood in the functional sense, cf. Appendix B.1.

The trace is most conveniently evaluated after applying a coordinate transformation in

functional space. The best choice is a Fourier transformation, since it diagonalizes the

operator argument of the logarithm. Then one obtains

ΩMFA = U(σ0, π⃗0) −
1

βV
Tr
p

ln
[
(iωn − µ)2 − p⃗2 − g2(σ2

0 + π2
0)
]
, (5.1.9)

where

Tr
p

= T
∑
ωn

V

(2π)3

∫
d3p (5.1.10)

and ωn = (2n+ 1)πT (with integer n) are the fermionic Matsubara frequencies. After a

number of standard steps (cf. [ZJ02, KG06]) one finds

ΩMFA =U(σ0, π⃗0)

− 2NcNf

(2π)3

∫
d3p

[
Ep+T ln

(
1 + e(Ep−µ)β

)
+T ln

(
1 + e(Ep+µ)β

) ]
,

(5.1.11)

E2
p =m2

q + p⃗ 2, (5.1.12)(
mMFA
q

)2
= g2(σ2

0 + π⃗2
0), (5.1.13)

where Nc = 3 denotes the number of colors and Nf = 2 the number of flavors. The

logarithmic terms in (5.1.11) are the thermal contributions and vanish in the vacuum

(T = µ = 0). The remaining term under the integral contributes to the grand potential

density even in the vacuum. It is the sum of all energies possible in the system. This

formally is a term which can be interpreted as the contribution of the Dirac sea and is

often ignored, because it represents a high-momentum effect and is thus considered to be

of little importance to the spontaneous chiral symmetry breaking mechanism. However,

dedicated investigations reveal that this is not always justified [SFN+10, Tiw12]. This

issue is discussed in greater detail below, cf. Section 5.1.2.

The pion field appears only squared in (5.1.11). Therefore, the derivative w.r.t. πi in (5.1.3)
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is proportional to πi itself. Thus, πi = 0 fulfills the second condition in (5.1.3). There is

also another solution to this equation with non-zero πi. However, such a non-vanishing πi

is in conflict with the condition for σ0 (left equation in (5.1.3)), unless H = 0 (which will

not be discussed in this thesis). Thus the expectation value for the pion fields vanish. For

further convenience we also substitute v ≡ σ0.

5.1.2. Renormalization of the vacuum term

In Section 5.1.1 it was stated that often the vacuum terms are ignored since these con-

tributions are regarded as a high-momentum effect with little importance for effective

theories. There are, however, topics for which these vacuum contributions are important.

For instance, in [SFN+10], the chiral phase transition of the QMM is investigated in the

chiral limit. The analysis reveals that logarithmic terms present in the low-quark-mass

expansion can change the order of the phase transition if the vacuum terms are omitted,

provided the quark mass in the chirally restored phase is sufficiently small near the phase

transition curve. As the authors in [SSFR10] note this resembles the well known Cole-

man-Weinberg fluctuation-induced FOPT [CW73]. In particular, close to the chiral limit,

i.e. for H → 0 or equivalently mvac
π /mvac

σ → 0, the quark mass becomes small, mq → 0,

right beyond the phase transition curve in the PWW phase. Therefore, sufficiently close to

the chiral limit the phase transition at µ = 0 becomes first-order (instead of second-order

as it is expected for Mexican-hat-like potentials [KG06]). Especially, if one is interested in

the remnants of the critical behavior present in the chiral limit [KR11, FKRS11, SFR12],

this change of the phase transition order has to be circumvented by properly including

and renormalizing the vacuum contributions. This is possible indeed, since the QMM is

renormalizable [Lee69, PS95] and thus, the vacuum terms can be treated properly using

standard techniques.

We sketch the main steps of this procedure following [GT12]. Dimensional regularization

in d+ ϵ dimension yields for the fermion part of the partition function in MFA

Ωvac
MFA =

2NfNc

(2π)3

∫
d3pEp (5.1.14)

=
2NfNc

32π2
m4
q

(
1

ϵ
− 1

2

[
−3 + 2γE + 2 ln

(
m2
q

4πM2

)])
. (5.1.15)

In MFA, one has mq = gσ0. Thus the term

g4σ4
0

2NfNc

32π2

(
1

ϵ
− 1

2
[−3 + 2γE − 2 ln(4π)]

)
(5.1.16)
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can be absorbed by re-adjusting λ and λζ. Only the term

Ωren
vac,q = −2NfNc

32π2
m4
q ln

(
m2
q

M2

)
= −2NfNc

32π2
g4σ4

0 ln

(
g2σ2

0

M2

)
(5.1.17)

remains depending on the renormalization scaleM . This term is all that is left at T = µ = 0

from the momentum integral in (5.1.11) and hence ΩMFA(T = µ = 0) = Ωren
vac,q + U . With

the help of (5.1.3) and (5.1.4) the parameters λ and ζ can be expressed as functions of mvac
π ,

mvac
σ , mvac

nuc = Ncm
vac
q , σvac

0 and the renormalization scale M . However, when inserting these

expressions into ΩMFA the dependence on M drops out and one finds for the renormalized

grand potential

Ωren
MFA = − U(σ0, π⃗0) +

2NfNc

(2π)3

∫
d3p
[

ln
(
1 + e(Ep−µ)β

)
+ln

(
1 + e(Ep+µ)β

) ]
− 2NfNc

16π2
g4σ4

0 ln

(
σ0

⟨σ⟩vac

)
+
λr
4

(σ2
0 − ζr)

2 −Hσ0,

(5.1.18)

The renormalized constants λr and ζr can be related to the vacuum properties of the fields

according to

λr =
(mvac

σ )2 − (mvac
π )2

2 (σvac
0 )2

+
32NfNc

16π2

(
mvac

nuc

Ncσvac
0

)4

, (5.1.19)

λrζr =
(mvac

σ )2 − 3 (mvac
π )2

2
+

2NfNc

8π2

(
mvac

nuc

Ncσvac
0

)4

(σvac
0 )2 , (5.1.20)

where the terms ∝ (mvac
nuc/Ncσ

vac
0 )4 come from the renormalization procedure. Compared to

the MFA grand canonical potential without vacuum fluctuations the renormalized grand

potential given in (5.1.18) contains an additional term (∝ lnσ0/σ
vac
0 ). This term compen-

sates in the above mentioned low-mq expansion the logarithmic terms that cause the phase

transition to be first-order in the chiral limit.

5.1.3. Thermodynamic quantities in mean field approximation

To be specific one has to fix the parameters of the Lagrangian. This is done by requiring

the particle masses and the σ expectation value to coincide with appropriately chosen

values in the vacuum. Nonetheless, it is certainly questionable to fix the QMM parameters

to standard model or QCD vacuum properties, since the QMM constitutes not a realistic

description of the QCD vacuum. However, such parameter fixings are commonly used

in the literature and can be calculated directly from the parameters of the Lagrangian

(and vice versa) according to (2.3.11). Even more important, the vacuum masses have
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[ MeV] mvac
nuc mvac

σ mvac
π ⟨σ⟩vac Tpc µ0

c TCEP µCEP

A 936.0 700.0 138.0 92.4 148.3 328 72.5 279.5
AMFA 936.0 700.0 138.0 92.4 161.0 328 104.0 234.0

B 1170.0 1284.4 138.0 90.0 194.6 430 97.0 377.5
C 1080.0 700.0 138.0 90.0 140.3 324 98.0 216.0

D 936.0 900.0 138.0 71.8 155.0 333 64.0 296.0
E 936.0 500.0 138.0 129.3 144.9 325 82.0 264.0

Table 5.1.: Parameter sets used for the analysis (all quantities given in MeV). The
parameters mvac

nuc, mvac
σ , mvac

π , ⟨σ⟩vac can be mapped to the parameters
of the Lagrangian (2.1.1) g, λ, ζ, H according to (2.3.11). Running a
simulation with these parameters yields the pseudocritical temperature
Tpc at vanishing chemical potential, the critical chemical potential at zero
temperature µ0

c and the coordinates for the critical point (TCEP, µCEP)
given in the last two columns.

a clear physical interpretation and are independent of the renormalization scale (which

does not hold for the parameters of the Lagrangian g, λ, ζ and H), which permits the

comparison of the results between different approximation and/or renormalization schemes.

For instance, typically these quantities are given for approximations based on the functional

renormalization group (FRG) as well as for path integral based approaches (MFA and LFA)

which does not hold for the parameters of the Lagrangian as they are not easily accessible

within FRG approaches. In Tab. 5.1 the parameter sets used in this thesis are collected.

We now present the thermodynamic quantities in MFA, calculated without the quark

vacuum term and based on parameter set AMFA given in Tab. 5.1.

Masses of the particles

In Fig. 5.1, the masses of the particles are depicted (upper row: sigma meson mass mσ (left

panel) and pion mass mπ (right panel); lower left panel: quark mass mq) w.r.t. temperature

and quark chemical potential. In the spirit of the Landau theory of phase transitions

[Cow80],5 the quark mass resembles an order parameter of the chiral phase transition. For

clarification the lower right panel in Fig. 5.1 displays the phase structure (crossover region,

CEP and the curve of FOPTs) as well as the position of the PWW and PNG phases. In

Section 5.3.2, the model parameters influencing the position of the phase boundary as well

5 In the Landau theory of phase transitions, the order parameter is required to be zero in one phase.
This is true in the chiral limit, where the quark mass in the Wigner-Weyl phase is exactly zero,
but due to the explicit symmetry breaking (H ̸= 0) this requirement is not fulfilled for the parameter
sets under discussion. The finite order parameter in the PWW phase thus represents the imperfect
symmetry restoration.
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as the CEP are discussed in some detail.
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Figure 5.1.: Masses of the fields and the phase structure in MFA (without vacuum
fluctuations). Depicted are the sigma mass (upper left panel) and the
pion mass (upper right panel) and the quark mass (lower left panel) in
units of MeV. The solid white line in these panels denotes the curve of
FOPTs ending in a CEP (white dot). In the lower right panel the phase
structure is displayed for clarification. Shown are the crossover region
(shaded in gray), the FOPT (solid black curve) and the CEP (black dot).
The shortcuts PWW and PNG mark the respective phases.

While the pion mass mπ monotonously increases with T and µ, the sigma mass mσ exhibits

a minimum at the CEP where it is exactly zero. The correlation length being inversely

proportional to the lightest particle mass thus diverges at the CEP. This is a requirement

for the medium to show all kinds of critical behavior (e.g. critical opalescence, diverging

compressibility, diverging fluctuation scales etc. ). The divergence of the correlation length

implies that the physical properties get independent of the underlying microscopic theory

and show universal features largely determined by dimensionality of space and the global

symmetries of the Lagrangian. For the QMM this means that at the CEP shows the same

critical behavior (e.g. the same critical exponents) as other O(4)-symmetric models in three

dimensional space putting the QMM into the universality class of the three dimensional

Heisenberg model.6

6 Since the QMM’s chiral symmetry is identical to that of light QCD (cf. Section 2.5), this also is the
universality class of light QCD itself.
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Thermodynamic quantities

A selection of thermodynamic quantities w.r.t. temperature and quark chemical potential

is presented in Figs. 5.2 and 5.3. The pressure (as a function of T and µ), which is the
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Figure 5.2.: Thermodynamic quantities in MFA (without vacuum fluctuations). Up-
per row: pressure p (left panel) and energy density e (right panel) scaled
with their respective value at the CEP. Lower row: entropy density s (left
panel) and net quark density (right panel), scaled with the entropy den-
sity s0 or the net fermion density n0 of a noninteracting ultrarelativistic
Fermi gas with the same number of degrees of freedom. Phase contour
as in Fig. 5.1.

central quantity from which many other quantities can be derived by differentiation, is

a monotonously increasing function of its arguments. The inspection of the curves Tp(µ)

of constant pressure (isobares) reveals further information. Since dp = s dT + n dµ = 0

on these curves, their slope can be expressed in terms of the net quark density and the

entropy density according to dTp/dµ = −n/s providing a nice check for the calculation

of the isentropic curves, i.e. curves with constant s/n ratio. At the FOPT curve the iso-

bares are kinked such that their slope decreases when crossing the FOPT from below,

i.e. dTp/dµ|µc−ϵ > dTp/dµc|µ+ϵ with ϵ being an infinitesimal shift and µc the chemical

potential at the FOPT. This is a consequence of the pressure being maximal in the ther-

modynamically stable phase. Furthermore, relating the slope of the isobares to the entropy

per net quark ratio as discussed above this translates into s+/n+ < s−/n−, where s±, n±

denote the entropy and net quark density slightly above (+) or below (-) the FOPT curve.

Together with n+ > n− which also follows from thermodynamical stability the slope of the
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critical pressure pc w.r.t. µ is positive for this parameter set (and as it turns out, for the

QMM in general), cf. (5.4.2), which puts the QMM’s FOPTs into the class of enthalpic

FOPTs in the classification scheme of [Ios15].

In the lower row of Fig. 5.2, the entropy density and the net quark density are scaled with

the respective quantities for an ideal ultrarelativistic Fermi gas with the same number

of degrees of freedom. The most remarkable feature of these plots is that both scaled

quantities tend to unity in the PWW phase, making a noninteracting gas of massless

quarks a good approximation of this phase.
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Figure 5.3.: Quark number susceptibility χµµ = ∂2p/∂µ2 (left panel) and heat capac-
ity cvolµ = T∂2p/∂T 2 (right panel) in MFA scaled by the same quantities
for an ideal Fermi gas with the same number of degrees of freedom. Phase
contour as in Fig. 5.1.

A similar conclusion can be drawn from Fig. 5.3, where the quark number susceptibility

χµµ and the volume-specific (volumetric) heat capacity7 cvolµ at constant chemical potential

defined according to

χµµ =
∂2p(T, µ)

∂µ2
, cvolµ := T

∂2p(T, µ)

∂T 2
= T

∂s

∂T
(5.1.21)

and scaled by the same quantities for an noninteracting ultrarelativistic Fermi gas are

shown. However, the most remarkable feature of these quantities is their increase in the

transition region. While the scaled heat capacity is increased mostly in the crossover region,

the scaled quark number susceptibility peaks in the region surrounding the CEP. While

the former thus provides a measure for the crossover region the latter can be applied to

characterize the size of the critical region.
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Figure 5.4.: Contour plot of the entropy per quark s/n within the MFA
w.r.t. temperature T and quark chemical potential µ (upper panel). The
FOPT curve as well as the CEP are denoted by a white curve and a white
dot, respectively. Lower panel: The same, but w.r.t. temperature and net
quark density n. The green region is the coexistence region with the CEP
(black dot) at its border. The net quark density is scaled by the nuclear
saturation density n0 = 0.16 fm−3. In the gray region, which corresponds
to µ ≥ 360MeV, no data has been calculated.

Isentropes

In Fig. 5.4, the isentropes within the MFA are depicted, both in the T–µ diagram (upper

panel) as well as in the T–n diagram (lower panel). Two features of the isentropic curves

are apparent: (i) in the PWW phase, the isentropes in the T–µ plane are well approximated

by straight lines pointing toward the origin and (ii) for T → 0 all isentropes merge at the

7 The heat capacity normalized to the volume.
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point (T, µ) = (0,mvac
q ). In contrast, no such patterns are present in the T–n diagram

(lower panel). The same observations will be made and discussed in more detail within the

LFA below.

5.2. The linearized fluctuation approximation

5.2.1. The partition function in linearized fluctuation approximation

The formal similarity of the grand canonical partition function Z (cf. Section 3.2.1) and

the generating functional for correlation functions Sη (cf. Section 3.2.2) in Euclidean space

makes a derivation of Z from Sη in LFA a comparatively simple task.

Setting in (4.2.1) all sources to zero and replacing i∂/∂t by ∂/∂τ − µ as well as i
∫

dt by∫
dτ transforms Sη formally into the grand canonical partition function Z. As our goal is

to study systems much smaller than the mean free path of photons (which is a reasonable

assumption in the context of heavy-ion collisions) the photons do not contribute to the

pressure and hence to the thermodynamic potential and the partition function. Thus, all

terms containing the photon field A are removed from (4.2.1), which corresponds to setting

the electromagnetic coupling e zero (explicitly, and implicitly in Jµγ ) as well as removing

detGγ from (4.2.31). Then one gets

Z =
√

detGπ

3√
detGσ exp

{
−
∫

dτd3x

(
⟨Ueff⟩ +

1

2
m2
π⟨π⃗2⟩ +

1

2
mσ⟨∆2⟩

)}
. (5.2.1)

Since ⟨Ueff⟩,⟨π⃗2⟩,⟨∆2⟩ and mσ,π do not depend on the space-time coordinates, the integra-

tion in the exponent yields a factor of the Euclidean volume V β. For the grand canonical

potential Ω(T, µ) = −p(T, µ) = (βV )−1 lnZ one gets

Ω =
3

2
ln detGπ +

1

2
ln detGσ − ⟨Ueff⟩ −

1

2
m2
π⟨π⃗2⟩ − 1

2
mσ⟨∆2⟩. (5.2.2)

Applying ln detGπ,σ = Tr lnGπ,σ and using standard techniques for solving these functional

traces [KG06] one arrives at

Ω =Ωπ + Ωσ + ⟨U⟩ + ⟨Ωqq⟩ −
1

2
m2
π⟨π⃗2⟩ − 1

2
mσ⟨∆2⟩, (5.2.3)

Ωπ =
3

3(2π)3

∫
d3p

p2

Eπ
(1 + nB(Eπ)), (5.2.4)

Ωσ =
1

3(2π)3

∫
d3p

p2

Eσ
(1 + nB(Eσ)), (5.2.5)
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E2
π,σ =m2

π,σ + p⃗2 (5.2.6)

and Ωqq according to (4.2.17)8 in agreement with [MME04, BK09, FKP10]. From the

thermodynamic potential the thermodynamic quantities (energy density, net quark density,

entropy density, susceptibilities, etc.) follow by differentiation. The explicit formulas

have been worked out in [MME04, BK09, FKP10]. For completeness the relations for

several thermodynamic quantities are quoted in Appendix E. Following the nomenclature

of [WK16, WK17] this approximation is named “linearized fluctuation approximation”

(LFA) in the rest of this thesis.

5.2.2. Thermodynamics – standard set of parameters

In the following, an overview of the thermodynamics of the QMM in LFA is presented

applying the parameter set A given in Tab. 5.1. Modifications of the patterns w.r.t. the

model parameters are discussed in Section 5.3.

In Fig. 5.5, the masses of the mesons are depicted w.r.t. temperature T and chemical poten-

tial µ. The behavior is similar to the MFA result: the pion mass increases monotonously

for increasing temperatures or chemical potential, while the sigma mass is minimal in the

crossover region with a global minimum at the CEP. In the PWW phase, both masses are

approximately degenerate, while in the PNG phase there is a large mass splitting in the me-

son sector. For the fermion mass it is less obvious what the correct mass parameter is. The

derivation of the photon rate formulas (4.4.1) in Section 4 shows that in the corresponding

Feynman diagrams the fermion propagator has mq = g⟨σ⟩ as its mass parameter. On

the other hand, a fermion mass can be determined by averaging either the meson field

dependent mq(σ, π) (see (4.2.12)) or a power of it over the meson field configurations (and

taking the corresponding root of the result), i.e.

M (n)
q := n

√
⟨mq(σ, π)n⟩. (5.2.7)

The thus defined mass parameters M
(n)
q are reasonable choices in the thermodynamic con-

text. However, especially in the high temperature T ≳ 100 MeV region, there are notable

differences to the propagator mass parameter mq. In Fig. 5.6, M
(n)
q and mq for different

choices of n are plotted over the phase diagram. Apparently, the choice of n has little effect

8 Stricktly speaking nF and nF in (4.2.17) are evaluated at µ = 0 and thus coincide there. The additional
term µqγ0q to the Lagrangian in the integrand of the partition function leads to the well known shifts
of the argument Eq → Eq±µ in the fermion distribution functions making one of them the distribution
function for particles and the other one that for antiparticles.
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Figure 5.5.: Contour plots of the masses of the sigma meson mσ (left panel) and the
pions mπ (right panel) calculated within the LFA and given in units of
MeV. For a simpler comparison the color codes are the same in both
panels. The solid white curve denotes the FOPT which ends in a CEP
(white dot).
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Figure 5.6.: Contour plots for different choices for the quark mass parameter (in MeV):

M
(n)
q = n

√
⟨mn

q ⟩ with n = 1 (upper left), 2 (upper right),3 (lower left).

The lower right panel shows mq = g⟨σ⟩, which is the correct mass to be
used in Feynman diagrams. Phase contour as in Fig. 5.5.
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Φ = + + + + + . . .

Figure 5.7.: Schematic diagrammatic representation of the Φ-functional of the effec-
tive mesonic theory with interaction potential Ueff according to (4.2.16).

on M
(n)
q as was already reported for µ = 0 in [MME04]. A particularly interesting feature

of M
(n)
q is the fact that these quantities – after their decrease in the low temperature region

– increase again for high temperatures (when increasing the temperature). This is caused

by meson field fluctuations, which can be seen most easily for M
(2)
q after explicitly carrying

out the averaging procedure for the fermion mass:

(
M (2)

q

)2
=
⟨
g2
(

(v + ∆)2 + π2
)⟩

= g2
(
v2 + ⟨∆2⟩ + ⟨π⃗2⟩

)
. (5.2.8)

For the propagator mass parameter mq, the fluctuation-induced terms ∝ ⟨∆2⟩ and ∝ ⟨π⃗2⟩
are absent. For this reason mq decreases for increasing T and µ contrary to the thermal

mass parameters M
(n)
q , cf. Fig. 5.6.

The separation of the fermion mass into an effective thermal mass and a dynamical (propa-

gator) mass is caused by the LFA not being Φ-derivable9 in the fermion sector. Contrarily,

in the meson sector the approximation is Φ-derivable (the corresponding Φ-functional is

diagrammatically depicted in Fig. 5.7) and hence thermal and dynamical mass parameters

coincide for both meson fields. In Fig. 5.7, lines represent the full meson propagators and

the dots are the vertices extracted from Ueff. In order to reduce the number of depicted

diagrams in this expansion only diagrams that differ topologically are depicted. In a full

representation of the Φ-functional corresponding to the LFA, sigma and pion propagators

have to be written seperately (e.g. by representing sigma propagators with dashed and pion

propagators with full lines) which leads, for a diagram with l loops, to 2l topologically iden-

tical diagrams. The essential feature of the Φ-functional associated to the LFA, namely

that all diagrams have only one vertex (however, the vertex factors are not identical for

all diagrams), can already be seen in the compressed notation depicted in Fig. 5.7.

In Fig. 5.8, a selection of thermodynamic quantities calculated for parameter set A within

the LFA is shown. All of the displayed quantities show a similar qualitative behavior as

within the MFA, cf. Fig. 5.2. Especially the ratios s/s0 and n/n0 with the entropy density

9 The concept of Φ derivable approximations is introduced in the pioneering works [BK61, Bay62, CJT74].
A modern introduction can be found, e.g. , in [vHK02].
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s, the net quark density n and the same quantities evaluated for an ideal ultrarelativistic

Fermi gas s0 and n0 show a similar behavior as in the MFA, i.e. in the PWW phase these

ratios tend to unity.

The entropy per quark ratio s/n is displayed in Fig. 5.9. Here, we only want to stress

that this plots are quite similar to the corresponding plots shown in Fig. 5.4. For a further

discussion of the isentropes, i.e. the curves of constant s/n ratio, we refer to Section 5.3.3.
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Figure 5.8.: Contour plots of pressure p (top left panel) and energy density e (top
right), scaled with their respective values – pCEP and eCEP – at the CEP
as well as entropy density s (bottom left) and net quark density n (bottom
right) scaled with the same quantities – s0 and n0 – for an ideal ultrarel-
ativistic Fermi gas. The data was calculated within the LFA using the
parameter set A given in Tab. 5.1. The thick white curve in each panel
denotes the FOPT curve and the white dot is the point with minimal
sigma mass as a measure for the CEP position.

The size of the critical region is not a precisely defined quantity. In the literature, sev-

eral prescriptions based on the quark number susceptibility χµµ = ∂2p/∂µ2 or the chiral

susceptibility χm = ∂2p/∂m2 as well as fluctuation measures are used, cf. [SW12, Tiw12,

VAGP15]. In all these cases the respective quantities are enhanced in the critical region rel-

ative to some reference. These reference quantities are not uniquely defined either, which
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Figure 5.9.: Contour plots of the entropy per quark ratio s/n displayed
w.r.t. temperature T and quark chemical potential µ (upper panel) and
w.r.t. temperature and net quark density n (lower panel), respectively. In
the upper panel, the FOPT curve as well as the CEP are denoted by a
white curve and a white dot, respectively. In the lower panel, the green
region is the coexistence region with the CEP (black dot) at its bound-
ary. The net quark density is scaled by the nuclear saturation density
n0 = 0.16 fm−3. In the gray regions, which are characterized by the con-
ditions µ ≤ 220MeV (left region) and µ ≥ 360MeV (right region),no data
has been computed.

introduces a certain amount of arbitrariness to the discussion of the critical regions. Pos-

sible choices for the reference quantities are the same quantities averaged over a region of
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Figure 5.10.: Normalized heat capacity (left panel) cvolµ /cvol,0µ =
(
cvol,0µ

)−1
∂s/∂T

and normalized quark number susceptibility (right panel) χµµ/χ
0
µµ =

1/χ0
µµ∂n/∂µ for parameter set A. The normalization factors c0 and χ0

µµ

are the corresponding quantities for an ideal ultrarelativistic Fermi gas
with the same number of degrees of freedom.

the phase diagram of intermediate size or the same quantities for an ideal ultrarelativis-

tic gas. In the right panel of Fig. 5.10, the quark number susceptibility χµµ normalized

to the quark number susceptibility χ0
µµ of an ultrarelativistic ideal Fermi gas with the

same number of degrees of freedom is displayed. This is the procedure also applied, e.g. in

[SW12]. Clearly, one notes that, within the LFA, χµµ/χ
0
µµ is enhanced around the CEP.

Such an enhancement is also observed in the MFA, cf. Fig. 5.3. However, size and shape

of the critical region differ in both approximation schemes.

In the crossover region, the heat capacity can be used to estimate the pseudocritical curve.

The volumetric heat capacity (at constant quark chemical potential) cvolµ , when normalized

to the heat capacity of an ideal ultrarelativistic Fermi gas cvol,0µ , exhibits an increase in

the crossover region. Nevertheless, other choices such as the peak position of the chiral

susceptibility or the maximum slope of the renormalized chiral condensate ⟨qq⟩ are con-

ceivable; see [AFKS06, BDM+14] for a discussion of the influence of the precise definition.

In [VAGP15], the scaled variance σ̃(N) = (⟨N2⟩−⟨N⟩2)/⟨N⟩, with N denoting the baryon

number, and higher moments of the quark distribution, such as the skewness, are sug-

gested for the identification of a critical region. The central moments ⟨(N −⟨N⟩)i⟩ can be

calculated from the (dimensionless) cumulants ki characterizing the quark distribution (in

general: the distribution of a conserved quantity,10 such as baryon number, electric charge

or strangeness) by differentiation of the pressure w.r.t. the chemical potential according

10 Conserved w.r.t. the strong interaction.
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Figure 5.11.: Central moments characterizing the distribution of quarks according to
[VAGP15]. Depicted are the scaled variance σ̃ = ⟨(N−⟨N⟩)2⟩/⟨N⟩ (left
panel) and the skewness Sσ = ⟨(N − ⟨N⟩)3⟩/⟨(N − ⟨N⟩)2⟩ (right panel)
w.r.t. temperature T and quark chemical potential µ.

to ki = T i−4∂ip/∂µi. The idea behind using the distributions of a conserved quantity

(characterized by its cumulants) is that correlation functions become scale-independent at

a critical point, a phenomenon incompatible with a Gaussian distribution for which the

standard deviation constitutes an immanent scale. The scale-independence leads to the

divergence of certain fluctuation measures such as the cumulants of the distribution. Since

the degree of divergence increases with the order of the cumulants it may be possible to

observe even imperfect criticality (e.g. due to experimental limitations) trough its impact

on the high-order cumulants.

Because of the difficulty of properly defining an effective volume of the strongly interacting

medium produced in heavy-ion collisions (HICs) it is convenient to use volume independent

(intensive) quantities to characterize the fluctuations of conserved quantities measured in

these experiments [FAR17]. Therefore, in Fig. 5.11 the scaled variance σ̃ = (⟨N2⟩ −
⟨N⟩2)/⟨N⟩ = k2/k1 (left panel) and the skewness Sσ = ⟨(N − ⟨N⟩)3⟩/⟨(N − ⟨N⟩)2⟩ =

k3/k2 (right panel) are displayed in the vicinity of the CEP, both being such volume

independent fluctuation measures. Both quantities show striking features close to the

CEP. The increase of the scaled variance ω in the vicinity of the CEP can be attributed to

the above mentioned enhancement of fluctuations related to criticality, while the skewness

Sσ encodes certain deviations from a Gaussian distribution [Bul79].

5.2.3. The sigma mass parameter and the CEP

At the end of the FOPT curve, one expects a point where the phase transition is of second

order. For such transitions the correlation length diverges and in turn the microscopic
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physics becomes less important. This leads to universal behavior which is conveniently

quantified by critical exponents characterizing the critical behavior of a multitude of quan-

tities, such as heat capacity, correlation length or the order parameter of the phase tran-

sition. The divergence of the correlation length requires the mass of at least one mode to

vanish.11 In the QMM, this mode is the deviation ∆ of the σ field from its thermal expecta-

tion value v. However, within the LFA, the masses of all particles are nonzero at the CEP.

This is an artifact of the approximation scheme and can be understood by considering the

interplay of Eqs. (4.2.25) and (4.2.20). On the one hand, low masses lead to large field

fluctuations according to (4.2.25). On the other hand, large fluctuations lead to positive

contributions to the masses, because of the fourth-order increase of the meson interaction

potential which only contribute significantly to the mσ, if the sigma field deviates strongly

from its expectation value. Therefore, it is only possible to fulfill both, (4.2.25) and (4.2.20),

if the σ mass is larger than some lower limit, which is of the order of the temperature. For

the parameter set A, the minimal σ mass is mCEP
σ = 72 MeV. Consequently, the correlation

length at the CEP ξCEP ∼ 1/mCEP
σ is of order 3 fm. For the application to HICs, this is

presumably enough as it is at least of the same order of magnitude as the system size

which constitutes an upper limit for the correlation length. The correlation length in a

HIC is furthermore limited by non-equilibrium effects [SRS99, BR00]. For instance, the

expansion time scale τexp = R/Ṙ (with R characterizing the size of the strongly interacting

medium)12 being of the order of a few fm/c prevents the correlation length from becoming

larger than a few fm.13 Another point of view on this issue is that close to the CEP the

time scale for the relaxation to equilibrium increases, a phenomenon commonly called crit-

ical slowing down.14 Sufficiently close to the critical point the equilibration time scale τeq

thus becomes larger than the expansion time scale τexp driving the system off equilibrium

and making equilibrium properties difficult to access in the critical region. It thus can be

concluded that although in the direct neighborhood of the CEP the LFA cannot reproduce

the static properties in an entirely satisfying manner, the results of dynamic calculations

11 For a theory with a mass gap ∆m the correlation functions are bounded by C exp{|r⃗|∆m}. This allows
a divergence of the corresponding length scale (the correlation length ξ) only for ∆m → 0. Furthermore,
the mass gap is at least twice the mass of the lightest mode in the system.

12 Equally well one could use τsexp := −s/ṡ or τVexp := V/V̇ . If the system expands adiabatically, both

definitions yield the same results, i.e. τ sexp = τVexp.

13 Maintaining thermal equilibrium requires the relaxation time scale τeq not to exceed the expansion
time scale τexp. Since τeq is related to the correlation length ξ according to ξ ∼ τzeq with z being the

dynamical critical exponent this imlies ξ ≤ Cτ
1/z
exp with some constant C.

14 Qualitatively, this can be understood by noting that close to the CEP the effective potential for the
critical mode (in case of the QMM, this is ∆) becomes flat which causes the entropic forces that drive
the system back to equilibrium to be of higher than first order in ∆ (as they are away from the CEP)
and thus increasing the relaxation time scale.
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(in the context of HICs) still might be sufficiently accurate.

Due to the limitations of the LFA the sigma mass is not vanishing at the CEP. However

it still is minimal there. Therefore, in the figures of this and the subsequent chapters the

global minimum of mσ is used as an estimate for the location of the CEP.

5.3. Sensitivity with respect to model parameters

The properties of the medium described with the QMM depend strongly on the precise

values of the parameters λ, ζ, H and g in the Lagrangian. These parameters posses sev-

eral drawbacks which make them less practical for comparisons. An important example for

such a drawback is the limited comparability of these parameters between different approx-

imations. For instance, within the functional renormalization group (FRG) framework the

model parameters have to be defined at some UV momentum scale as initial conditions

for the renormalization group flow. These numbers are difficult to compare already within

the FRG framework, and even less comparable to the MFA or LFA values. However, typi-

cally the vacuum masses of the particles and the vacuum expectation value of the σ field

derived from these different starting points are given, which makes these four parameters

best suited for the discussion of the parameter sensitivity. Furthermore, the parameters

of the Lagrangian are not observable and depend on regularization scheme as well as the

renormalization scale. Therefore, the parameter sets in Tab. 5.1 are characterized by the

vacuum masses mvac
π , mvac

σ and mvac
nuc, the later one being related to the vacuum quark mass

by mvac
nuc = Ncm

vac
q , as well as the vacuum expectation value of the sigma field ⟨σ⟩vac.

5.3.1. Phase contour

To a large extent the phase transition curve (FOPT curve and crossover region) is deter-

mined by the meson potential at zero meson fields. This follows from realizing that the

fermionic contribution to the pressure in the PWW phase is much larger than the fermionic

and bosonic contributions in the PNG phase. The difference is compensated at the phase

transition curve by a change in the average meson potential switching from ⟨U(σ ≈ ⟨σ⟩vac)⟩
in the PNG phase to ⟨U(σ ≪ ⟨σ⟩vac)⟩ in the PWW phase. Thus, with the pressure pPNG

in the PNG phase given by pPNG = −U(v)+Fermi + Bose terms ≈ U(⟨σ⟩vac) and in the

PWW phase by pPWW ≈ −U(0) + pF , where pPWW and pF are the pressures in the PWW

phase and that of an ideal ultrarelativistic Fermi gas15, respectively, one finds that at the

15 pF is expected to be a good approximation of the fermionic contribution to pPWW, since in the PWW
phase mq is significantly smaller than T and/or µ.
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FOPT
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leading to

T 2
c =

1

7π2

(
2
√

30

√
42π2(U(0) − U(⟨σ⟩vac))

2NfNc

+ µ4 − 15µ2

)
(5.3.5)

as an estimate for the critical temperature Tc w.r.t. the quark chemical potential. Since the

ratio (mvac
π )2/(mvac

σ )2 is small in realistic scenarios one may apply the chiral limit value of

U(0)−U(⟨σ⟩vac) = (mvac
σ )2⟨σ⟩2vac/8 as a good estimate. Although this estimation is rather

crude and in the crossover region not even justified it is a surprisingly accurate result for

the phase transition curve (cf. Fig. 5.12). To achieve a more quantitative agreement of the

approximation with the actual phase boundary it is convenient to rescale the prediction

according to (5.3.5) (where mvac
π is set zero16) by the result for some reference parameter

set. In Fig. 5.12,

T 0,ref
pc = 150 MeV, µ0,ref

c = 330 MeV, for mvac
σ ⟨σ⟩vac = 2602 MeV2. (5.3.6)

were chosen as reference for the pseudocritical temperature at zero chemical potential T 0
pc

and the critical chemical potential at zero temperature µ0
c . Inspecting (5.3.5) together

with (5.3.3) and (5.3.4) yields T 0
pc, µ

0
c ∝

√
mvac
σ ⟨σ⟩vac. Keeping the dependence on model

parameters and adjusting the prefactor accordingly, yields the estimates

T 0
pc ≈ 150 MeV

√
mvac
σ ⟨σ⟩vac

260 MeV
, µ0

c ≈ 330 MeV

√
mvac
σ ⟨σ⟩vac

260 MeV
. (5.3.7)

These estimates are marked with small arrows in Fig. 5.12 with the color referring to the

respective value of mvac
σ ⟨σ⟩vac.

16 This restriction is not necessary. However it simplifies the approximation considerably with little
influence on the results, as long as (mvac

π )2/(mvac
σ )2 is small.
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Figure 5.12.: Demonstration of the estimate of the critical curve. Shown are the
critical curves for several parameter sets varying ⟨σ⟩vac from 60MeV
to 120MeV and µ0

c − mvac
nuc/Nc from −100MeV to 100MeV. In each

group of phase transition lines the product mvac
σ ⟨σ⟩vac is kept fixed:

mvac
σ ⟨σ⟩vac/GeV2 = 0.1156 (red), 0.09 (dark blue), 0.0676 (light blue)

and 0.048 (violet). The arrows mark the pseudocritical temperature T 0
pc

at vanishing density and the critical chemical potential µ0
c at vanish-

ing temperature calculated according to (5.3.7) for the respective (same
color) group of phase contours with fixed mvac

σ ⟨σ⟩vac.

5.3.2. Critical end point

To get a feeling of what determines the position of the critical point within the QMM one

may resort to the MFA. In this approximation, the pressure depends on the meson fields

only via the expectation value v of the sigma field:

pMFA(v) = −λ

4
(v2−ζ)2+Hv− 2NfNcT

(2π)3

∫
d3p
[
ln
(
1+e(µ−E)/T

)
+{µ→ −µ}

]
. (5.3.8)

The thermal expectation value of the sigma field is obtained by maximizing pMFA w.r.t. v:

0 =
∂pMFA

∂v

= − λ(v2 − ζ)v +H +
2NfNcg

2v

2π2

∫
d|p⃗| |p⃗|

2

E
(nF (E) + nF (E)) (5.3.9)

where nF,F = (1+exp{(E∓µ)/T})−1 denote the distribution functions for fermions (-) and

antifermions (+), respectively. The occurrence of an FOPT and the position of the critical

point is understandable in view of (5.3.9). An FOPT requires multiple (precisely: three)
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solutions of (5.3.9). One of these solutions will have a small value of v leading to a dominant

fermion term (the momentum integral in (5.3.9)) corresponding to the PWW phase. One

solution will be thermodynamically unstable and the third one will be relatively close to

the vacuum value corresponding to the PNG phase. For this solution, the derivative of

the meson potential (the first two terms in (5.3.9)) gives important contributions. Such a

pattern of solutions requires

2NfNcg
2

2π2

∫
v ≲ ⟨σ⟩vac

d|p⃗| |p⃗|
2

E
(nF (E) + nF (E)) < −λ(v2 − ζ) +

H

v
. (5.3.10)

If this inequality is not fulfilled or at least strongly violated the fermion contribution dom-

inates in (5.3.9) supporting only a single solution of (5.3.9) instead of the above described

triple solutions. At zero temperature, there are two cases: (i) The fermion mass mq = gv

close to the critical curve (or its estimate according to (5.3.1)) is so small that the fermionic

integral in (5.3.9) is dominant and no FOPT occurs. In the opposite case there is an FOPT

irrespective of mq being smaller (case (iia)) or larger (case (iib)) than the critical chemical

potential. According to (5.3.5) the critical curve bends toward the temperature axis and

already at relatively small temperatures the critical chemical potential gets smaller than

the vacuum fermion mass. Thus, only case (iib) is discussed in the following, however, it

can be regarded as an upper limit for (iia).

In case (iib), substantial contributions to the momentum integral in (5.3.9) come from the

edge of the Fermi distributions or their proximity, i.e. from the range (µ−xT, µ+xT ) with

x = 2 . . . 4. Since the minimal energy-argument for the Fermi distributions is E = mq the

energy interval that contributes significantly to the fermion term in (5.3.9) is [mq, µ+xT ).

If the vacuum quark mass is larger than µ + xT the momentum integral in (5.3.9) is too

small to be of significance.

The above considerations provide the possibility to judge the impact of mvac
nuc on the FOPT

curve. Applying parameter set A but scanning through a wide variety of values for mvac
nuc,

one finds with x = 4 and mvac
nuc ≳ 1700 that the momentum integral is small for all

temperatures at the critical curve yielding a curve of FOPTs, which surrounds the PNG

phase completely. This gives rise to an important observation: If the vacuum nucleon mass

and hence the quark mass is sufficiently large the FOPT curve can be made to extend from

the µ-axis even to the temperature axis. However, a large fermion mass means that the

isentropes end on the FOPT curve (see discussion below), which is typically not a desired

feature.17 If one needs isentropes exiting the critical curve at some non-zero temperature,

17 According to general arguments, the endpoint of an (approximate adiabatic) expansion is at T = 0
and n = 0, i.e. in the vacuum. The vacuum in turn cannot be in direct contact to the chiral FOPT
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one is limited to a vacuum quark mass mvac
q = mvac

nuc/Nc less than the critical chemical

potential µ0
c at zero temperature (determined from (5.3.7)). Then, there is an upper limit

for the critical temperature corresponding to a critical end point at TCEP = O (100 MeV)18

and corresponding µCEP.
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Figure 5.13.: Dependence of the coordinates of the CEP (TCEP on the left panel and
µCEP on the right) on model parameters. The color code is the same
as in Fig. 5.12. The symbols denote ⟨σ⟩vac/MeV = 60 (hexagons), 70
(triangles), 90 (stars), 100 (circles), 110 (squares), 120 (diamonds). The
black dashed line is the function f(x) = −25MeV + 7x/8 with x =
2µ0

c −mvac
nuc/Nc and the gray dotted lines are f±(x) = f(x)± 25MeV.

With this considerations the behavior of the temperature of the critical point is understand-

able (cf. left panel of Fig. 5.13). In this figure, the positions of the CEP w.r.t. a variety of

model parameters is plotted. In both panels, the vacuum pion mass mvac
π is kept fixed at

138 MeV since the impact of this parameter is discussed rather comprehensively in [BK09]

and [SFN+10].

The results presented in these works can be summarized by the following: The shape and

position of the phase boundary between the PNG and the PWW phases is rather insensitive

to the value of mvac
π , at least if the explicit chiral symmetry breaking is small, i.e. for

(mvac
π )2/(mvac

σ )2 ≪ 1. However, mvac
π shifts the CEP along the phase boundary in such a way

that TCEP increases for decreasing mvac
π . For sufficiently small mvac

π (in [BK09] it was found

mvac
π ≲ 35 MeV, which translates with their value of mvac

σ into (mvac
π )2/(mvac

σ )2 ≲ 1/400) a

second curve of FOPTs forms, which also follows the phase boundary curve but starts at

the temperature axis, bends towards the chemical-potential-axis and ends at second CEP.

For small enough mvac
π both curves of FOPTs merge and separate the PNG and the PWW

phase completely. The reason for this behavior in the chiral limit is given in [SFN+10]

since ordinary nuclear matter is located between both landmarks in the phase diagram.

18 See left panel of Fig. 5.13. The condition that isentropes exit the FOPT at T > 0 corresponds
approximately to µ0

c −mvac
nuc/Nc > 0.
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where it is argued that the transition being of first order at the temperature axis in the

chiral limit is an artifact of the omission of the fermion vacuum term in (4.2.17).

Apart from mvac
π in the left panel of Fig. 5.13 also ⟨σ⟩vac is held fixed (at ⟨σ⟩vac = 100 MeV)

and mvac
σ as well as mvac

nuc are varied. The sigma vacuum mass mvac
σ there takes the values

1156 MeV (red), 900 MeV (dark blue) and 676 MeV (light blue) corresponding to the color

code used in Fig. 5.12. The vacuum mass of the nucleons mvac
nuc is varied from 600 MeV to

1800 MeV. With the discussion above as well as by looking at Fig. 5.12 one notes that the

critical chemical potential µ0
c at zero temperature is approximately the same in each of

the three groups (the red, the dark and the light blue) of phase transitions. Within each

group, in turn, the CEP temperature TCEP decreases for increasing µ0
c −mvac

nuc/Nc, i.e. for

decreasing mvac
nuc or mvac

q . Furthermore, TCEP becomes zero if the vacuum quark mass is

more than about 100 MeV smaller than µ0
c . If mvac

nuc/Nc is more than about 200 MeV larger

than µ0
c then TCEP is comparable (and eventually identical) to the critical temperature T 0

pc

at zero chemical potential (cf. (5.3.7)), which means that the curve of FOPTs stretches

all the way from the µ axis to the T axis which is the behavior theoretically discussed in

terms of (5.3.9) above.

When plotted w.r.t. the variable x := 2µ0
c − mvac

nuc/Nc the CEP chemical potentials µCEP

approximately collapse to a small band centered around the line f(x) = 7x/8 − 25 MeV,

which has a width of approximately 50 MeV, cf. right panel of Fig. 5.13. With (5.3.7) the

variable x can be expressed in terms of the vacuum properties only, which makes this

observation (the linear dependence of µCEP on x) very useful for the search of parameter

sets that obey restrictions on the position of the CEP.

Including thermal meson fluctuations, e.g. by considering the LFA, the CEP shifts towards

larger µ and smaller T . This is expected since even within the MFA stronger fermion field

fluctuations,19 i.e. higher temperatures, tend to weaken the phase transition (i.e. reducing

the latent heat). The additional fluctuations present in LFA have a similar effect, i.e. they

also weaken the phase transition and thus move the CEP along the boundary towards

smaller temperatures. A similar reasoning applies to the inclusion of vacuum fluctuations,

which also push the CEP towards smaller temperatures.

5.3.3. Isentropes

Of special interest for the hydrodynamic simulation of HICs are the isentropes – curves of

a constant entropy per baryon (or quark) ratio s/n – since the strongly interacting medium

19 There are no meson fluctuations in MFA.
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behaves as an almost perfect fluid [RR07, ST09] and consequently the expansion is almost

adiabatic and thus s/n is constant [Oll08, Flo10].

The behavior of the isentropes can be understood in the two limits (i) T → 0 as well as

(ii) mq → 0. In the PWW phase the pressure of the model is well approximated by the

pressure of an ideal ultrarelativistic Fermi gas, for which the entropy per quark is given

by

s

n
= π27π2 tan3(ϕ) + 15 tan(ϕ)

15π2 tan2(ϕ) + 15
, (5.3.11)

with the polar angle ϕ determined by tan(ϕ) = T/µ. The mesonic contributions are sup-

pressed because the mesons acquire large masses in the PWW phase [SMMR01]. According

to (5.3.11), for every choice of s/n the isentropes of an ideal massless Fermi gas, and thus

for the QMM in the high temperature phase, follow curves with tan(ϕ) = const.

The isentropes at T → 0 can be obtained by considering the various contributions in

(5.2.3) to the thermodynamic potential. It turns out that for T → 0 the only term in

(5.2.3) without negligible T or µ derivative is the (averaged) fermion pressure (except at

the FOPT, where also the (averaged) meson potential jumps). Approximating the Fermi

distribution function for small T and (µ−mvac
q ) by

nF (E, T, µ) ≈


1 for E < µ− 2T

1
2
− E−µ

4T
for µ− 2T ≤ E ≤ µ+ 2T

0 for µ+ 2T < E

, (5.3.12)

one can show that all isentropes approach the point (T = 0, µ1 = mvac
q ) in the phase

diagram, at least if vacuum fluctuations are omitted.

5.3.4. Phase transition type

In the limit (mvac
π )2/(mvac

σ )2 → 0 (i.e. in the chiral limit, cf. (2.2.26) and (2.2.27)), the

FOPT at zero temperature occurs at a chemical potential given by (5.3.7), which is also a

good approximation for a small but nonzero value of (mvac
π )2/(mvac

σ )2. Thus, by tuning the

model parameters (or equivalently the vacuum values for the masses and ⟨σ⟩vac, cf. (2.2.27))

the endpoints of the isentropes i.e. (T = 0, µ = mvac
nuc/Nc = mvac

q ), and the critical chemical

potential µ0
c at zero temperature, can be shifted relative to each other making the model

flexible enough for the study of different dynamical situations. In particular, it is possible

to move from the scenario of the endpoints of the isentropes being in the PNG phase to

the one with the endpoints on the phase contour (in the T–µ plane).



86 5 Thermodynamics of the quark-meson model

However, these endpoints cannot be shifted into the PWW phase. This is because for

T → 0, the bosonic contributions to the pressure are negligible and thus the T and µ

dependence of the pressure is governed by the fermionic contribution. For a massive Fermi

gas thermodynamic stability in the vicinity of the FOPT20 requires that the quark mass

in the high-density-phase (here: the PWW phase) is smaller than in the low-density-phase

(here: the PNG phase). If the endpoint for the isentropes (T, µ) = (0,mvac
q ) is in the PWW

phase, then in both phases mq is greater than µ0
c at T = 0. Analyzing the Fermi pressure

for vanishing temperatures yields for both phases that the thermodynamical properties are

those of the vacuum, i.e. identical. This is incompatible with a phase transition at T = 0.

In Fig. 5.14, the central statements of this paragraph are visualized: The left panels depict

an example for the first class of parameter sets, in which all isentropes end in the PNG

phase. The right panels in turn show the other possible class in which the isentropes end on

the phase contour (in the T–µ diagram) or in the coexistence region (in the T–n diagram),

respectively. As briefly discussed in Section 5.3.2 there are also parameter sets with no

FOPT at all. For these parameter sets the momentum integral in (5.3.9) dominates for

T = 0 over the other two terms. This happens if mvac
q is sufficiently small. Inspecting the

left panel of Fig. 5.13 one finds that the FOPT vanishes (i.e. TCEP → 0) if mvac
q is more

than about 100 MeV smaller than µ0
c .

5.4. Discussion

5.4.1. Phase structure and particle masses

In the meson sector, the most striking feature is the approximate degeneracy of the meson

masses mπ and mσ in the PWW phase. This reflects the approximate chiral symmetry

present in this phase. (In the chiral limit, H → 0, the symmetry (2.2.17) transforms the

σ field into the π field, which implies that the masses for both fields are identical.) In

the PNG phase, the chiral symmetry is broken by the non-vanishing expectation value

v of the sigma field. This induces a mass term for the quarks, mq ∼ gv, as well as a

mass splitting term, δm2 ∼ 2λv2, for the mesons.21 Therefore, the mass splitting in the

meson sector and the large quark mass have the same physical origin, namely the σ field

acquiring a finite thermal expectation value. The different expectation values of the sigma

field in the two phases are caused by two competing contributions to the effective meson

20 Precisely: within the spinodal region.

21 There are additional terms in the LFA (cf. (E.1.1)-(E.1.5) in Appendix E) but they are less important
in the chirally broken phase.
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Figure 5.14.: Phase diagrams for parameter sets B (left panels) and C (right panels)
(cf. Tab. 5.1.) The black curves are the isentropes labeled by their corre-
sponding entropy per quark ratio s/n. The FOPT is denoted by a solid
white curve (in the upper panels, i.e. in the T–µ plane) and the thick
green curves surrounding the coexisting region (light green area, i.e. in
the T–n plane) in the lower panels. The CEP is depicted by white and
black dots, respectively.

potential: (i) The fundamental meson interaction potential U in the Lagrangian (2.1.1),

which has a minimum at finite σ and (ii) the quark contribution Ωqq tending to produce

another minimum of Ueff at σ ∼ 0 for large chemical potentials µ and thus causing the

system to undergo a phase transition at high enough chemical potential, cf. left panel

of Fig. 5.15. In principle, the same takes place for increasing temperature at fixed µ.

However, at small µ and T ∼ 100 MeV, the fermionic contribution Ωqq is much broader

(in σ direction) than for small T and large µ, cf. right panel of Fig. 5.15. This difference

is the reason that Ueff exhibits two minima in the latter case and only one in the former.

This competition of temperature and chemical potential dependent effects introduces for

realistic22 parameter sets the following phase structure: At low temperatures and chemical

22 In a QCD-related context.
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Figure 5.15.: Sketches of the effects determining the phase structure. Left panel: De-
composition of the effective meson potential Ueff (solid red curve) into
the fundamental potential U (short dashed green) and the quark contri-
bution Ωqq (long dashed blue) in the vicinity of the FOPT. The latter
curves are scaled with a factor 0.1. Right panel: Comparison of the
fermionic contribution Ωqq to the effective potential Ueff on two posi-
tions close to the phase transition curve: at µ = 0 (blue solid) and at
T ≈ 0 (green dashed).

potentials (the scale is set by the difference between the local maximum and the (global)

minimum of the fundamental meson interaction potential U) there is a phase with large

effective quark mass and a large mass splitting of the meson masses with an approximate

(due to the explicitly symmetry breaking termHσ (2.1.4)) U(1)V×SU(2)V flavor symmetry.

At high temperatures or large chemical potentials, the quark mass as well as the meson

mass splitting are small, and the fields obey an approximate U(1)V × SU(2)V × SU(2)A

symmetry. The phases are partially separated by a sequence of FOPTs forming a curve

which extends from finite chemical potential µ0
c at T = 0 to higher temperatures bending

towards the temperature axis (corresponding to a negative slope of the critical curve) and

ending at a CEP.

The negative slope of the FOPT curve Tc(µ) is a typical feature of chiral models for strongly

interacting matter and can be related to the discontinuities ∆n and ∆s of the net quark

density n and the entropy density s by the following relation of the Clausius-Clapeyron

kind:

∂Tc
∂µ

= − ∆n

∆s
. (5.4.1)

Both discontinuities, ∆n and ∆s, are positive within the QMM, such that n and s increase,

when crossing the FOPT curve from the PNG phase to the PWW phase. The increase of

the net quark density at the phase transition can be attributed to the quark mass which

drops significantly at the phase boundary. Thus ∆n is positive. For the entropy, the total
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number of active degrees of freedom is relevant, and therefore the mesons have to be taken

into account. In the PNG phase, the lightest particles are the pions (although still having

a larger mass mπ than the temperature T ). Due to their non-negligible mass the effective

number of degrees of freedom is less than the total number of pion types (three). As

discussed above, in the PWW phase, the thermodynamics (especially the entropy density)

is well approximated by that of an ideal ultrarelativistic Fermi gas with 2 × Nf × Nc

fermionic degrees of freedom. As the number of effective degrees of freedom thus strongly

increases at the phase boundary, the entropy density does the same. In summary, both,

the entropy density and net quark density, increase at the phase boundary, i.e. ∆n and

∆s ≥ 0 as claimed above.

The slope of the critical pressure pc w.r.t. the temperature can be determined by another

version of the Clausius-Clapeyron equation,

∂pc
∂T

=
sPNG/nPNG − sPWW/nPWW

1/nPNG − 1/nPWW

, (5.4.2)

where si and ni are the entropy density and the net quark density, both infinitesimally

close to the critical curve, yet in the two phases i = PNG,PWW. For the QMM, the

slope is positive, which according to [SRK14, Ios15] makes the transition liquid-gas-like

(enthalpic) rather than quark-hadron-like (entropic). The slope of pc(T ) can be related

with the relative slope of the curves of constant pressure Tp(µ) (isobars) and the critical

curve Tc(µ) in the T–µ phase diagram with the result that isobars having a smaller slope

(evaluated at the FOPT) than the critical curve correspond to the liquid-gas (enthalpic)

type of transition and, conversely, a larger slope of the isobars corresponds to hadron-quark

(entropic) type of transition. Present lattice QCD calculations give no definitive answer to

what the relative slope of the isobars and the pseudocritical curve at moderate values of µB

(µB/T = 1 . . . 3, with the baryon chemical potential µB) is, although it is widely accepted

that at µ ≈ 0 the pseudocritical curve bends towards the µ axis [KKL+11, BBF+15, B+17].

As this issue has not been settled yet, the QMM can still be considered as a relevant model

for the chiral transition if other constraints are fulfilled. One of these constraints is that

isentropes arriving at the FOPT from the PWW phase have to leave the FOPT into the

PNG phase. In [WYK16] we classified such transitions as type I and the complementary

case when isentropes stay on the FOPT as type II. Type I is subdivided into two classes: IA

corresponds to isentropes leaving the FOPT at higher temperatures and IB corresponds to

isentropes leaving FOPT at lower temperatures. It turns out that type IA is equivalent to

the class of entropic phase transitions and types IB and II constitute the class of enthalpic

phase transitions. With the present knowledge, type II can be considered unrealistic since
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it implies that the adiabatic expansion ends on the chiral phase transition curve, which is

not what is observed. This classification scheme is visualized in Fig. 5.16.

type IA type IB type II
(entropic) (enthalpic) (enthalpic)

T

µ

T

n

Figure 5.16.: Schematic representation of isentropes (lines with arrows indicate the
path of adiabatically expanding matter) for the FOPT types IA (left,
s/n = const along the isentrope), IB (middle, s/n = const) and II
(right, two separate isentropes ending both on the FOPT curve with
s1/n1 > s2/n2) in the T–µ plane (upper row) and the T–n plane (lower
row). States 1 and 2 are to the left and right of the phase border line
(fat curves in the upper row), respectively. The green areas in the lower
row depict a part of the two-phase coexistence regions for the respective
types. Note that the coexistence regions (green areas) can appear in
quite different shapes. The figure is reproduced from [WYK16].

5.4.2. Thermodynamic quantities

In the PWW phase, the fermionic contribution Ωqq to the pressure dominates over the

mesonic contributions U , Ωσ, Ωπ etc. Since furthermore, the quark mass in this phase is

much smaller than T and/or µ, the derivatives of the pressure – especially net quark density,

entropy density and the susceptibilities – are very close to the corresponding quantities

of an ultrarelativistic (i.e. massless) ideal Fermi gas as can be seen in Figs. 5.8 and 5.10.

For the pressure to be approximated with similar accuracy it is necessary to subtract a

constant, analogous to the bag constant in bag model approaches [CJJ+74].23 In the low-

temperature region T ≲ 50 MeV the pressure is almost entirely determined by two terms: (i)

23 The interpretation of the constant as the pressure of the (non-perturbative) vacuum against which bub-
bles with bound states are formed is not applicable for the QMM since the mesons are no bound states
but regarded as fundamental within this model. Nevertheless, the subtraction constant corresponds to
the energy density that is gained by forming the sigma condensate v.
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the fermionic contribution Ωqq and (ii) the meson interaction potential U . Because, except

at the FOPT, the latter one varies slowly w.r.t. T and µ the derivatives of the pressure

w.r.t. these quantities – i.e. entropy density, net quark density and the susceptibilities –

are essentially those of an ideal massive Fermi gas, with the mass jumping at the FOPT.

This explains why it is not possible with parameter adjustments to achieve for the FOPT

to be of type IB (cf. Fig. 5.16). To achieve this type of transition with fermionic pressure

contributions only, the fermions in the high chemical potential phase (i.e. the PWW phase)

must have a larger mass than in the low chemical potential phase (i.e. the PNG phase).

In order for the pressure of both phases to be equal at the phase transition curve and the

phase with larger mass being the thermodynamically stable one above the phase transition,

the number of (massive) fermionic degrees of freedom must be larger in the PWW phase

than in the PNG phase. However, this is not the case within the QMM.

The isentropes form a pattern which is understandable in two distinct limits: (i) formq → 0,

which is applicable in the PWW phase, and (ii) for T → 0. As discussed above (see also

Fig. 5.8), in the PWW phase, the entropy density and the net quark density can well be

approximated by the corresponding quantities for an ultrarelativistic Fermi gas. Applying

the corresponding formulas one finds that the entropy per quark s/n depends only on the

ratio µ/T in this limit, i.e. the curves s/n=const are straight lines pointing to the origin

with a slope corresponding to the polar angle ϕ in the T–µ plane.

The second derivatives of the pressure w.r.t. temperature T or quark chemical potential

µ, i.e. the temperature times the volumetric heat capacity cvolµ at constant µ (left panel

of Fig. 5.10) and the quark number susceptibility χµµ (right panel of Fig. 5.10) show

similar behavior as in the MFA case, cf. Section 5.1.3. The heat capacity (normalized to

that of an ideal ultrarelativistic Fermi gas) is increased in the crossover region and thus

can be applied to estimate the pseudocritical temperature Tpc(µ) while the quark number

susceptibility (also normalized to that of an ideal ultrarelativistic Fermi gas) peaks at the

CEP and can be applied to quantify the size of the critical region. Compared to the MFA

result, the critical region is less elongated but of comparable width.

5.4.3. Impact of vacuum fluctuations

In this thesis, the vacuum terms of the mesonic and fermionic contributions to the grand

canonical potential Ω (i.e. the terms without Fermi or Bose distribution functions in

(4.2.17), (5.2.4) and (5.2.5)) have been omitted. However, for certain purposes they must

be included. For instance, if the chiral limit of the QMM is to be investigated or the

question whether properties present in the chiral limit “survive” the explicit symmetry
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breaking is to be addressed, these vacuum fluctuations are crucial to prevent the chiral

transition from becoming first-order in the chiral limit [SFN+10]. The difference of the

phase transition order in the two cases, (i) with and (ii) without the inclusion of vacuum

terms, also has some impact on the form of the isentropes in the crossover region. In the

case without vacuum fluctuations, the isentropes passing the crossover region not too far

away from the CEP are kinked in this region. This can be attributed to the remnants of the

first-order transition present in the chiral limit and the relatively weak explicit symmetry

breaking if the value of mvac
π is close to the PDG value. On the contrary, in the case with

vacuum terms, the isentropes are smooth and no peculiarities occur in the crossover region

[NSS+10]. Furthermore, the inclusion of vacuum fluctuations shifts the CEP to smaller

temperatures and larger chemical potentials. While without vacuum fluctuations the CEP

temperature is about TCEP ∼ 100 MeV for realistic parameter sets, it takes values in the

region TCEP ∼ 10 . . . 50 MeV if these fluctuations are included [NSS+10, SFR11, Tiw12].

Including further fluctuations, e.g. with the application of functional renormalization group

(FRG) methods [Gie12, TSvSW14], does not influence the CEP location much, however

shifts of TCEP of about 20 MeV are possible (relative to the result with vacuum fluctuations

only) [NSS+10].

5.4.4. Impact of thermal fluctuations

Basically, the LFA and the MFA produce similar results. The position and shape of the

phase transition curve (FOPT and crossover estimate) are qualitatively similar. Since

increasing temperatures (and hence thermal fluctuations) tend to weaken the phase transi-

tion (i.e. at higher temperature the latent heat and the jumps in thermodynamic quantities,

such as entropy density, net quark density etc., get smaller) one might expect that addi-

tional fluctuations have a similar effect on the strength of the phase transition. Indeed,

when comparing LFA and MFA one notices that the CEP is shifted to lower temperatures

if fluctuations are included (i.e. for the LFA).

5.4.5. Parameter dependence

For realistic parameter sets, the shape of the phase transition curve (FOPT and crossover

estimate) is essentially determined by the difference ∆U of the meson interaction potential

U at its local maximum and its local minima. In the chiral limit, this difference can be

expressed with the help of the sigma vacuum mass mvac
σ and the sigma vacuum expectation

value ⟨σ⟩vac according to ∆U = (mvac
σ )2⟨σ⟩2vac/8. The (pseudo-) critical temperature Tc
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can then be expressed by (5.3.5). The explicit chiral symmetry breaking term, −Hσ, is of

minor importance for this issue. The position of the CEP on the phase transition curve

is controlled by the parameter combination x = 2µ0
c − mvac

nuc/Nc, with which the CEP

chemical potential µCEP can be estimated as µCEP ≈ 7x/8 − 25 MeV. One can distinguish

three groups of parameter sets with qualitatively different model properties.

(i) mvac
nuc/Nc ≥ µ0

c : In this case, there are only incoming isentropes on the FOPT curve.

Additionally, all isentropes that enter the PNG (through the cross-over region) merge

with the FOPT curve from the low-chemical-potential side and run down on it after-

wards. In the classification scheme introduced in [WYK16], the transition is of type

II. At T = 0, pressure, energy density, net quark density as well as all masses and

field expectation values have their vacuum value directly next to the FOPT curve.

Sometimes this is phrased as the PWW phase being in equilibrium with the vac-

uum on the FOPT curve at vanishing temperature. Since ordinary nuclear matter

at T = 0 is neither in direct contact to the vacuum nor to the chiral transition (and

hence the vacuum cannot be in contact to the chiral transition either) we regard such

parameter sets as unrealistic, even when particle masses and field expectation values

have reasonable values.

(ii) µ0
c − 100 MeV ≲ mvac

nuc/Nc < µ0
c : In this case, all isentropes end in the PNG phase at

µ = mvac
nuc/Nc. The isentropes cross the FOPT curve and the vacuum is always well

separated from the FOPT curve. The phase transition is enthalpic24 (type IA). Such

a scenario is presently not ruled out for QCD, neither by experiment nor by first

principle calculations, albeit there are some indications that the chiral transition is

better described by an entropic24 (type IB) phase transition [SRK14].

(iii) mvac
nuc/Nc ≲ µ0

c − 100 MeV: In this case there is no FOPT at all.

With the results on the parameter dependence one can use the following procedure for

tuning the model parameters to physically reasonable values:

� First, T 0,ref
pc and µ0,ref

c as well as mvac
σ

ref and ⟨σ⟩refvac are calculated for some reference

parameter set. If the QMM is used to model low-energy QCD the reference values

given in (5.3.6) are reasonable choices.

� Then one has to decide which value for the pseudocritical temperature at zero chem-

ical potential T 0
pc is realistic.

� Use T 0
pc = T 0,ref

pc

√
mvac
σ ⟨σ⟩vac/

√
mvac
σ

ref⟨σ⟩refvac to determine the product mvac
σ ⟨σ⟩vac that

provides such a transition temperature. This also gives a good approximation for the

24 The terms enthalpic/entropic refer to the nomenclature in [Ios15].
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shape of the phase boundary Tc(µ) and via µ0
c = µ0,ref

c

√
mvac
σ ⟨σ⟩vac/

√
mvac
σ

,ref⟨σ⟩refvac

also the critical chemical potential at zero temperature. As reference the values given

in (5.3.6) can be chosen.

� With Tc(µ) any restriction on the CEP temperature TCEP can be converted into a

restriction on µCEP.

� Using µCEP ≈ 7x/8− 25 MeV with x = 2µ0
c −mvac

nuc/Nc a value for mvac
nuc can be calcu-

lated that fits the requirements for the CEP position. Comparing µ0
c and mvac

nuc/Nc

determines to which class of parameter sets (see above) the result belong.

� The ratio mvac
π /mvac

σ determines the degree of explicit symmetry breaking and one

remaining parameter can be used for fine tuning.

� If the result does not fit the requirements sufficiently well, one may specifically tune

mvac
σ ⟨σ⟩vac, mvac

nuc or mvac
π depending on which feature (T 0

pc,µ
0
c , µCEP or the degree of

explicit symmetry breaking) of the model needs further fine tuning.

Such a procedure is meant to be used as a guide for specifically manipulating the phase dia-

gram of the QMM and fitting it to the respective needs of the user. The dependencies and

numbers refer to the LFA evaluated without vacuum terms and can be applied with minor

changes only also to the MFA if the vacuum terms are omitted. If the vacuum terms are

included, however, the dependencies and numbers given above need to be modified, e.g. in

this case T 0
pc and µ0

c depend also on mvac
nuc which can shift the value for µ0

c by 30 . . . 50 MeV.



6. Photon emission within the

quark-meson model

6.1. Overview

In this section, the emissivities calculated according to (4.4.1) are presented and discussed

in some detail. As the emissivities depend essentially on three independent physical quan-

tities (temperature, chemical potential, and photon frequency) plus all model parameters

it is impossible to put all information into one plot. Instead, we first discuss a few repre-

sentatively chosen differential spectra to demonstrate what is to be expected and define

on this basis at which area of the phase diagram and at which photon energy a closer look

is necessary.

Before proceeding in this manner, some words on the nomenclature are necessary: In

the following chapter, the term “emissivity” refers to the differential production rate

ωd7N/d3kd4x. When discussed in terms of temperature and chemical potential, also the

term “rate” is used for the same quantity. However, when discussed as a function of the

photon frequency, the emissivity will be referred to as the “differential (photon) spectrum”.

The emissivities/rates/spectra for the individual production processes under consideration

will be termed “partial”.

In Fig. 6.1, differential spectra at two representatively chosen positions in the phase dia-

gram are displayed. Several typical features can be observed:

(i) At high photon energies (ω ≳ 600 MeV), all displayed partial differential spectra

decrease exponentially ∝ e−ω/T .

(ii) At small photon energies (ω → 0), two cases are possible: either the spectra approach

zero or they diverge. The differential spectra for Compton and anti-Compton

processes do not diverge.

(iii) In the PWW phase, the rates for the processes of the same type (Compton, an-
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Figure 6.1.: Representative differential spectra R = ωd7N/d3kd4x from the PNG
phase at T = 65MeV and µ = 255MeV (left panel) and the PWW phase
at T = 65MeV and µ = 295MeV (right panel) (parameter set A). The
insets mark their respective position in the phase diagram. The curves de-
note the partial spectra from the six contributing processes q+π → q+γ
(solid blue curve, in the left figure it is almost entirely hidden behind the
dash-triple-dotted black curve), q+ σ → q+ γ (long-dashed green curve),
q+ q → π+ γ (short-dashed red curve), q+ q → σ+ γ (dotted light blue
curve), q+π → q+γ (dash-dotted violet curve), q+σ → q+γ (dash-double-
dotted golden curve), and the sum of all of these (dash-triple-dotted black
curve).

nihilation, anti-Compton differ only by a constant factor of order unity. For the

Compton and anti-Compton processes, this factor is about three.

(iv) In the PWW phase at sufficiently high photon energies, there is a hierarchy emerging:

ωd7NCompton/d
3kd4x > ωd7Nannihil./d

3kd4x > ωd7Nanti-Compton/d
3kd4x.

All of these features have to be understood and their validity in the whole phase diagram

has to be checked. In order to give a complete overview for the emissivities as well as

limiting the figures to a reasonable number, the data will be looked at from two different

points of view:

(a) The emissivities are shown and discussed depending on the position in the phase

diagram for two fixed photon energies ωlow and ωhigh. One of these photon energies

will be in the exponentially decreasing region and one will be at a low frequency

(with ’low’ being defined below). This approach is intended to identify regions in the

phase diagram where the photon rates exhibit peculiarities of any kind.

(b) The differential spectra, i.e. the emissivities depending on the photon energies at

fixed positions in the phase diagram, are shown and discussed. The positions are

chosen in accordance with a number of different topics. This approach should point

out whether the form of the spectra differs on opposite sides of the phase transition
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T/MeV µ/MeV mq/MeV mσ/MeV mπ/MeV
65 255 282 504 151

Figs. 6.1 and 4.4
65 295 55 283 333
55 255 294.0 564.5 146.0

Fig. 6.1455 335 30.1 427.7 444.9
95 335 26.9 508.5 516.5
50 280 287 506 146 Tab. 6.2

Table 6.1.: Quark, sigma meson and pion masses (mq, mσ and mπ, respectively) cal-
culated with parameter set A (Tab. 5.1) The masses are calculated at the
temperatures and quark chemical potentials given in the first two columns.
The last column displays the position of their usage in this thesis.

curve and at which photon frequencies the imprints of the phase structure on the

photon rates are presumably most prominent.

High- and low-frequency regions

For photon frequencies larger than the maximum of the respective partial differential spec-

trum, the partial spectra quickly approach their asymptotic behavior (cf. Section 4.5.1),

i.e. they become exponentially decreasing curves ∝ exp{−ω/T} (see Fig. 6.1). One impor-

tant implication of this observation is that the relative strength of the partial emissivities

is invariant under the change of the photon frequency ω, provided ω is high enough for

all partial emissivities to be on their respective exponential tails. Fig. 6.2 illustrates the

approximate positions of the maxima of the differential spectra according to (4.6.1) for

the processes under consideration. The true maximum of the rates may be shifted by

∆ω ∼ 100 MeV due to the precise form of the cross section and other power-law correc-

tions to the dominant exponential factor as discussed in Section 4.5. Furthermore, the

maxima are rather broad structures with a full width at half maximum being O (400 MeV).

If one chooses ω ≳ 1000 MeV, however, one can be sure of being at the exponential tails

on the high-frequency side of the maxima for all processes.

The major differences between the various partial spectra in the very-low-energy region

(i.e. on the left side of all the maxima in the partial spectra, ω ≲ 150 MeV) are related

to infrared (IR) divergencies of the photon rates, which can appear in certain regions of

the phase diagram for the annihilation processes. They can be traced back to the ω−1-

divergence of the prefactor in the rate formulas (see eqs. (4.4.2), (4.4.11) and (4.4.19))

coming from the evaluation of the phase space integrals (see Appendix H). These, in turn,

can presumably be attributed to IR divergencies of the matrix elements caused by the inter-

nal propagators, which get on-shell for ω → 0. However, if the sum of the effective masses of
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Figure 6.2.: Contour plots of the positions of the local maxima of the various differen-
tial spectra, according to the approximation (4.6.1). Upper row: (anti-)
Compton processes; lower row: annihilations; left column: with pions;
right column: with σ mesons. In the gray regions, the partial emissivity
has no local maximum.

the incoming particles is larger than the mass of the outgoing partner of the photon, these

divergencies get regularized by a strong thermal suppression ∝ exp{−(s−(mout)2)/(4ω)} in

the relevant phase space region. This is seen most easily for the Boltzmann-approximated

rates (4.5.2). There the only ω dependencies are in the prefactor Cb ∝ ω−1 and within

νmin ∝ (s − (mout)2)/(4ω) for ω → 0. In the limit of vanishing ω the integrand of the s

integration is thus made arbitrarily small by the exp{−νmin/T}-suppression. As long as

the mesons are not massless1 the Compton processes always satisfy the condition of the

incoming masses being larger than the outgoing mass, min
1 +min > mout.

Therefore, divergencies in the partial differential spectra appear only for the annihilation

processes in those areas of the phase diagram, where s0 ≡ max{(min
1 + min

2 )2,mout} =

(mout)2. These regions, i.e. those, where the sum of the effective masses of the incoming

(anti-) quarks is smaller than the mass of the outgoing (non-photon) particle, are marked

in the left panel of Fig. 6.3. There, the area with mπ < 2mq < mσ is hatched diagonally,

and the area 2mq < mπ,mσ is shaded in light gray without hatching. In the former case,

only the partial spectrum for the process q + q → γ + σ shows IR divergencies, while in

1 There are essentially only two cases for which this constraint is of importance: (i) For the PNG phase
in the chiral limit the pions and (ii) at the CEP the sigma mesons are massless. Since in this thesis we
do not consider photon production in the chiral limit and because of the limitation of the considered
approximation that inhibits mσ → 0 at the CEP both cases are not relevant for this work.
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Figure 6.3.: Kinematic regions for several parameter sets. Left panel: Parameter
set A; displayed are the regions with mπ < 2mq < mσ (medium gray,
diagonally hatched), 2mq > mσ,mπ (dark gray, horizontally hatched),
2mq < mσ,mπ (light gray, unhatched) and mπ > mσ (small black area
close to the CEP). Right panel: Influence of the model parameters.
Displayed are the regions with 2mq > mσ for parameter sets A, D, E,
cf. Tab. 5.1. In the red region the inequality 2mq > mσ is fulfilled for all
of the three parameter sets, while in the blue region it is fulfilled only for
parameter set A and E and in the green region only for parameter set E.
The phase contours are displayed red for D, in blue for A and in green
for E with the line style denoting the order of the transition: first-order
(solid), CEP (dot) and crossover (dashed).

the latter case both annihilation processes do so.

On the other hand, the partial spectra for the considered processes at low photon frequen-

cies are (from an experimental point of view) less important than at higher frequencies,

since for ω ≲ mvac
π the spectra are dominated by Dalitz decays of the pions as well as

other pion decay channels. Thus, the frequencies below some lower bound ωIR ∼ mvac
π are

discarded from the discussion. In the region of interest at ω > ωIR, the IR divergencies

and their proper regularization/renormalization are expected to have little impact on the

spectra and therefore can be ignored in this discussion. It thus seem reasonable to regard

the value ωIR = 150 MeV as the lower limit of the region of interest for this thesis.

As a representative photon frequency for the presentation of the low-frequency rates, ω =

200 MeV is chosen, cf. Figs. 6.4 – 6.7, because on the one hand, this frequency is small

enough not to be on the exponential tails of the partial spectra but rather in the region

where various partial spectra have peaks and, on the other hand, it is still large enough to

be within the region of interest ω > ωIR.



100 6 Photon emission within the quark-meson model

6.2. Emissivities for given frequency

6.2.1. Low-frequency rates
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Figure 6.4.: Total photon emission rates R = ωd7N/d3kd4x in the proximity of the
CEP for ω = 200MeV. Left panels: contour plots of the rates; right
panels: rates at constant temperature T/MeV =55, 65, 75, 85 (bottom
to top). The symbols denote the rates at isentropes with s/n = 1.7 (dots),
2.1 (squares), 2.5 (triangles), 2.9 (diamonds), 3.3 (stars) and the thin gray
lines are for guiding the eyes. The solid white lines in the left plot depicts
the FOPT curve, and the white dashed line is an estimate of the crossover
region based on the heat capacity. The dot depicts the position of the
CEP, numerically determined by the coordinates of the minimum of the
sigma mass.

In Figs. 6.4 – 6.7 the photon rates ωd7N/d3kd4x are displayed w.r.t. temperature and quark

chemical potential for the photon frequency ω = 200 MeV. The comparison of Figs. 6.4 –

6.7 reveals that the dominating contribution to the total rate comes from the Compton

processes. The reason can be understood in terms of the Boltzmann approximation de-

scribed in Section 4.5. Because the explicit µ-dependence of the Pauli blocking and Bose

enhancement factors is weak (they are almost one), only the µ dependence of the distribu-

tion functions for the incoming particles is relevant which introduces a factor (relative to the

annihilation rates) of exp{µ/T} for the Compton processes, and a factor of exp{−µ/T}
for the anti-Compton processes (see Section 4.5). Since the rates are displayed in the

vicinity of the CEP, which is located at µ/T ≈ 3.9, this enhancement/suppression factors

are about exp{µ/T} ≈ 50 in the regions displayed in the left panels of Figs. 6.4 – 6.7 which

explains the dominant role played by the Compton processes.

Inspecting the total rate for fixed temperature as a function of quark chemical potential

µ, cf. the right panel of Fig. 6.4, one observes that the rate first increases with increasing

µ, then jumps (slightly) at the FOPT (or quickly increases in the crossover region) and

afterwards decreases again. Such a pattern also applies for all partial rates with the
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Figure 6.5.: As Fig. 6.4, but for the partial rate corresponding to the Compton pro-
cesses q + π → q + γ (upper row) and q + σ → q + γ (lower row).
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Figure 6.6.: As Fig. 6.5, but for the annihilation processes q+ q → π+ γ (upper row)
and q + q → σ + γ (lower row).
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Figure 6.7.: As Fig. 6.5, but for the anti-Compton processes q + π → q + γ (upper
row) and q + σ → q + γ (lower row).

exception of the process q + π → q + γ where the rate is decreasing also before the phase

boundary. The partial rates jump at the phase boundary – depending on the process

– either up or down. This and other aspects of the calculated emissivities as functions

of temperature and quark chemical potential can be understood within the Boltzmann

approximation of the rate formula, cf. Section 4.5 and discussion below. Although the

total rate at fixed temperature shows moderate peak structures at the FOPT as well as at

the CEP, there are no peaks in the temperature direction (the curves in the right panel

of Fig. 6.4) do not cross but rather are ordered according to their temperature). However,

if the asymptotic behavior ∝ exp{−ω/T} is scaled out of the data, then an enhancement

around the CEP can be seen.

Comparing the total rate with the Compton-type partial rates (which are the dominating

contributions according to the discussion above) one notes that in the PNG phase the

q+π → q+ γ process is the only relevant channel. In the PWW phase, on the other hand,

both Compton processes as well as the annihilations contribute with similar strength.

That the annihilation rates are of the same order of magnitude as the Compton rates

although they suffer an suppression of the order exp{−µ/T} is understandable within the

exponential approximation, cf. Section 4.5.2. Within this approximation the rate can be

related to the masses of the incoming particles and since the mesons are much heavier

than the quarks the above mentioned exp{−µ/T}-suppression can be compensated. More
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details are given below.

6.2.2. High-frequency rates
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Figure 6.8.: Total photon emission rate R = ωd7N/d3kd4x in the proximity of the
CEP for ω = 1000MeV. Lines and symbols as in Fig. 6.4.

In Section 4.5, it was shown that the high-frequency tail of the partial spectra behaves

∝ exp{−mout/T}. Inspecting Figs. 6.9 and 6.11 reveals that in the high-frequency range

ω ≳ 1000 MeV all the displayed partial emissivities have a similar qualitative behavior:

They are continuously changing and jump up at the first-order phase transition. In the

crossover region and at the CEP, this jump is smeared out. Applying the Boltzmann

approximation we were able to show that the emissivities are dominated by the behavior

of the mass of the outgoing partner of the photon. In all the cases depicted in Figs. 6.9

and 6.11, this particle is an quark or antiquark, which explains the similar form of the

emissivities.

The annihilation rates behave differently: For the annihilation into a pion and a photon,

the partial emissivity drops at the phase boundary (corresponding to an increase of the

pion mass) and for the annihilation into a sigma meson and a photon, the rate exhibits a

weak maximum. Both annihilation rates drop with similar slopes in the PWW phase.

6.2.3. Rates and masses

In Fig. 6.12, the behavior of the partial emissivities according to the Gaussian approxima-

tion (cf. Section 4.5.1) is displayed. Their qualitative µ-dependency should be compared

with the appropriate curves of Figs. 6.9 – 6.11 (the color code and the linestyles are the

same as in these figures). In doing so one may note several features of the rates that are also

present in the Gaussian approximation: (i) The partial emissivities for both Compton

processes are similar even in the PNG phase. An equivalent comment can be made for the
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Figure 6.9.: As Fig. 6.8, but for the Compton processes q + π → q + γ (upper row)
and q + σ → q + γ (lower row).
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Figure 6.10.: As Fig. 6.8, but for the annihilation processes q+q → π+γ (upper row)
and q + q → σ + γ (lower row).
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Figure 6.11.: As Fig. 6.8, but for the anti-Compton processes q + π → q + γ (upper
row) and q + σ → q + γ (lower row).

anti-Compton processes. (ii) The emissivity for the annihilation into a photon and a pion

is almost independent of µ in the PNG phase and decreasing in the PWW phase where

it approximately coincides with the partial emissivity for annihilations into photons and

sigma mesons. (iii) For all processes the emissivity of the Gaussian-approximated rates

jumps at the FOPT into the correct direction (up/down). (iv) The slope of the emissivities

in the continuous regions is qualitatively well reproduced. Thus one can conclude that the

essential features of the partial emissivities in the high-frequency region can be understood

in terms of the Gaussian approximation.

For those partial spectra that exhibit a maximum, the exponential approximation described

in Section 4.5.2 can be applied. Doing so, one finds that the height of the maximum is

∝ exp{−(min
1 + min

2 )/T} (cf. (4.6.2)), which also governs the low-frequency region. Thus,

in the low-frequency region, the emissivities show a different behavior compared to the

high-frequency region. (There, the rates are ∝ exp{−mout/T}, see above.) Therefore, in

Fig. 6.13 the ratios of the partial emissivities ωd7Ni/d
3kd4x (with i labeling the channel)

and exp{−(min
1 + min

2 − ϵiµ)/T} are plotted. The curves shown in Fig. 6.13 should be

compared with the right panels of Figs. 6.5 – 6.7. Doing so one notes that for all processes

the general behavior of all partial rates, except for the process q + π → q + γ, agrees with

the approximation. The reason of the disagreement for the process q + π → q + γ is the

breakdown of the Boltzmann approximation in the PWW phase at low and intermediate
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Figure 6.12.: Analytical behavior according to the Boltzmann approximation of
Ri = ωd7Ni/d

3kd4x in the high-frequency region (i.e. the function
exp{−(mout − ϵiµ)/T}), with i denoting the processes q + σ → q + γ
and q + π → q + γ (upper left panel), q + σ → q + γ and q + π → q + γ
(upper right panel), q + q → σ + γ (lower left panel), q + q → π + γ
(lower right panel), and ϵi discriminating between Compton processes
(ϵ = +1), annihilations (ϵ = 0) and anti-Compton processes (ϵ = −1)
at ω = 1000MeV. When indicated, the curves are multiplied with the
given factors to avoid crossings. Color code and linestyles denote the
same temperatures as in Fig. 6.8. (For details, see text.)

temperatures for the quark distribution function (but not for the anti-quarks and mesons),

which occurs because in this region many quarks occupy (since mq ≪ µ) states with E < µ

for which the Boltzmann approximation is not applicable. We thus conclude that indeed

the general behavior of the rates can be understood in terms of kinematics and thermal

suppression only.

6.2.4. Cross sections

With the Boltzmann approximation and the subsequent approximations for the s-inte-

gration the emissivities can be related to the cross sections of the contributing processes,

cf. Section 4.5. The corresponding cross sections are shown in Fig. 6.14. The cross sections
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Figure 6.13.: Shape of the function exp{−(min
1 + min

2 − ϵiµ)/T} that encodes the
dominant dependencies of the partial emissivities Ri = ωd7Ni/d

3kd4x,
with i denoting the processes in the low-frequency region, according to
the Boltzmann approximation q+σ → q+γ (upper left panel), q+π →
q+γ (upper right panel), q+q → σ+γ (middle left panel), q+q → π+γ
(middle right panel), q + σ → q + γ (lower left panel), q + π → q + γ
(lower right panel) and ϵi discriminating between Compton processes
(ϵ = +1), annihilations (ϵ = 0) and anti-Compton processes (ϵ = −1)
at ω = 200MeV. When indicated, the curves are multiplied with the
given factors to avoid crossings. For details, see the text.

shown in the left column are identical to the respective ones in the right column since the

cross section is independent of ω. However, the s-intervals from which the largest contri-

butions to the emissivities come differ for the two displayed photon frequencies since the
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widths of exp{−νmin/T} (cf. Section 4.5) are proportional to ω. In Fig. 6.14, the cross sec-

tions are plotted fat in the regions which contribute most. If the Gaussian approximation

(cf. Section 4.5.1) is applicable this is the interval s ∈ [s1−∆s, s1+∆s] with s1 as in (4.5.4)

and the width of the Gaussian ∆s = 2ω
√
mzT (mz is the mass of the outgoing partner

of the photon). If, on the other hand, the exponential approximation (cf. Section 4.5.2) is

applicable this is the interval s ∈ [s0, s0 + 2T/b] with the lower bound s0 of the s integra-

tion given by (B.5.12) or specified for the individual processes in (4.4.4) and (4.4.13) and

b defined by (4.5.11). Inspecting Fig. 6.14 one might question the validity of the Gaus-

sian and the exponential approximations because, there, we assumed that the s-dependent

prefactor of exp{−νmin/T} varies slowly with s, which seems to be in conflict with the

divergent cross sections for s → s0. Nonetheless, in the rate formulas the cross sections

are multiplied with factors that approach zero in this limit which makes the prefactors of

exp{−νmin/T} finite for all s.

6.2.5. Dynamical enhancement

It is somewhat difficult to estimate the dynamical enhancement of the rate within one

model, because one parameter set in a single model gives rise only to one of the two curves

that have to be compared. Nevertheless, one can compare within one parameter set the

rate along an expansion path that goes only through areas of the phase diagram where

all quantities are continuously changing, and the rate along a path that crosses the FOPT

curve.

To this end we show in Fig. 6.15 the ratio of the total rate along an isentrope – with

s/n = 2.2 – that crosses the FOPT curve and an isentrope – with s/n = 2.8 – that passes

it.2 In the left panel, this ratio is plotted for ω = 200 MeV and, in the right panel, for

ω = 1000 MeV. For better judgment of the influence the phase transition has on such ratios,

the ratio along the isentropes with s/n = 3.4 and s/n = 2.8 is also shown in the figure (in

red) not exhibiting a strong peak. Comparing left and right panel one notices that only for

the high photon frequency ω = 1000 MeV the ratio exhibits such a pronounced peak. This

peak is a result of the ∝ exp{−mq/T}-dependence of the partial rate for the dominating

(Compton) processes valid for high photon frequencies (see Section 4.7). Looking at the

red curves in both panels of Fig. 6.15 one notes that, if two neighboring isentropes only

pass continuous regions of the phase diagram, the emissivities are of similar size for all

temperatures. However, if one of the isentropes crosses the FOPT curve, the corresponding

2 For an adiabatic expansion (which is suitable for the expansion dynamics in heavy-ion collisions), the
system evolves through the phase diagram along curves with constant entropy per baryon ratio s/n.
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Figure 6.14.: Cross sections σi calculated according to (B.5.30) for the processes q +
π → q + γ (blue solid curves), q + σ → q + γ (green long dashed),
q + q → π + γ (red short dashed) and q + q → σ + γ (light blue dotted)
The curves are plotted fat in the s-interval that contributes most to
the approximate rates: The left column is for ω = 200MeV and the
right column for ω = 1000MeV. The insets mark the positions (T, µ) =
(55,255), (55,335), and (95,335) (in MeV) in the phase diagram, where
the cross sections are evaluated. The particle masses at these positions
are collected in Tab. 6.1.
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emissivity can be several orders of magnitude larger depending strongly on the temperature

at which one compares the emissivities as well as on the photon frequency.
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Figure 6.15.: Dynamical enhancement of the photon emissivities. Left panel: ratio
R(s/n = x)/R(s/n = 2.8) with x = 2.2 (blue) and 3.4 (red), ω =
200MeV and R = ωd7N/d3kd4x being the total photon rate. Right
panel: the same quantities, but for ω = 1000MeV. The curves are
depicted solid for those temperatures for which the s/n = 2.2 isentrope
runs on the FOPT curve and dashed otherwise.

6.2.6. Chiral restoration

Since the QMM possesses an approximate chiral symmetry this symmetry is reflected/absent

in the rates for the PWW/PNG phase. In the context of the model, the (approximate)

chiral symmetry implies the (approximate) degeneracy of the meson masses. In Section 4.5,

it was found that kinematics dominate by far the rates, because the masses appear in the

exponent, while dynamical differences (e.g. spin and couplings which influence the cross

section) are only power-law corrections. Accordingly, in Fig. 6.16, one sees that in the

PWW phase the ratio of the sums of the Compton, anti-Compton and annihilation pro-

cesses with pions and sigma mesons, respectively is approximately unity, but in the PNG

phase it is significantly smaller.

In the left panel of Fig. 6.16, this ratio is plotted for ω = 200 MeV, while in the right

panel it is shown for ω = 1000 MeV. The comparison of both panels suggests that the

low photon frequencies are better suited to distinguish both phases. e.g. , in the left panel

of Fig. 6.16, at T = 50 MeV, µ = 280 MeV the processes involving pions contribute three

orders of magnitude stronger to the total rate than the sigma-involving processes, while in

the right panel at the same point there is only a factor of about 3.

This is understandable in view of the approximations discussed in Section 4.5. In the
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Figure 6.16.: Ratio (Rqq→γσ +Rqσ→γq +Rqσ→γq)/(Rqq→γπ +Rqπ→γq +Rqπ→γq) over
the phase diagram. These ratios are shown for the photon frequencies
ω = 200MeV (left panel) and ω = 1000MeV (right panel). The white
crosses mark the point (T, µ) = (50MeV, 280MeV).

low-frequency region, the scale for the emissivity is set by the height of the maximum of

the respective partial spectra which, in turn, is ∝ exp{−(min
1 + min

2 − ϵµ)/T}, with the

masses of the incoming particles denoted by min
1 and min

2 , respectively and ϵ = +1 for

Compton processes, ϵ = 0 for annihilations and ϵ = −1 for anti-Compton processes

(cf. Section 4.5.2 and Section 4.6). In the high-frequency region, on the other hand, the

scale is set by the term exp{(mout − ϵµ)/T} with mout denoting the mass of the outgoing

partner of the photon (cf. Section 4.5.1). The ϵµ terms present in both approximation

schemes make the Compton processes the dominant contributions to the photon rate,

however, in the high-frequency region both Compton processes are dominated by the

same exponential factor exp{−(mq − µ)/T}, since in both cases the outgoing particle is

the quark. Contrary, in the low-frequency region the masses of the incoming particles are

e(m
in
1 +min

2 −ϵµ)/T e(m
out−ϵµ)/T

q + σ → q + γ 3.5 × 10−5 0.87
q + q → σ + γ 1.0 × 10−5 4.0 × 10−5

q + σ → q + γ 4.8 × 10−10 1.2 × 10−5

q + π → q + γ 0.047 0.87
q + q → π + γ 1.0 × 10−5 0.054
q + π → q + γ 6.4 × 10−7 1.2 × 10−5

Table 6.2.: Comparison of the dominating exponential factors in the photon rate for
the processes under consideration. (For masses, temperature and chemical
potential, see Tab. 6.1). The largest numbers in each quadrant of the table
are highlighted marking the dominant contributions to the total emissivity.
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the relevant parameters and these differ for both Compton processes since pion and sigma

masses are very different in the PNG phase. In Tab. 6.2, the corresponding numbers are

collected. The rightmost two columns contain the two exponential factors corresponding

to the two approximation schemes and show the behavior discussed above: In the low-

frequency region, for both Compton processes the exponential factors setting the scale

(highlighted in blue) differ by three orders of magnitude but in the high-frequency region

the exponential factors (highlighted in green) are identical.

6.3. Differential spectra

As a complementary view, now the partial spectra as well as their sum over a broad

frequency range are presented at representatively chosen locations in the phase diagram.

These locations are chosen for studying several questions of interest.

6.3.1. Chiral symmetry breaking effects on the spectra

The principal difference between the spectra in the PNG and PWW phases, respectively

can already be seen in the figures of the overview section 6.1. As discussed above in

some detail, the emissivities are dominated by the kinematics, especially by the masses of

the incoming and outgoing particles. Since the masses of the mesons are approximately

degenerate in the PWW phase, this explains the striking similarity of the partial spectra

for processes that differ only in the participating mesons (such as q + σ → q + γ and

q + π → q + γ).

In the PWW phase, the mass of the mesons is always larger than twice the quark mass,

since the quark mass quickly drops at the phase boundary. With the considerations in

Section 4.5 this leads to the conclusion that the IR divergency of the annihilation rates is

not thermally regularized and thus appears at tree-level in the rates. Even when properly

treated, the partial rate due to annihilations is non-zero, while the partial rates for the

(anti-) Compton processes approaches zero due to thermal suppression. On the other

hand, in the PNG phase, two cases are possible: Depending on the precise parameter set

(especially, on the ratio mvac
σ /mvac

nuc) there are regions in the phase diagram with 2mq > mσ

and 2mq < mσ (for 2mq = mσ a separate analysis is necessary). In the former case, all

partial spectra approach zero in the IR, but for the latter case the same considerations as

in the PWW phase apply making the annihilation rate into a photon and a sigma meson

IR-divergent at tree-level. Even after properly regularizing the IR divergency there is a

large difference between the annihilation spectra at ω → 0 for the cases 2mq > mσ and
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2mq < mσ. Thus, for parameter sets with 2mvac
nuc/3 = 2mvac

q > mvac
σ in the limit ω → 0, the

annihilation spectra differ strongly between both phases, however, since for ω < 150 MeV

the photons from different sources, especially from Dalitz decays of pions, are expected

to dominate the spectra by many orders of magnitude such a signal of chiral symmetry

restoration or breaking seems hardly detectable.

6.3.2. Emissivity and phase transition type

Another question of interest is whether the spectral shape differs for different types of

phase transitions. To attempt an answer to this, the partial and total spectra are plotted

in Fig. 6.17 for the crossover region (µ = 255 MeV, T = 95 MeV, top left panel), on the

FOPT curve (µ = 293 MeV, T = 60 MeV, top right panel) and at the CEP (bottom panels).

Since the rate on the FOPT curve is not unique as it depends on the mixing ratio of the

coexisting phases, this ratio must be fixed for definiteness. This is done by specifying

s/n = xs−/n− + (1 − x)s+/n+ = 2.4 for the entropy per quark, s/n, averaged over both

phases with the phase fraction of the PNG phase denoted by x and the entropy per quark

ratios of the two phases defined as s±/n± = s(µ± δµ)/n(µ± δµ) (with infinitesimal δµ).

The underlying parameters for the rate calculation differ in the bottom panels. In the left

panel, mσ is the sigma mass determined in LFA (as all other masses). As discussed in

Section 5.2.3 the mσ has a lower bound in LFA determined from the interplay between

formulas (4.2.25) and (4.2.20). To estimate the influence of this unwanted feature of the

LFA on the photon spectra, the spectra at the CEP are shown in the bottom right panel

again, but with mσ set to a small value (= 1 MeV) by hand (and all other masses and

parameters kept fixed). Comparing both bottom panels in Fig. 6.17 one notes that the

strongest effect is on the process q + σ → q + γ. However, it is relevant only for the

frequency region ω ≲ mπ which is kept out of consideration due to the expected strong

background of Dalitz type decays, cf. Section 6.2.1.

6.3.3. Spectra in view of adiabatic expansion

In the course of an heavy-ion collision (HIC), pieces of the initially very hot and dense

strongly interacting medium expand and cool down following a path in the phase diagram

that can be modeled with relativistic hydrodynamics. Analyzing the azimuthal anisotropy

of the particle momentum distributions one was able to constrain the ratio of shear viscosity

over entropy density [RR07]. This turned out to be extremely small, in fact very close to a

conjectured lower bound believed to exist for strongly coupled media, which was calculated
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Figure 6.17.: Partial and total differential spectra ωd7N/d3kd4x evaluated at represen-
tatively chosen positions on the phase contour. Top left panel: spectra
in the cross over region (µ = 255MeV, T = 95MeV); top right panel:
spectra on the FOPT curve (µ = 293MeV, T = 60MeV) with a phase
fraction corresponding to s/n = 2.4; bottom left panel: spectra at the
CEP (µ = 278MeV, T = 74MeV); bottom right panel: same parameters
and position as in the bottom left panel, but with mσ manually set to
1MeV. The phase diagram and the particle masses are calculated with
parameter set A (see Tab. 5.1). Colors and line styles as in Fig. 6.1.

applying the AdS/CFT correspondence [KSS05, ST09]. Because of the smallness of the

viscous corrections, ideal hydrodynamics is a good approximation [KH, Hei09, Flo10] for

the dynamics. One of the consequences is that an isotropically expanding medium evolves

along isentropic curves (or: isentropes) which are defined by the condition s/n = const,

with s being the entropy density and n being the net quark or net baryon density [Oll08].

In order to get a first impression of the strength of the distortion the curve of FOPTs

imposes on the photon spectra, the total spectra are shown for a selection of temperatures

T and values for the entropy per quark ratio s/n in Fig. 6.18. The isentropes with s/n =

2.0 and 2.4 cross the FOPT curve, while the isentropes with s/n= 2.8 and 3.2 traverse

exclusively continuous regions of the phase diagram. For a reliable estimate of such a

distortion the emissivities have to be folded with the hydrodynamic evolution and the

signal has to be properly red (or blue) shifted. Furthermore, there are contributions from

the phase prior to thermal equilibration as well as from final state decays. A comprehensive
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for several values of the temperature T . Linestyle and color refer to the
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analysis is therefore beyond the scope of this thesis.

Nonetheless, some insight can be gained even from the rather overview-type of plot. In the

high-frequency region, at each temperature the curves are ordered according to their s/n

value: The emissivity is larger for smaller entropy per quark. A strong difference between

emissivities at the FOPT and away from it shows up only for the T = 20 MeV case. At

this temperature the emissivity on the s/n = 2.0 isentrope at ω ≳ 500 MeV is larger than

the other emissivities for this temperature depicted in Fig. 6.18 by a factor of about ten

thousand. However, at these (comparatively) low temperatures the emissivity is smaller

than the emissivities for the other depicted temperatures by many orders of magnitude and

thus probably less relevant from an experimental point of view. At higher temperatures,

the emissivities from the FOPT (which correspond to the s/n = 2.0 and 2.4 isentropes for

T = 40 MeV and 60 MeV) are only slightly enhanced. Although small, this enhancement

is visible and increases in the low-frequency region ω ≲ 500 MeV. At about ω ∼ 500 MeV

it reaches its maximal value and keeps constant for larger frequencies. Thus, from such

considerations, large photon frequencies seem better suited for the identification of a phase

transition signal than low frequencies.
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6.4. Static enhancement

For the search for an FOPT, one is in need of a quantity that characterizes the distortion

of the emissivities by the FOPT. To construct such a quantity, the actual emissivity is

compared to a fictitious one, which is determined by a linear extrapolation. This should

be regarded as a hypothetical emissivity without an FOPT. In the continuous regions of

the phase diagram, such a procedure is mathematically well defined, but on the FOPT

curve the emissivity is not unique. This can be seen most easily by looking at a different

representation of the phase diagram, e.g. the phase diagram in the T–n plane. The one-

dimensional FOPT curve in the T–µ phase diagram corresponds to the two-dimensional

coexistence region in the T–n phase diagram (cf. the schematic sketches in Fig. 5.16 or the

lower panel in Fig. 5.9). The additional dimension corresponds to a parameter character-

izing the decomposition into the two coexisting phases. This parameter can be chosen to

be the fraction of one of the phases, the net quark or baryon density, the entropy density,

energy density or any non-trivial combination of these as well as other, even more complex

quantities. Because of the importance of the isentropes for the dynamics of HICs, the ra-

tio s/n is a particularly well suited variable parameterizing the position in the coexisting

region. Thus we propose the following prescription for an enhancement factor F :

(i) Transform R(T, µ) to R(T, s/n). This is unique everywhere except on the phase

transition curve. On the transition line, the phase fraction x is calculated from

s/n = xs+/n+ + (1 − x)s−/n− with s±, n± = s(µ±), n(µ±) and µ− (µ+) being the

chemical potential infinitesimally smaller (larger) than the critical chemical potential

µc(T ). Then R(T, s/n) = xR(T, µ+) + (1 − x)R(T, µ−).

(ii) Calculate the extrapolated rate Re(T, s/n) = 2R(s/n− ∆s/n) − R(s/n− 2∆s/n) for

a suitable chosen grid size ∆s/n.

(iii) Calculate the ratio F (T, s/n) := R(T, s/n)/Re(T, s/n).

As F is determined from equilibrium properties only, it is termed in the following the static

enhancement factor. In Fig. 6.19, this factor is plotted for two choices of the entropy per

quark ratio and a step size ∆s/n = 0.4. Comparing the left and right panels of Fig. 6.19

one notes that only in the left figure the ratio F (T, s/n) is significantly different from

unity. This is what was expected since in the right panel all three isentropes (s/n = 2.8,

3.2 = 2.8 + ∆s/n and 3.6 = 2.8 + 2∆s/n) traverse only regions of the phase diagram with

continuously changing properties (especially the particle masses). On the other hand, in

the left panel one isentrope (with s/n = 2.4) follows between T = 35 MeV and T = 74 MeV

the FOPT curve. Thus, the rate along the s/n = 2.4 isentrope cannot be well approximated

by an extrapolation from s/n = 3.2 and s/n = 2.8 between these temperatures.
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Figure 6.19.: Ratio F of the calculated total spectra for two selected isentropes and
the (from below) extrapolated total spectra applying a grid-size ∆s/n =
0.4 (see text). Left panel: The curves correspond to T/MeV = 40 (dark
blue dash-dotted curve), 60 (green dashed curve), 80 (red dotted curve)
and 100 (light blue dash-double dotted curves). Here, the isentrope with
s/n = 2.4 is chosen for the evaluation of the spectra and s/n = 2.8 and
3.2 for the extrapolation. Right panel: The same as on the left panel,
but for the isentrope with s/n = 2.8 and the extrapolation based on
s/n = 3.2 and 3.6.

Inspecting Fig. 6.19 one notes that the enhancement saturates in the high-frequency re-

gion, which is the expected behavior as all partial spectra decrease ∝ exp{−ω/T} at high

enough photon frequencies. Furthermore, one sees that the enhancement is largest for

ω ≳ 1000 MeV. Thus it can be concluded that in a static system the effect of the FOPT

is largest in the high-frequency region ω ≳ 1000 MeV.

It is an interesting question whether this enhancement at the phase transition curve persists

for a hydrodynamically expanding system such as the medium produced in HICs. To be

at least approximately exact several aspects have to be considered in such a case: (i) One

needs a sufficiently precise hydrodynamical model and a numerical code to calculate the

dynamics (cf. [KHB14] and references therein). (ii) At the FOPT curve, non-equilibrium

effects such as nucleation or spinodal decomposition in a rapidly expanding medium have

to be treated properly [SDF+01, Ran04]. (iii) The blue/red shifts from the rest frame of

the fluid elements to the lab frame have to be calculated for each fluid element and then

be summed up. A proper treatment of this aspects is beyond the scope of this thesis and

is left for further dedicated research.

Nevertheless, it is interesting whether the position of the FOPT curve can be determined

– at least in principal – experimentally. The result would be a baseline that can be com-

pared to a dynamic calculation respecting the considerations of the preceding paragraph.
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Figure 6.20.: Illustration of the detection strategy of a hypothetical FOPT curve from
photon emissivities. Shown is the static enhancement factor F for the
temperatures T/MeV = 40 (solid dark blue curve), 60 (dash-dotted
green curve), 80 (dashed red curve), 100 (dotted light blue curve) and
ω = 1000MeV.

To achieve this, the static enhancement factor F seems a promising quantity. For its de-

termination the photon yield has to be calculated as a function of s/n. The entropy per

baryon ratio, s/n, could be estimated by statistical model fits to the particle yields mea-

sured in heavy-ion experiments.3 Then the photon yields obtained for two values of s/n

and a photon frequency ω ≳ 1000 MeV are extrapolated to a third value and compared to

the actual photon yield at this point to obtain an integrated version of F . As the photon

emissivity strongly depends on the temperature and the enhancement factor is at most

O (10) this is a very challenging measurement, which probably requires to only use data

sets with comparable initial temperatures (which has to be estimated on an event-by-event

basis by a backwards hydrodynamical calculation).

As a precursory study for such a project, in Fig. 6.20, the static enhancement factor is

shown for ω = 1000 MeV and several temperatures. Clearly, one notes that for s/n ≥ 2.8

F is almost unity for all temperatures, while at s/n = 2.4 it is significantly larger for

20 < T < 80 MeV. This is the signature from the s/n = 2.4 isentrope touching the FOPT.

As F (T = 80, s/n = 2.4) is only slightly larger than unity, one even can deduce that

TCEP ≲ 80 MeV from this plot.

3 In principle, from such fits only properties on the chemical freeze-out curve can be deduced, but as
discussed above, the s/n ratio is approximately constant during the evolution.



6.5 Summarizing the findings 119

6.5. Summarizing the findings

In the previous section, a comprehensive overview was given on the photon emission within

the QMM. This was done by first distinguishing two ranges of the photon frequency with

different emission characteristics. These are the high-frequency region ω ≳ 1000 MeV and

the low-frequency region ω ∼ ωpeak, with ωpeak being the average position of the maxima of

the partial spectra. Since the thermal emission from the considered processes is expected

to be masked by Dalitz decays of the final state pions the region ω < ωIR = 150 MeV is

excluded from the analysis. In doing so, also the frequency range was removed in which

IR divergencies of the matrix elements can distort the results.

After this separation into a low-frequency and a high-frequency region, the emissivities in

each region for one representatively chosen photon frequency (ω = 200 MeV and 1000 MeV,

respectively) were studied, finding essentially that in the low-frequency region for 2 →
2 processes the emissivities are governed by the sum of the incoming masses while in

the high-frequency region the mass of the outgoing partner of the photon is the relevant

quantity. In the high-frequency region, there is an ordering w.r.t. the type of the considered

processes (Compton, annihilation, and anti-Compton), while in the low-frequency region

the annihilation and Compton processes contribute in the same order of magnitude to the

emissivity. Studying the effect of chiral symmetry restoration/breaking on the emissivities

a much larger effect was found in the low-frequency region.

Besides analyzing the emissivities w.r.t. the position in the phase diagram with photon fre-

quencies held constant, we took a complementary view by keeping the position in the phase

diagram fixed and analyzed the partial spectra in a wide ω range. These positions were

chosen in order to search for signatures of the chiral symmetry restoration and breaking

and it was found that in the PWW phase the partial spectra for processes differing only

in the meson differ only by a factor of about three. This factor is approximately constant

in the whole ω region and can be attributed to the pions being an isospin triplet while the

sigma represents a singlet. In the PNG phase, no such similarity of the partial spectra is

observed.

Another question that was addressed is whether the order of the phase transition can be

related to features of the partial spectra. However, no evidence for this conjecture was

found. In this context, it was checked to which extent a vanishing sigma mass influences

the spectra since, when releasing the linearized fluctuations approximation, one expects

that mσ = 0 at the CEP, which is necessary for the correct critical behavior at this point.

It was found that the only differences between the spectra with a CEP according to the

LFA and the spectra with mσ → 0 appear in the very low-frequency region ω < ωIR, which
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we excluded from our analysis.

Finally, we connected the rates to the adiabatic expansion paths through the phase diagram

and found only a small, if any, effect of the FOPT. Nevertheless, since the emissivities are

(inversely) ordered w.r.t. the entropy per quark the differences between neighboring isen-

tropes might persist after integrating the emissivities over the whole hydrodynamic stage

of an HIC. However, even in this case it seems a rather small effect. In this context, a

quantity was constructed that estimates the influence of an FOPT on the photon rates by

comparing the actual rate to an extrapolated rate. By looking for values significantly dif-

ferent from unity this quantity can be applied for locating an FOPT using only observables

that are – at least in principal – experimentally accessible.

6.6. Discussion of the emissivities

Infra-red divergencies

As a systematic investigation of the real photon emissivity in context of the QMM has not

been done in the literature many aspects of the approach presented in this thesis are of

explorative nature. Yet it can be assumed that several observations are robust features

which also apply to other approximation schemes or other models for strongly interacting

matter at finite density and temperature. One obvious objection is that the problem of IR

divergencies of the emissivities was ignored completely. They can be traced back to IR di-

vergencies of the matrix elements for which there are several standard ways to treat them.

The authors in [KLS91, BNNR92] regularize the IR divergencies in the weak-coupling

(high-temperature) limit of massless two-flavor QCD by equipping the low-momentum

propagators with the hard thermal loop (HTL) self-energies. To achieve this a IR cut-

off for the internal momenta is introduced, but in the final result the cutoff dependence

of the high-momentum (perturbative) parts and the low-momentum parts (HTL) of the

calculation neatly cancel. A close inspection shows that the IR divergencies are canceled

by contributions to the propagator originating from branch cuts, which are attributed to

Landau damping effects. Nonetheless, the HTL self-energies seem not to represent an ap-

propriate approximation for the low-momentum propagators within the QMM. To clarify

the argument, it is necessary to take a look on the key ingredient of the HTL resummation

(see [BP90, BI02] for a comprehensive discussion of the HTL resummation scheme): the

separation between hard ≳ T and soft momenta ∼ gT and the thermal mass being of order

gT in the weak coupling limit g → 0. Contrary, within the QMM, the coupling g between

quarks and mesons is of order unity rendering the HTL-like resummed self energies not
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Figure 6.21.: Diagrams for the leading order (w.r.t. the strong coupling gs) contribu-
tions to photon emission of the QGP. Top panels: standard Compton
and annihilation diagrams; bottom left panels: collinear bremsstrahlung
and annihilation processes contributing parametrically to the same or-
der as the processes in the top panels; bottom right panels: processes
also relevant for the relativistic LPM effect.

the leading terms in a controlled expansion. Related to this issue is that neither mesons

nor quarks are massless but are relatively heavy objects. Both facts make the use of a

HTL-like regularization of the matrix elements questionable.

Another way is more likely to be applicable for treating the IR divergencies of the matrix

elements: One postulates a finite detector sensitivity and adds all possible soft photon

emission processes to the production rate. For complete calculation and an exhaustive

discussion see, e.g. [YFS61, Wei65, PS95].

However, independent of the precise scheme applied for regularizing the IR divergencies

of the matrix elements, still a huge difference in the IR region remains between annihi-

lations and (anti-)Compton rates in certain regions of the phase space (in some regions

even between annihilations with σ mesons and those with π mesons, respectively), be-

cause the thermal suppression – present for the (anti-)Compton processes, but absent for

annihilation processes if 2mq < mσ,π – leads in these cases to two very different ω → 0

limits.

Photon emission from the QGP and the QMM

In the context of a high-temperature (perturbative) QGP, the photon emission was first

calculated with the inclusion of the processes depicted in the upper row of Fig. 6.21. The

corresponding matrix elements are similar to those used in this thesis. With the HTL

resummation method, the high-temperature QCD could systematically be evaluated mak-
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ing it possible to regularize the IR divergent parts of the matrix elements based on first

principles. Kapusta et al. [KLS91] and Baier et al. [BNNR92] independently performed

this calculations and the problem seemed settled. About ten years later, Aurenche et

al. [AGKZ98, AGZ00a, AGZ00b] identified further processes to be of similar importance,

even if they are only next-to-leading order in the coupling strength of the strong interac-

tion. Their calculations are extended in [AMY01b, AMY01a, AMY02] by the inclusion

of the Landau-Pomeranchuk-Migdal (LPM) effect to arrive at the complete leading

order results for photon emission from a QGP in the weak coupling limit.

As described above, in order for obtaining the complete leading order result for the photon

emission from the QGP several other processes had to be evaluated besides the 2 → 2

scattering processes depicted in the upper row of Fig. 6.21. It therefore is natural to ask

whether the calculations presented in this chapter need similar extensions in order to be

complete. Although such considerations are of great importance in the case of QCD at

high temperature, it seems that they are not applicable in the context of the QMM within

the LFA. This is not caused by the missing gluons, whose role could be played by massless

or very light scalar mesons, as spin is no essential feature for the reasoning in [AGKZ98]

and [AMY01a], but because neither the QMM coupling g is small compared to unity, nor

the thermal quark mass mq is proportional to T . The large meson mass in many parts

of the phase diagram also prevents the mesons to take over the role played by the gluons

in the original line of reasoning. In order for processes of the type depicted in the lower

row of Fig. 6.21 (but with the gluons replaced by the QMM mesons) to be of importance,

both internal particle propagators have to be almost on-shell. This is possible only if the

meson is (at least nearly) massless. Thus the only regions in the phase diagram where the

conclusions of [AGKZ98, AMY01a, AMY02] have to be considered are the chirally broken

phase in the chiral limit (there, the pions as the Goldstone bosons are massless) and

at the CEP (there, the σ-meson being the critical mode is massless). Still, even in these

cases, the quark-meson coupling is not at all a small number and it is not clear if the

considerations can be modified to apply in such a case. Therefore, this issue is left for

future work.

Relevant photon production channels

One obvious difficulty in transferring our findings to more realistic models is the limited

number of particle fields in the QMM. In modern transport approaches, such as UrQMD

[B+98b], GiBUU [BGG+12] or PHSD [CB09], a large number of possible channels contribut-

ing to the photon yields is implemented. In [LKCB13, LKS+15], the photon production
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processes in the PHSD model are listed and pT -spectra as well as centrality and beam

energy dependence are discussed. Ignoring final state hadronic decays, they find large

(depending, of course, on the beam energy and other experimental variables) contributions

from Compton scattering and annihilations in the QGP, and also significant contributions

from 2 → 2 scatterings including pions, vector mesons and nucleons as well as resonances.

As these processes are structurally similar to the 2 → 2 processes discussed above for the

QMM one may tentatively say that a transfer to realistic models is possible to some extent.

The main reason for such a claim is that the dominant influence of the phase structure

on the photon emissivities comes from the different behavior of the particle masses over

the phase diagram (and therefore from kinematics) and not from dynamical issues (i.e. the

cross sections). A similar picture is obtained in hybrid models [BB10a]. Therefore, even

thought there are, e.g. , no vector mesons and no baryons in the QMM, basic kinematic

results from our analysis will still persist for 2 → 2 processes including those in other

models. This issue will be discussed below in more detail.

In the weak coupling/high temperature limit of the strong interaction, one finds [AGKZ98,

AMY01b] that collinear bremsstrahlung and annihilation processes (cf. the first two panels

in the lower row of Fig. 6.21) contribute parametrically to the same order (up to logarithmic

corrections) as the fundamental tree level Compton and annihilation processes (cf. upper

row of Fig. 6.21). Within transport approaches also a large contribution from meson and

baryon bremsstrahlung processes is obtained. Thus, future work considering these channels

will be of particular interest.

Calculations based on the assumption of vector meson dominance (VMD) find important

contributions to the photon yields originating from a direct ρ/ω/ϕ-photon coupling and

thus relating the imaginary part of the photon propagator (related by (3.1.1) to the photon

emissivity) to the imaginary part (and thus their spectral width) of the vector meson

spectral functions [GK91, KKW96, Rap11]. On the other hand, comparisons between

calculations based on kinetic theory emission rates and calculations based on the imaginary

part of vector meson propagators (and thus VMD) demonstrate the equivalence of both

approaches [HHR16]. Especially, a good agreement is found when the kinetic theory part of

the calculation is solely based on tree-level 2 → 2 processes, which obey similar kinematics

as the processes we analyzed for the QMM. Nonetheless, VMD calculations often focus on

dilepton yields since the invariant mass spectra of dileptons reflect properties of the vector

meson spectral functions more directly.
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QED and the QMM

One further issue that has to be discussed in the context of real photon emission is the

coupling of the strongly interacting sector of the QMM to the electromagnetic one. In

our opinion, the QED-like minimal coupling is the most reasonable one albeit other, phe-

nomenologically rooted, coupling schemes are also discussed in the literature [SAR+98].

Not only such a coupling respects the gauge symmetry of QED, it is separately success-

fully applied in the individual sectors of the QMM; in the fermionic sector by QED itself

and in the mesonic sector by scalar QED which was used for modeling the pion coupling

to the electromagnetic field [BKM99]. Another reason for preferring this coupling scheme

is its application to investigations concerning static magnetic fields and chiral symmetry

breaking [NS06, FM07, MCF10, FGP12, ALZ15]. Thus one can conclude that although

other coupling schemes might be possible the minimal coupling can be regarded as the

most reliable one.

Transfer of the findings

As the QMM is quite different to realistic models for the strong interaction, especially in

the hadronic phase, we need to discuss the applicability of our findings. First, one has to

keep in mind that the strength of the QMM is not in its field content, but in its minimalistic

formulation, yet including explicitly hadronic and quark degrees of freedom. We now want

to comment on the properties of the photon emissivities within the QMM which might be

transferable to other models:

(i) As mentioned above, it was found that, due to the exponential thermal suppression,

the general behavior of the photon emissivities is dominated by certain combinations

of the mass parameters which have to be seen in relation to temperature and chemical

potential. In the high photon frequency region, the rate is dominated by contribu-

tions for which the total energy in the rest frame of the heat bath (called νmin in

Section 4.5) is minimal w.r.t. the center-of-mass energy s. Both, the position of this

minimum as well as the value of νmin at this point depend primarily on properties of

the out-states (i.e. on photon frequency and the mass of the other outgoing particle).

More specifically, for investigations of the chiral symmetry breaking at photon fre-

quencies ω ≳ 1000 MeV, channels with the particle having the largest mass change

being outgoing are presumed to be most promising.

(ii) While in the high-frequency region the outgoing particles determine the overall be-

havior of the emissivities, in the low-frequency region the incoming particles take
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over this role.

(iii) The hierarchy appearing in the emissivities (rate from Compton processes ≫ rate

from annihilations ≫ rate from anti-Compton processes) on the other hand is proba-

bly less transferable, because it is restricted to processes including quarks or baryons.

Often, many important photon production processes (e.g. ππ → ργ) do take place

without participation of quarks or baryons, which reduces the importance of this

observation. Nevertheless comparing (anti-) Compton processes and annihilations

involving the same particles (or their anti-particles) a hierarchy comparable to the

one in the QMM is expected to show up for such a subset of emission processes.

(iv) Chiral symmetry restoration / breaking is expected to show stronger signals in the

ω → 0 limit, because in this limit the emissivity change drastically if certain inequal-

ities for the masses of the participating particles are fulfilled / violated. The most

relevant distinction is between two cases: (a) The minimum, s1, of the minimal total

energy νmin (measured in the rest frame of the heat bath) w.r.t. the squared center-

of-mass energy s (cf. (4.5.4)) is smaller, i.e. s1 < s0, and (b) it larger or equal to

the minimal center-of-mass energy s0, i.e. s1 ≥ s0. (cf. Section 4.5 for the respective

definitions.)

In case (a), the exponential approximation (cf. Section 4.5.2) is applicable, while for

case (b), the Gaussian approximation (cf. Section 4.5.1) is appropriate. In physical

terms, the former approximation means that the largest contributions to the photon

production origins from processes with minimal center-of-mass energy s = s0 (which

in turn is determined from the sum of the masses of the incoming or outgoing parti-

cles, depending on which of both is larger). In case (b), the dominant contribution is

from processes with center-of-mass energy ≈ s1, which corresponds to the production

of the outgoing partner of the photon at rest in the heat bath rest frame. Both ap-

proximations have very different limits ω → 0: In (a), the emissivity approaches zero

faster than any power of ω, while in case (b) the limit is divergent (without proper

IR regularization) or finite (with proper IR treatment), making the rate for processes

according to the Gaussian approximation many orders of magnitude larger than the

rate according to the exponential approximation for small photon frequencies. Thus,

at low frequencies, the partial emissivities can drastically change when the masses

of the particles jump at the phase transition and by chance changing the order of s1

and s0. With minor changes to this argumentation, the same is expected to hold true

in a variety of models even for a larger class of processes than the 2 → 2 processes

for which it was derived.

Contrary, the result that the low-frequency region 150 MeV ≲ ω ≲ 500 MeV is better
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suited for the investigation of chiral symmetry than the high-frequency region ω ≳
1000 MeV relies strongly on the above mentioned hierarchy of photon production

channels which is limited to processes involving fermions as well as to the CEP being

located at a relatively large µ/T ratio.

(v) It was found that the ratio of the total rates on both sides of the phase transition curve

is of the order of magnitude exp{−∆m(T )/T} with ∆m(T ) being the scale of the mass

jumps across the FOPT at temperature T . This implies that the effect of the phase

transition is larger for small temperatures. On the other hand, at low temperatures

the absolute emissivities are small, so the best temperature range for detecting effects

of the FOPT is determined by the interplay of theses competing effects. For a

realistic model of QCD-like matter the effective masses have to be of the same order

of magnitude as ΛQCD (in principle, probably also of O (T ) or O (µ). However, close

to the phase transition curve at least one of the thermodynamic quantities T and

µ is of O (ΛQCD)). Therefore, for a wide variety of models ∆m(T ) = O (ΛQCD) and

therefore ∆m(T ) is thus of the same order of magnitude as in the QMM. Concerning

the size of the jump of the emissivities at the phase transition line, the main difference

between many models is up to which temperature the curve of FOPTs extents, i.e. the

temperature TCEP of the critical end point. For ∆m ∼ 200 MeV, the ratio between

the emissivities on both sides of the phase transition line at T = 50 MeV is of O (50),

while for T = 100 MeV it is less than 10. This makes the detectability of an FOPT

in the photon emission at high temperatures much more challenging.
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In this thesis, the photon emission from the quark meson model (QMM) was analyzed in

detail. We applied an approach based on path integrals including leading order mesonic

fluctuations, the so-called linearized fluctuation approximation (LFA), which ensured con-

sistency between thermodynamics and matrix element calculations in terms of Feynman

diagrams. To this end, it was necessary to re-derive the kinetic theory expression for the

photon emissivity and to read off at the intermediate steps of the calculation which mass

parameters have to be applied in the matrix element calculations. It turned out that in

the mesonic sector the mass parameters applied in the momentum distribution function

for the grand canonical potential are the same as the mass parameters showing up in the

meson propagators used for the matrix elements. However, the fermionic mass parameters

differ for both applications. In the thermodynamical sector, a mass parameter averaged

over the meson configurations is a reasonable choice, but the correct mass parameter for

the fermionic propagator depends only on the averaged meson fields, at least within the

LFA.

7.1. Thermodynamics

The general behavior of the thermodynamical quantities, such as pressure, energy density,

entropy density, net quark density etc., is similar to that well known from other com-

pilations of the QMM or other chiral effective models with similar degrees of freedom.

However, within the LFA it has only partially been studied before. The major compila-

tions are [MME04] (restricted to the temperature axis), [BK09] (focusing on the phase

transition curve w.r.t. the pion vacuum mass parameter) and [FKP10] (analyzing the fine

structure of the CEP).

Analyzing the thermodynamics of the QMM w.r.t. to a large number of parameter sets the

following behavior in the T–µ -diagram has been observed:
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(i) At T = 0 and |µq| ≤ mvac
nuc/Nc, all thermodynamical quantities and field parameters

attain their vacuum values, especially pressure, energy density, entropy density and

net quark density vanish, while all mass parameters and field expectation values

coincide with the vacuum values.

(ii) There are three major classes of parameter sets. In the first class, the vacuum quark

mass is larger than the critical chemical potential µ0
c at zero temperature, in the

second class it is smaller and in the third class there is no first-order phase transition

(FOPT) whatsoever. In the first class, the region in which all thermodynamical

quantities and field parameters retain their vacuum mass extends to the FOPT curve.

This is sometimes phrased as the system being in equilibrium with the vacuum at the

FOPT, which is not regarded realistic for the chiral transition, but fits better to the

nuclear liquid-gas transition. In the T–µ phase diagram all isentropic curves merge

at some temperature with the FOPT curve and run down on it, even the isentropes

that traverse the crossover region.

In the second class of parameters, the thermodynamical quantities at the FOPT are

different from their vacuum values, even at T = 0, and the isentropic curves all merge

at the point (T, µ) = (0,mvac
nuc/Nc) after passing the crossover region or the FOPT

curve.

As it is the aim of this thesis to study the impact of an FOPT or CEP on the photon

emission the third class of parameter sets was not included in the analysis. Albeit

not shown explicitly in Chapter 5, also for these parameter sets the isentrope merge

at the point (T, µ) = (0,mvac
nuc/Nc).

(iii) The position and shape of the phase transition curve is related to a particular pa-

rameter combination, namely mvac
σ ⟨σ⟩vac. Phenomenologically, the chemical potential

µCEP of the CEP linearly depends on the parameter combination mvac
nuc/(2Nc) − µ0

c .

At chemical potentials larger than µCEP, the transition is of first order and at smaller

chemical potential it is a crossover. If the difference of the critical chemical potential

at zero temperature and the vacuum quark mass mvac
nuc/Nc exceeds a certain threshold

(about 100 MeV) the CEP ceases to exist and the transition becomes a crossover for

all temperatures (third class of parameters according to (ii)). Conversely, for arbi-

trarily large mvac
nuc, the CEP chemical potential µCEP can be made arbitrarily small

eventually reaching µCEP = 0 at some large mvac
nuc being of O (600 MeV ×Nc) and

thus completely separating the two phases by a FOPT curve.

(iv) The sigma mass parameter mσ is minimal in a valley surrounding the phase transition

curve. The global minimum is at the CEP. In an exact calculation, mσ should be
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zero there, but the LFA enforces a strict relation between the fluctuation measures

and mσ which inhibits mσ from becoming zero at the CEP.

In the pseudo Nambu-Goldstone (PNG) phase (i.e. the phase with broken chiral

symmetry), there is a large mass splitting between mσ and mπ, while, in the pseudo

Wigner-Weyl (PWW) phase (i.e. the phase with restored chiral symmetry), both

mass parameters are approximately degenerate. This reflects the approximate chiral

symmetry, which (approximately) transforms both fields into each other and thus re-

quires (approximately) identical masses for both fields. On the other hand, the quark

mass is large in the PNG phase (between mvac
nuc/Nc and approximately mvac

nuc/(2Nc))

but considerably smaller in most parts of the PWW phase (in the chiral limit it is

zero), which also reflects chiral symmetry. This behavior of the quark mass is re-

flected by a corresponding behavior of the sigma thermal expectation value, which

can be regarded an order parameter of the phase transition.

(v) In the PWW phase, entropy density and net quark density are almost equal to

the corresponding quantities of a free Fermi gas with the same number of degrees

of freedom, while in the PNG phase, they are considerably smaller. However, the

pressure is much smaller than that of a Fermi gas, which can be parametrized with

a temperature and chemical potential independent offset. This can be interpreted –

analogous to the MIT bag model – in terms of the pressure of a nontrivial vacuum

state.

(vi) Compared to the mean field thermodynamics the general behavior is similar (albeit

with a shift of the CEP), with some differences in the critical region: In mean field

approximation the mass mσ of the sigma field vanishes at the CEP, contrary to the

LFA. Also, the critical region in LFA is less elongated than within the mean field

approximatioin. For zero temperature both approximations coincide.

Although the leading meson fluctuations are included, there are still important features

missing. The approximation of the effective meson potential Ueff by a quadratic potential

U is a severe simplification. If higher-order terms were included the meson self energy

would not be momentum independent and nontrivial dispersion relations are possible.

7.2. Photon emission

Several aspects of the QMM thermodynamics are reproduced imperfectly, if vacuum fluc-

tuations are omitted. However, this thesis is aimed at a different goal: to work out connec-

tions between the photon spectra and features of the phase diagram. In order to achieve
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this goal it is more important to work with an approximation that permits the CEP to

be located at temperatures in the order of 100 MeV at realistic pion and nucleon masses

rather than to use the best approximation scheme available for the QMM. Furthermore,

the applied approximation scheme is especially well suited to derive both, thermodynamics

as well as photon emissivities, on the same footing, namely, the similar path integral repre-

sentations of the partition function and the generating functional of correlation functions.

Studying photon emissivity at finite temperature and density within the QMM is especially

interesting as, the QMM, despite its popularity for modeling the chiral transition, has not

been applied to the calculation of direct photon emission before. The only (albeit very

interesting) application to electromagnetism being the influence of strong nuclear magnetic

fields on the phase diagram.

In the high-frequency region (ω ≳ 1000 MeV) the behavior of the rates is determinated

(for 2 → 2 processes) essentially by the mass of the outgoing partner of the photon, i.e. for

the (anti-)Compton processes by the mass of the (anti-)quarks and for the annihilations

by either the sigma or the pion mass. This makes annihilations into a photon and a sigma

meson an interesting channel for the detection of CEP signatures since the critical mode at

the CEP is sigma meson, which hence becomes massless there. However, the momentum

distributions of the incoming particles lead to a factor ∼ exp{µ/T} suppressing this channel

w.r.t. the Compton processes by this amount and making the detection of this channel

in the total rate a challenging task. Nevertheless, for hypothetical CEP positions at small

values of the chemical potential this suppression becomes less important and the peak

structure of the partial emissivity from annihilations into a photon and a sigma meson

might show up even in the total emissivity.

Contrary, in the low-frequency region, i.e. for ω = 150 MeV . . . 500 MeV, the emissivities are

determined essentially by the sum of the incoming particle masses. This difference in the

dominant parameter dependency leads to the following conclusion: Since the Compton

emissivities are enhanced by the above mentioned factor exp{µ/T} they constitute the

dominant contribution to the total emissivity. For the Compton processes, in turn, the

sigma meson being most intimately connected to the CEP (since it constitutes the critical

mode) is an incoming particle and thus the low-frequency region is expected to show

stronger signals of the CEP than the high-frequency region (for which the outgoing masses

are the most relevant quantities).

On the other hand, when being interested in obtaining a clear signal of the FOPT the high-

frequency region seems better suited since the quark mass shows the strongest jump of all

mass parameters when crossing the FOPT curve. As the Compton processes dominate

the total emissivities and the quarks are outgoing particles for these processes the high-
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frequency region is best suited for getting a clear signal. This conjecture is furthermore

supplemented by the static enhancement factor constructed for quantifying the influence

of the FOPT on the photon spectra.

At the FOPT curve, the emissivities are discontinuous due to the jumps of the particle

masses. These discontinuities vanish at the CEP and in the crossover region, but quickly

increase on the FOPT curve with the distance to the CEP, e.g. 10 MeV below the CEP-

temperature TCEP, the Compton rate increases at the FOPT by a factor of about ten.

From the point of detectability this is good, since it implies that already at relatively

high temperatures the difference in the emissivity between both phases is large. This is

especially important since the emissivity strongly scales with the temperature and thus

the FOPT has the largest effect on the total photon yield at high temperatures, i.e. close

to the CEP.

Since the partial emissivities are dominated by kinematics and thus the respective particle

masses, chiral symmetry restoration and breaking manifest themselves in the photon emis-

sivity. To this end the sum of Compton, anti-Compton and annihilation processes with

or without pions (i.e. without or with sigma mesons) were calculated separately. In the

PWW phase, the ratio of both quantities is approximately one third (corresponding to the

three pions compared to one sigma meson), while, in the PNG phase, it is several orders

of magnitude smaller depending on the precise position in the phase diagram as well as on

the photon frequency. It was found that the chiral restoration gives a clearer signal when

observed at low photon frequencies, i.e. the partial emissivities with pions differ stronger

from those with sigma meson at low-photon frequencies.

The character of the phase transition leaves no clear signal in the functional form of

the partial spectra. Nevertheless, close to the transition region the mass ratios mq/mσ,

mq/mπ, mπ/mσ etc. change, which has some impact on the low-frequency region of the

photon spectra. However, the thus induced changes may or may not occur on the phase

transition curve and the crossover region.

Finally, the enhancement of the photon emissivity due to the FOPT was quantified by a

static enhancement factor. This quantity is constructed in a way that enables – at least in

principle – the comparison with experimental data. Nonetheless, due to the limitations of

the QMM as well as the applied approximations and the necessity for supplementing the

emissivities with many other ingredients that were not focus of this thesis (hydrodynami-

cal evolution of the expanding medium produced in a heavy-ion collision, freeze-out, finals

state decays etc. ) we refrained from doing so. Nonetheless, two points are worth mention-

ing: Firstly, the effect of the FOPT saturates in the high frequency region ω ≳ 1000 MeV

and is much smaller in the low-frequency region. Secondly, the influence is rather moderate
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with the enhancement factor being about three: Only at small temperatures T ≲ 40 MeV

the enhancement factor becomes larger reaching values of about 10 at T ∼ 20 MeV. Due

to the strong temperature dependence of the total photon emissivity the absolute numbers

are small, though.

7.3. Outlook and suggested future projects

This thesis should be seen as an explorative study dedicated to the determination of the

extent to which the photon emissivities are sensitive to the chiral symmetry breaking and

restoration. In the following, a few improvements are listed that should be incorporated

for refining the analysis of photon emission of strongly interacting matter. This discussion

is restricted to the chiral sector keeping out confinement/deconfinement issues, e.g. the

inclusion of a Polyakov loop variable and its potential.

To make quantitative predictions several further issues have to be considered: First, more

degrees of freedom must be included; especially the vector mesons and (due to chiral

symmetry) the axial vector mesons are expected to contribute considerably. Of course,

one could think about including strangeness into the model. However, in doing so the

number of mesonic degrees of freedom has to be increased strongly (from 4 to 18) in order

to maintain chiral symmetry. Furthermore, several explicitly symmetry breaking terms

(e.g. for SU(3) flavor symmetry the axial U(1) symmetry, absent for the SU(2) case, has

to be broken explicitly to respect the axial anomaly of QCD) have to be introduced in order

to reproduce QCD vacuum properties adequately [SW09, SWW10]. Similarly, the number

of parameters increases even more when including vector and axial vector mesons in the

model [PGR10, PKW+13]. Thus, for increasing the flavor dimension or adding further

kinds of mesons to the model, many additional parameters have to be included reducing

the predictive power of the resulting model and complicating the analysis considerably.

Furthermore, with much more path integrals to be evaluated the method of linearized

fluctuations requires to include further equations to be solved self consistently, such that

the numerical solution on a fine grid spanning the relevant parts of the phase diagram

becomes impractical. In order to still do thermodynamical calculations one uses the mean

field approximation, i.e. setting the meson fields to their respective thermal expectation

value. However, then the coupling to the photon sector is far less elegant. As an immediate

future project we thus recommend to include axial and vector mesons, however sticking

to two flavors and furthermore keeping the number of parameters in the meson sector as

small as possible.
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Besides extending the model, also the applied approximations can be relaxed or refined.

In this respect, the inclusion of vacuum fluctuations seems quite important, since, on one

hand, it shifts the CEP considerably pushing it well outside the experimentally accessi-

ble region and, on the other hand, respects one of the major formal advantages of the

QMM, namely its renormalizability. Furthermore, the derivative expansion of the fermion

trace can be improved by including higher order derivative terms. Especially the terms

up to second order in the derivatives seem to be easily compatible to the LFA. (Third

or higher order terms can include third or higher powers of the meson fields which are

in conflict with the (second order) approximated effective meson potential, cf. (4.2.22).)

Also for the calculation of the probability distributions higher order meson derivatives can

be incorporated. Yet, probably the most restrictive approximation in our calculation is

the replacement of the effective meson potential Ueff including the fermionic contribution

by the second-order potential U as this effectively makes the mesonic sector of the model

noninteracting. It is not clear whether an inclusion of third- or fourth-order terms into

U improves the approximation since the effect of the higher-than-second order terms has

most likely to be calculated applying perturbation theory with these terms representing

interaction vertices. In general, the effective coupling constants in these additional terms

are no small numbers which makes a naive perturbative approach questionable. Never-

theless, momentum dependent meson self energies can be introduced in this way and the

correct critical behavior at the CEP might be recovered. Furthermore, the inclusion of

additional terms in a systematic way preserving symmetries is a nontrivial task which is

best done following dedicated formalisms such as the CJT [CJT74] or the Φ-functional

[BK61, Bay62, vHK02] formalisms or working within the FRG framework [Gie12].

Besides improving the LFA or modifying the underlying QMM, one can include further

processes in the photon emissivity. The matrix elements, however, have to be first order

in the electromagnetic coupling (otherwise the connection of the photon propagator with

the emissivity cannot be made with the McLerran-Toimela formula introducing rather

involved modifications to the rate formulas applied in this thesis) but may be higher order

in the quark-meson coupling. Especially, 2 → 3 bremsstrahlung and 3 → 2 annihilation

processes seem interesting channels as modern transport codes suggest [LKCB13, BB10a].

In the case that the QMM is supplemented by a vector/axial vector sector, scatterings

with ρ and ω mesons are of great interest, too [HHR16].

Finally, we want to point out that within this thesis we illuminated the close relation

of photon emission with the underlying thermodynamics especially with dynamical mass

generation. In passing, we studied the parameter dependence of certain features of the

QMM phase diagram, revealing some simple relations between the vacuum properties and
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the phase transition. These relations provide simple tools, which can be used on the one

hand to specifically manipulate the model and thus make desired features show up in the

phase diagram or, on the other hand, to manifest the limitations of the QMM.



A. Conventions and acronyms

A.1. Units

Throughout this work, exclusively natural units are used in which

c = ℏ = kB = 1. (A.1.1)

In the electromagnetic sector, Heaviside-Lorentz units are used in which

e2 = 4παℏc, (A.1.2)
(A.1.1)

= 4πα. (A.1.3)

A.2. Conventions

� If not stated elsewise, the Einstein sum convention is applied, i.e. we implicitly sum

over each pair of identical indices one of which must be covariant and the other one

contravariant.

� For the Minkowski metric the following sign convention is used :

gµν = diag(1,−1,−1,−1). (A.2.1)

� The Levi-Civita symbol is defined with ϵ0123 = +1.

� The prefactor in the definition of the (n-dimensional) Fourier transform is chosen

such that the Fourier transform is unitary, and the prefactor is real and positive

(see Appendix B), i.e. Cn = (2π)−n/2.

� The matrix γ5 is defined with the following sign: −1/4!
√

det gϵµνρκγ
µγνγργκ.
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� The invariant matrix elements Mi→f for scatterings from initial states |i⟩ into final

states |f⟩ are connected to the corresponding T matrix element Tfi according to

Tfi = (2π)4δ(4)(Pf − Pi)Mi→f with the total momenta of the initial and final states

denoted by Pi and Pf , respectively.

A.3. Acronyms and shortcuts

AGS Alternating Gradient Syn-

chrotron

Former storage ring at the BNL, now a

injector for the RHIC; operating time:

1960 - today.

ALEPH Apparatus for LEP PHysics Collider experiment at the LEP at the

CERN; operating time: 1989 - 2000.

ALICE A Large Ion Collider Experi-

ment

Collider experiment at the LHC dedi-

cated to heavy-ion collisions; operating

time: 2010 - today.

BCS Bardeen Cooper Schrieffer

(theory)

Theory for conventional (type I) super-

conductors, which explains supercon-

ductivity by pairing of electrons.

BEVALAC merged from BEVATRON

and (Super)HILAC

Accelerator at the LBL; operating

time: 1971 - 1993.

BNL Brookhaven National Labora-

tory

Accelerator center on Long Island, New

York, USA.

CBM Compressed Baryonic Matter Fixed target experiment at the FAIR

facility; under construction .

CEP Critical End Point Ending point of a curve of first-order

phase transitions.

CERES ChErenkov Ring Electron

Spectrometer

Fixed target experiment at the SPS;

operating time: 1992 - 2000.

CERN Conseil Européen pour la

Recherche Nucléaire

European center for nuclear research;

Geneva, Switzerland.

CFL Color Flavor Locked (phase) High density phase of strongly interact-

ing matter. The relevant degrees of

freedom are Cooper-pairs of quarks

with a combined flavor and color sym-

metry.



A.3 Acronyms and shortcuts 137

CJT Cornwall Jackiw Tomboulis

(formalism)

χPT Chiral Perturbation Theory Effective theory being the result of a

systematic expansion of QCD w.r.t. the

(light) quark masses.

CMS Center of Mass System

DLS DiLepton Spectrometer Fixed target experiment at the BE-

VALAC; operating time: 1986 - 1993.

EoS Equation of State Thermodynamic relation between

derivatives of the thermodynamic

potential and certain thermodynamic

quantities. In context of ultrarelativis-

tic hydrodynamics often e = e(p) is

meant.

FAIR Facility for Antiproton and

Ion Research

Accelerator complex at the GSI

Helmholtz-Center for Heavy Ion

Research; under construction .

FOPT First-Order Phase Transition

FRG Functional Renormalization

Group

FWHM Full Width at Half Maximum

HADES High-Acceptance DiElectron

Spectrometer

Fixed target experiment at the SIS18

accelerator; operating time: 2004 - to-

day.

HELIOS-3 High Energy Lepton and IOn

Spectrometer - 3

Fixed target experiment at the SPS

accelerator, Synonym: NA34-3; operat-

ing time: 1988 - 1990.

HIC Heavy Ion Collision

HTL Hard Thermal Loop Refers to the approximation and resum-

mation scheme developed by Braaten

and Pisarski, cf. [BP90].

IR Infra Red Here: the ω → 0 limit

JINR Joint Institute for Nuclear

Research

Russian center for nuclear research;

Dubna, Russia.

J-PARC Japan Proton Accelerator

Research Complex

Japanese center for nuclear research;

Tōkai, Japan.
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LBL Lawrence Berkeley National

Laboratory

Research center in Berkeley, California,

USA.

LEP Large Electron-Positron col-

lider

Accelerator for electrons and positrons

at the CERN; operating time: 1989 -

2000.

LHC Large Hadron Collider Accelerator at the CERN; operating

time: 2009 - today.

LSM Linear Sigma Model Field theoretical model for studying the

spontaneous chiral symmetry breaking

or restoration.

LFA Linearized Fluctuation Ap-

proximation

Approximation scheme applied in this

thesis to the QMM.

MFA Mean Field Approximation

MPD Multi Purpose Detector Future experiment at the NICA accel-

erator complex; under construction .

NA## North Area ## Shortcut for the experiments (distin-

guished by the number following the

letters) located at the northern experi-

mental side at the SPS.

NICA Nuclotron-based Ion-Collider

fAcility

Planned accelerator at the JINR; un-

der construction .

OPAL Omni-Purpose Apparatus at

LEP

Collider experiment at the LEP; oper-

ating time: 1989 - 2000.

QCD Quantum CromoDynamics theory of the strong interaction, one

of the building blocks of the Standard

Model of particle physics.

QED Quantum ElectroDynamics Quantum theory of electromagnetism.

QGP Quark Gluon Plasma high temperature phase of the QCD

matter. The relevant degrees of free-

dom are quarks and gluons.

QMM Quark Meson Model Field theoretical model for studying the

spontaneous chiral symmetry breaking

or restoration.

PHENIX Pioneering High Energy Nu-

clear Interaction eXperiment

Collider experiment at the RHIC; op-

erating time: 2000 - today.

PHSD Parton Hadron String Dy-

namics

Microscopic transport model often ap-

plied to HICs.
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PNG Pseudo Nambu-Goldstone

(phase)

Phase with the Nambu Goldstone

realization of the approximate sym-

metry, i.e. the conserved charges do

not annihilate the thermal equilibrium

state, i.e. phase with spontaneously

broken approximate symmetry

PWW Pseudo Wigner-Weyl

(phase)

Phase with the Wigner Weyl re-

alization of the approximate symme-

try, i.e. the conserved charges anni-

hilate the thermal equilibrium state,

i.e. phase with approximately restored

symmetry.

RFH Rest Frame of the Heat bath

RHIC Relativistic Heavy Ion Collid-

er

Accelerator at the BNL; operating

time: 2000 - today.

SIS Schwer-Ionen Synchrotron Accelerator at the GSI Helmholtz-

Center for Heavy Ion Research, the

number following this shortcut specifies

the magnetic rigidity and is used to dis-

criminate different upgrades of the ma-

chine.

SPS Super Proton Synchrotron Storage ring at the CERN, now a injec-

tor into the LHC; operating time: 1976

- today.

STAR Solenoidal Tracker At RHIC Collider experiment at the RHIC ac-

celerator; operating time: 2000 - today.

UrQMD Ultrarelativistic Quantum

Molecular Dynamics model

Microscopic transport model often ap-

plied to HICs.

VMD Vector Meson Dominance Refers to the (phenomenological) as-

sumption that the photon emission is

dominated by conversions from vector

mesons into photons.

WA## West Area ## Shortcut for the experiments (distin-

guished by the number following the

letters) located at the western experi-

mental side at the SPS.





B. Useful identities

B.1. Functional calculus

B.1.1. Continuum limit

Several times in this work, functional traces or determinants have to be evaluated. Since

they are defined as special limits of their finite dimensional counterparts a precise under-

standing of the relation of these functions and matrices is required. In this section, the

question: “What is the relation of a function k(x, y) and the matrix K, if both are repre-

senting the same quantity?” is addressed. For simplicity, this matter is discussed in one

dimension. Nevertheless, the results are easily generalized. Obviously for a finite spatial

grid (with step size ϵ = L/(N − 1), where L is the total length of the system and N the

number of grid points) xn = a + nϵ, ym = a + mϵ the function k evaluated at the grid

points form a matrix with matrix elements k(xn, ym). The product of two of such matrices

knm, f
m
r equals then

h(xn, zr) =
∑
m

k(xn, ym) · f(ym, zr). (B.1.1)

In order for this to have a finite limit N → ∞, each summand has to be multiplied by a

factor ϵ. If we define therefore the corresponding matrix to be Knm := ϵk(xn, ym) then in

the continuum limit a matrix product KF corresponds to

h(x, z) =

∫
dyk(x, y)f(y, z). (B.1.2)
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Consistent with this definition for continuum matrix multiplication is the following scalar

product ⟨·, ·⟩:

⟨V, U⟩ :=
(
V ∗
n

)
Un =

∑
n

v∗(xn)
√
ϵu(xn)

√
ϵ→

∫
dxv∗(x)u(x). (B.1.3)

The complex conjugation of the first argument ensures that the product of a vector with

itself yields a non-negative real number. The factors of
√
ϵ are necessary, because the

direct product of two vectors is a matrix which corresponds to function of two variables

multiplied by the step size ϵ.

A scalar product can also be written as the trace of the direct product of the two vectors.

Thus the trace can be consistently defined as

Tr
[
U ◦ V †

]
= V †U = ⟨V, U⟩ →

∫
dxv∗(x)u(x) (B.1.4)

which can be generalized by replacing the special matrix UV † with an arbitrary matrix M

and correspondingly v∗(x)u(y) into the function m(x, y)1 yielding

TrM →
∫

dxm(x, x). (B.1.5)

B.1.2. FOURIER transform

There is an arbitrariness in defining the Fourier transform F of a function f in n dimen-

sions concerning the prefactor Cn of the integral:

f̃(p) := Fc,n[f ](p) := Cn

∫
f(x)eipxdnx (B.1.6)

with the inverse transformation

F−1
c,n [f̃ ](x) :=

1

Cn(2π)n

∫
f̃(q)e−iqxdnq. (B.1.7)

1 This follows from replacing U and V with basis elements bi and bj of the vector space in which U and
V “live”. The set of all possible combinations bi ◦ bj constitute a basis of the space of all quadratic
matrices M of corresponding size. Applying the linearity of the trace the above statement then follows.
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One particular useful choice for the constant Cn is such that the transformation is unitary,

i.e.

F †
c,n[f̃ ](x) = C∗

n

∫
f(x)e−ipxdnx

!
= F−1

c,n [f̃ ] (B.1.8)

leading to

|Cn| = (2π)−n/2. (B.1.9)

A convenient choice is then further demanding Cn to be real and positive. The advantage

of a unitary Fourier transform is that for such a choice a functional determinant is

unchanged when the corresponding fields are transformed from configuration to momentum

space.

B.1.3. Functional traces

When evaluating a Gaussian path integral I =
∫
Dϕ exp{−

∫
dx
∫

dyϕ(x)A(x, y)ϕ(y)} the

result is most easily expressed in form of a functional determinant, which, in turn, can be

expressed with the help of ln detA = Tr lnA as a functional trace. In Chapter 4, such a

functional trace is then absorbed into the interaction potential. However, in order for this

to be mathematically well defined the trace has to be transformed into momentum space.2

In this section the central equality

TrM = Tr M̃ (B.1.10)

with the functional matrices M and M̃ being related by Fourier transform and C ≡ C4

being the prefactor in the definition of the Fourier transform (B.1.6) is demonstrated.

With the same reasoning as in Section B.1.1 it is sufficient to show (B.1.10) for matrices

of the form

M = U ◦ V †. (B.1.11)

2 This transformation does not have to be done at precisely this point in the calculation, but since the
function A(x, y) corresponds to the kinetic operator,it is fixed by the definition of the Lagrangian,
which is done in configuration space. The final result however, is represented by a momentum integral.
Therefore, the Fourier transformation has to be done at some point in the calculation.
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Applying the functional representations for U, V according to Section B.1.1 one may write

TrU ◦ V † =

∫
d4x v∗(x)u(x) (B.1.12)

=

∫
d4xC∗

∫
d4p ṽ∗(p)e−ipxC

∫
d4q ũ(q)eiqx (B.1.13)

=C∗C

∫
d4p

∫
d4q (2π)4δ(p− q)ṽ∗(p)ũ(q) (B.1.14)

= |C|2(2π)4
∫

d4p ṽ∗(p)ũ(p) (B.1.15)

= |C|2(2π)4Tr Ũ ◦ Ṽ †, (B.1.16)

where the functions u(x) and v(x) were Fourier transformed according to (B.1.6) and

Ũ and Ṽ correspond to this functions according to the correspondence outlined in Sec-

tion B.1.1. If, for the prefactor Cn in the definition of the Fourier transform, the unitary

choice is made (cf. (B.1.9)) then (B.1.10) follows immediately.

B.2. Epsilon contraction formulas

Often, products of Levi-Civita symbols occur, which can be simplified considerably by

applying the identity [LL80]

ϵµνρκϵαβλη =

∣∣∣∣∣∣∣∣∣∣


gµα gµβ gµλ gµη

gνα gνβ gνλ gνη

gρα gρβ gρλ gρη

gκα gκβ gκλ gκη


∣∣∣∣∣∣∣∣∣∣
. (B.2.1)

Often, one or several index pairs are contracted, which simplifies (B.2.1) considerably

[PS95]:

ϵµνρκϵκβλη = gνβg
ρ
λg

µ
η − gνβg

µ
λg

ρ
η − gρβg

ν
λg

µ
η + gρβg

µ
λg

ν
η + gµβg

ν
λg

ρ
η − gµβg

ρ
λg

ν
η , (B.2.2)

ϵµνρκϵρκλη = −2gµλg
ν
η + 2gµη g

ν
λ, (B.2.3)

ϵµνρκϵνρκη = −6gµη , (B.2.4)

ϵµνρκϵµνρκ = −24. (B.2.5)
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B.3. PAULI matrices

In this thesis, the Pauli matrices never have to be used explicitly. However, occasionally

some relations concerning them are very helpful:[
τa, τ b

]
= iϵabcτ

c, (B.3.1){
τa, τ b

}
= 2δab1, (B.3.2)

τaτ b = iϵabcτ
c + δab1, (B.3.3)

Tr
[
τa
]

= 0, (B.3.4)

det τa = 1. (B.3.5)

B.4. DIRAC matrices

B.4.1. Definition and properties of γ5

The matrix γ5 is defined as

γ5 := − 1

4!

√
det gϵµνρκγ

µγνγργκ. (B.4.1)

Since the calculations in this work are all done in flat space-time (Minkowski or Euclidean)

ϵµνρκ simply denotes the Levi-Civita symbol and not the ϵ tensor of general relativity.

We explicitly define γ5 with the factor of
√

det g to make the difference between Euclidean

(det g = +1) and Minkowski (det g = −1) space, as well as its invariance under coordinate

transformations (especially Lorentz transformations) apparent.

(γ5)2 = 1,

(γ5)† = γ5, (B.4.2){
γ5, γµ

}
= 0.

B.4.2. Trace formulas

For completeness, the well known trace formulas [PS95, Ynd06, Sre07] for products of

γ-matrices are collected here:

Tr
Dirac

[
odd number of γ’s

]
= 0, (B.4.3)
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Tr
Dirac

[
γµγν

]
= 4gµν , (B.4.4)

Tr
Dirac

[
γµγνγργκ

]
= 4gµνgρκ − 4gµρgνκ + 4gµκgνρ, (B.4.5)

Tr
Dirac

γ5 = 0, (B.4.6)

Tr
Dirac

[
γ5γµγν

]
= 0, (B.4.7)

which can be derived by successive use of the anti-commutation relations for the Dirac

matrices and the cyclicity of the trace. Another useful formula is the trace of a product of

four Dirac matrices and one γ5. If there is a pair of identical indices, the corresponding

matrices can be anti-commuted next to each other giving twice the unity matrix and thus

reducing the trace to (B.4.7). In order not to vanish all indices must be different, but in

this case all matrices anti-commute (at least if the metric is diagonal, which is true for

our purpose), which means that the trace must be a multiple of the Levi-Civita symbol,

i.e. Tr
[
γµγνγργκγ5

]
= Cϵµνρκ. Equations (B.2.5), (B.4.1) and (B.4.2) then yield:

C
√

det g = − 1

4!

√
det gϵµνρκ Tr

Dirac

[
γµγνγργκγ5

]
(B.4.8)

= Tr
Dirac

(γ5)2 = 4, (B.4.9)

⇒ Tr
Dirac

[
γµγνγργκγ5

]
=

4√
det g

ϵµνρκ. (B.4.10)

With the formulas (B.4.2)-(B.4.10), one can show that the set of matrices

1

2
1,

1

2
γµ,

1

4

(
γµγν − γνγµ

)
, i

1

2
γµγ5,

1

2
γ5 (B.4.11)

constitutes an orthogonal basis for the linear space of all 4 × 4 matrices with the scalar

product ⟨A,B⟩ being defined as the trace of the matrix product Tr [AB]. With the general

decomposition of a matrix (especially a product of three Dirac matrices) into this basis

and formulas (B.4.2)-(B.4.10) one derives the useful identity

γµγνγρ = 4gµνγρ − 4gµργν + 4gνργµ + iϵµνρκγκ, (B.4.12)

which can be used to reduce the product of n Dirac matrices to a sum of products with

(n−2) Dirac matrices. Equation (B.4.12) along with the epsilon determinant (B.2.1) and

the properties of γ5 collected in (B.4.2) are sufficient to reduce any structure composed of

Dirac matrices into a sum of traces of at most two Dirac matrices and one γ5 which

afterwards can be evaluated according to Eqs. (B.4.3) – (B.4.7) and simplified by the use

of Eqs. (B.2.1) – (B.2.5) [PS95, Ynd06, Das06]. Such a procedure was implemented for
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the evaluation of the matrix elements.

B.5. Kinematics of two-particle scatterings

The kinematics of 2 → 2 processes have been worked out in the literature (cf. [BK73, IZ05]

for extensive discussions). For completeness, we give short derivations of several relations

needed in this thesis.

B.5.1. Energies and momenta in the center-of-mass system

Because the Mandelstam variables s, t and u are Lorentz-invariant quantities they can

be evaluated in any frame of reference. For convenience, the center of mass system (CMS)

is chosen. The incoming particles are indexed with A and B, while the outgoing particles

are labeled by 1 and 2. The first goal is the determination of expressions for energies and

momenta in the CMS. Energy-momentum conservation in the CMS reads:

(
EA + EB

0⃗

)
=

(
E1 +

√
m2

2 + |p⃗2|2

0⃗

)
=

(√
s

0⃗

)
. (B.5.1)

In this section, the Mandelstam variables are defined according to

s = (pA + pB)2, u = (p1 − pA)2, t = (p2 − pA)2. (B.5.2)

Squaring the energy conservation (B.5.1),

s = m2
1 + |p⃗1|2 +m2

2 + |p⃗2|2 + 2
√
m2

1 + |p⃗1|2
√
m2

2 + |p⃗2|2, (B.5.3)

leads after a bit of algebra to

|p⃗1| = |p⃗2| =

√
λ(s,m2

1,m
2
2)

4s
(B.5.4)

with λ defined as in (4.4.10). Analogous for the incoming momenta:

|p⃗A| = |p⃗B| =

√
λ(s,m2

A,m
2
B)

4s
. (B.5.5)
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The corresponding energies E2
i = p⃗2i +m2

i (i ∈ {1, 2, A,B}) are:

E2
1 =

(s+m2
1 −m2

2)
2

4s
, E2

2 =
(s−m2

1 +m2
2)

2

4s
,

E2
A =

(s+m2
A −m2

B)2

4s
, E2

B =
(s−m2

A +m2
B)2

4s
.

(B.5.6)

B.5.2. Limits for the MANDELSTAM variables

The center of mass energy s has a lower bound:

s = (pA + pB)2 = p2A + p2B + 2
√
p2A + |p⃗A|2

√
p2B + |p⃗B|2 − 2 cos(θAB)|p⃗A||p⃗B| (B.5.7)

≥ p2A + p2B + 2
√
p2A + |p⃗A|2

√
p2B + |p⃗B|2 − 2|p⃗A||p⃗B| (B.5.8)

≥ p2A + p2B + 2
√
p2A

√
p2B (B.5.9)

≥
(√

p2A +
√
p2B

)2

= (mA +mB)2, (B.5.10)

where θAB is the angle between the momentum vectors p⃗A and p⃗B and with the equal signs

being valid for |p⃗A| = |p⃗B| = 0. Energy-momentum conservation dictates s = (p1 + p2)
2,

too, which by an analogous calculation is bounded from below also by

s ≥ (m1 +m2)
2. (B.5.11)

Since both inequalities must be fulfilled, one finds as the lower bound

s ≥ max{(mA +mB)2, (m1 +m2)
2}. (B.5.12)

For u we find

u = (p1 − pA)2 = m2
1 +m2

A − 2E1EA + 2 cos(θ1A)|p⃗1||p⃗A|. (B.5.13)

Thus, (| cos(θ1A)| ≤ 1) u lies within the interval [u−, u+] with

u± = m2
1 +m2

A − 2E1EA ± 2|p⃗1||p⃗A|. (B.5.14)
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Applying (B.5.6),(B.5.4) and (B.5.5) one finds

u± = m2
1 +m2

A − (s+m2
1 −m2

2)(s+m2
A −m2

B)

2s

± 1

2s

√
λ(s,m2

1,m
2
2)λ(s,m2

A,m
2
B)

. (B.5.15)

Analogously, one finds for t = (p1 − pB)2

t± = m2
1 +m2

B − (s+m2
1 −m2

2)(s−m2
A +m2

B)

2s

± 1

2s

√
λ(s,m2

1,m
2
2)λ(s,m2

A,m
2
B)

. (B.5.16)

Two special cases are of interest: a) p21 = 0 and p2A = p2B and b) p21 = 0 and p2A = p22.

case a)

This case is relevant, when particle 1 is a photon, particle 2 is either the sigma meson

or the pion with masses mσ and mπ, respectively and the incoming particles are a quark-

antiquark pair both with masses mq. In this case, the limits of the Mandelstam variables

read

smin = max{m2
σ,π, 4m

2
q}, (B.5.17)

u± = m2
q −

s−m2
σ,π

2
± 1

2
(s−m2

σ,π)

√
1 −

4m2
q

s
, (B.5.18)

t± = m2
q −

s−m2
σ,π

2
± 1

2
(s−m2

σ,π)

√
1 −

4m2
q

s
. (B.5.19)

case b)

This case in turn is relevant, when particle 1 is a photon, particle B is a sigma meson or

a pion and particles A and 2 are either a pair of quarks or a pair of antiquarks. Then the

limits of the Mandelstam variables are

smin = (mq +mσ,π)2, (B.5.20)

u± = m2
q +

(s+m2
q −m2

σ,π)(s−m2
q)

2s

(
−1 ±

√
1 −

4sm2
q

(s+m2
q −m2

σ,π)2

)
, (B.5.21)

t± = m2
σ,π +

(s−m2
q +m2

σ,π)(s−m2
q)

2s

(
−1 ±

√
1 −

4sm2
σ,π

(s−m2
q +m2

σ,π)2

)
. (B.5.22)



150 B Useful identities

B.5.3. Cross section

For 2 → 2 processes, the phase space of the outgoing particles is six-dimensional. Energy-

momentum conservation can be applied to execute four of the corresponding momentum

integrals. The remaining integrals can be parametrized by a polar and an azimuthal angle

of one of the outgoing particles. For processes symmetric to the beam axis (which is true

for point-like particles), the result is independent of the polar angle. Thus, the integration

over this angle gives just a factor of 2π and the azimuthal angle integration is the only one

remaining.

Calling the phase space integral Π2, defined according to

Π2 :=
1

(2π)6

∫
d3p1
2E1

d3p2
2E3

(2π)4δ(s− E1 − E2)δ
3(p⃗tot − p⃗1 − p⃗2), (B.5.23)

and calculating in the CMS one obtains with the help of (B.5.4) and (B.5.6) after some

algebra

Π2 =

√
λ(s,m2

1,m
2
2)

8(2π)s

1∫
−1

d cos θ. (B.5.24)

The azimuthal integration can be expressed in terms of the Mandelstam variable t:

With the definition of t (see (B.5.2)) and the energies and momenta in the CMS given by

eqs. (B.5.4) and (B.5.6) one obtains:

t = m2
A +m2

1 −
2

4s
(s+m2

A −m2
B)(s+m2

1 −m2
2)

+
2

4s

√
λ(s,m2

A,m
2
B)λ(s,m2

1,m
2
2) cos θ

, (B.5.25)

from which the infinitesimal t-element can be read off:

dt =
1

2s

√
λ(s,m2

A,m
2
B)λ(s,m2

1,m
2
2)d cos θ. (B.5.26)

One obtains for the phase space integral

Π2 =
1

8π
√
λ(s,m2

A,m
2
B)

t+∫
t−

dt. (B.5.27)
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The (vacuum) cross section is related to the matrix element M according to [PS95]

σ =
1

4EAEB|vA − vB|

∫
d3p1

2E1(2π)3
d3p2

(2π)32E2

(2π)4δ(4)(pA+pB−p1−p2)|M(s, t)|2.

With the help of (B.5.27) this can be written compactly as

σ =
1

4EAEB|vA − vB|
Π2|M(s, t)2|. (B.5.28)

In the CMS, the prefactor can be expressed in terms of s:

1

4EAEB|vA − vB|
=

1

2
√
λ(s,m2

A,m
2
B)
. (B.5.29)

Thus, one gets for the cross section:

σ =
1

16πλ(s,m2
A,m

2
B)

t+∫
t−

|M(s, t)|2dt. (B.5.30)





C. Calculation of the fermion

determinant

C.1. Derivative expansion

C.1.1. Leading order

In the case of a ϕ4 theory, the method is explained in [Fra85, AF85]. For the reader’s

convenience it is outlined and applied to the QMM here. The quantity to be approximated

is

Ωqq = −Tr ln
[(
G0
ψ(σ, π⃗)

)−1
]

(C.1.1)

with
(
G0
ψ(σ, π⃗)

)−1
defined according to (2.1.2). Formally, one can expand

Ωqq = −Tr ln
[
i/∂ − g(σ + iγ5τ⃗ π⃗)

]
(C.1.2)

= −Tr ln

[
i/∂

(
1 − 1

i/∂
g(σ + iγ5τ⃗ π⃗)

)]
(C.1.3)

= −Tr ln /p− Tr ln(1 − /p
−1M) (C.1.4)

≈ −Tr ln /p− Tr
[
/p
−1M

]
− 1

2
Tr
[
/p
−1M/p

−1M
]
− . . . , (C.1.5)

were the shortcut M = g(σ + iγ5τ⃗ π⃗) is used. Applying (/p)−1 = /p/p2 and the fact that

the trace of an odd number of Dirac matrices vanishes one notes that only powers of

/p−1M/p−1M remain in the sum (besides the ln /p-term). Using

/p
−1M/p

−1M =
/p

p2
g(σ + iγ5τ⃗ π⃗)

/p

p2
g(σ + iγ5τ⃗ π⃗) (C.1.6)

=
/p

p2
γµg(σ − iγ5τ⃗ π⃗)

pµ
p2
g(σ + iγ5τ⃗ π⃗) (C.1.7)
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and

ϕ(x)pµ = pµϕ(x) + [ϕ(x), pµ] = pµϕ(x) − i∂µϕ(x), (C.1.8)

for any field ϕ(x) one arrives at

/p
−1M/p

−1M =
/p

p2
/pg(σ − iγ5τ⃗ π⃗)

1

p2
g(σ + iγ5τ⃗ π⃗)

− i
/p

p2

(
/∂g(σ − iγ5τ⃗ π⃗)

) 1

p2
g(σ + iγ5τ⃗ π⃗).

(C.1.9)

Employing the operator identity (for invertible A)

[A−1, B] = −A−2[A,B] − A−3[A, [A,B]] − A−4[A, [A, [A,B]]] − . . . (C.1.10)

with A = p2 and B = σ, π the 1/p2 term in (C.1.9) can be commuted to the left. The

nested commutators in (C.1.10) are computed by utilizing recursively the identity

[p2, ϕ] =□ϕ+ 2ipµ∂µϕ. (C.1.11)

Inspecting (C.1.11) one sees that each commutator with p2 contributes at least one deriva-

tive of ϕ leading to the observation that terms in (C.1.10) with n commutators imply at

least n derivatives of the meson fields. Thus, one finds

[p−2, σ or π] = 0 + O (∂σ, ∂π⃗) , (C.1.12)

leading to

/p
−1M/p

−1M =
1

p2
g(σ − iγ5τ⃗ π⃗)g(σ + iγ5τ⃗ π⃗) + O (∂σ, ∂π⃗) (C.1.13)

=
1

p2
m2 + O (∂σ, ∂π⃗) (C.1.14)

with m2 = g2(σ2+π⃗2). Taking only zero derivative terms, the higher powers of /p−1M/p−1M

in the expansion (C.1.5) result in

(/p
−1M/p

−1M)n =

(
1

p2

)n (
m2
)n

1D + O (∂σ, ∂π⃗) (C.1.15)
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with 1D denoting the unity matrix in Dirac space. Then, the complete expansion (C.1.5)

gives

Ωqq ≈ −Tr ln /p−
1

2
Tr

[
m2
q

p2
1D

]
− 1

4
Tr

[(
m2
q

p2

)2

1D

]
− · · · + O (∂σ, ∂πa) . (C.1.16)

It can easily be checked that this is exactly the expansion of a noninteracting Fermi gas

with mass m

−Tr ln
[
/p−mq

]
= −Tr ln /p−

∑
n

1

2n
Tr

[(
m2
q

p2

)n
1

]
, (C.1.17)

thus verifying (4.2.11).

C.1.2. First-order correction

The evaluation of (C.1.11) to next to leading order gives a correction to (C.1.12):

[p−2, ϕ] = −2i

p4
pµ∂µϕ+ O

(
(∂ϕ)2

)
. (C.1.18)

Setting

B± := (σ ± iγ5τ⃗ π⃗), (C.1.19)

A := p2, (C.1.20)

B′ := /∂(σ − iγ5τ⃗ π⃗) (C.1.21)

makes the structure of (C.1.9) apparent

/p
−1M/p

−1M = g2/pA
−1
/pB−A

−1B+ − ig2/pA
−1B′A−1B+. (C.1.22)

Commuting B and A−1 in the first term and A−1 and B′ in the second moves all momentum

dependent terms to the left and all space-time dependent terms to the right. The necessary

relations up to first order in the derivatives are

B−A
−1 =A−1B− +

2i

p4
pµ∂µB− + O

(
∂2
)
, (C.1.23)

B′A−1 =A−1B′ + O
(
∂2
)
. (C.1.24)
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Applying this to (C.1.9) yields

/p
−1M/p

−1M = g2/pA
−1
/p
(
A−1B−+

2i

p4
pµ∂µB−

)
B+−ig2/pA−2B′B+ + O

(
∂2
)

(C.1.25)

= g2/p
2A−2B−B++g2

2i

p6
pµ/p

2∂µB−B+−ig2/pA−2B′B+ + O
(
∂2
)

(C.1.26)

= g21DA
−1(σ2 + (τ⃗ π⃗)2) + g2

2i

p4
pµ1D(∂µB−)B+

− ig2/pA
−2B′B+ + O

(
∂2
) (C.1.27)

= g21DA
−1(σ2+π⃗2)+g2

i

p4

(
2pµ1D−/pγµ

)
(∂µB−)B+ + O

(
∂2
)

(C.1.28)

= g21DA
−1(σ2 + π⃗2) + g2

i

p4
γµ/p(∂µB−)B+ + O

(
∂2
)
. (C.1.29)

Applying m2 = g2(σ2 + π⃗2) and introducing the shortcut b′ := g2ip−4γµ/p(∂µB−)B+ one

obtains

/p
−1M/p

−1M = 1D
m2

p2
+ b′ + O

(
∂2
)
. (C.1.30)

In (C.1.5), the n-th power of this is needed. Expanding (/p−1M/p−1M)n up to first order in

the derivative yields (note from its definition that b′ is first order in the derivatives)

(
/p
−1M/p

−1M
)n

=

(
1D

m2

p2

)n
+ n

(
1D

m2

p2

)n−1

b′ + O
(
(b′)2

)
(C.1.31)

=

(
m2

p2

)n
1D + n

(
m2

p2

)n−1

b′ + O
(
(b′)2

)
. (C.1.32)

This is to be inserted into (C.1.5)

Ωqq ≈ −Tr ln /p− Tr

[
∞∑
n=1

1

2n
(/p

−1M/p
−1M)n

]
(C.1.33)

= −Tr ln /p− Tr

[
∞∑
n=1

1

2n

(
m2

p2

)n
1D +

1

2n
n

(
m2

p2

)n−1

b′

]
+ O

(
(b′)2

)
(C.1.34)

= −Tr ln /p− Tr

[
∞∑
n=1

1

2n

(
m2

p2

)n
1D

]
− 1

2
Tr [b′]

∞∑
n=0

(
m2

p2

)n
+ O

(
b′
2
)
.

(C.1.35)
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The first two terms yield the leading order result, while the third trace is the first-order

correction in the form of a geometric series:

Ωqq = −Tr ln
[
/p− m̃

]∣∣∣∣∣
m̃=m

− 1

2
Tr [b′]

p2

p2 −m2
+ O

(
b′
2
)
. (C.1.36)

The Dirac part of the b′ trace can be executed with the result

Ωqq = − Tr ln
[
/p− m̃

]∣∣∣∣∣
m̃=m

− 1

2
Tr [b′]

p2

p2 −m2
+ O

(
b′
2
)

(C.1.37)

= − Tr ln
[
/p− m̃

]∣∣∣∣∣
m̃=m

− 2g2iTr
pµ

p2
1

p2 −m2

[
σ∂µσ12×2 + τaτ bπa∂µπb

]
+ O

(
b′
2
)
.

(C.1.38)

Applying (B.3.3) and evaluating the flavor trace yields

Ωqq = −Tr ln
[
/p− m̃

]∣∣∣∣∣
m̃=m

− 4g2iTr
pµ

p2
1

p2 −m2
[σ∂µσ + π⃗∂µπ⃗] + O

(
b′
2
)

(C.1.39)

= −Tr ln
[
/p− m̃

]∣∣∣∣∣
m̃=m

− 2iTr
pµ

p2
1

p2 −m2
∂µm

2 + O
(
b′
2
)
. (C.1.40)

It is satisfying that the second term indeed is a small correction if the meson fields (and

thus m2) are only slowly varying.





D. Inverting perturbed matrices

We apply

M−1 = M−1
0

∞∑
n=0

(−∆MM
−1
0 )n, M = M0 + ∆M (D.1.1)

valid for invertible matrices M and M0. A heuristic derivation of (D.1.1) can be obtained

by noting

M−1 = (M0 + ∆M)−1 = M−1
0 (1 − (−M0∆M))−1 (D.1.2)

which is then written as a geometric series, leading to (D.1.1). With Ma
b ≡ M(xa, xb)

this relations can be reformulated for the continuum limit in the language of functional

derivatives with the only changes being ∂/∂ϕi → δ/δϕ(x) and the matrix multiplication

replaced by an integral AabB
b
c →

∫
dbA(xa, b)B(b, xc).

Application to the photon propagator

Setting in (D.1.1) M(z, z′) ≡
((
G0
γ

)
µν

(z, z′)
)−1

= M0(z, z
′) + ∆M(z, z′) with M0(z, z

′) =

G
γ

µν(z, z
′)−1 and ∆M(z, z′) =

[
− e2π+(z)π−(z)gµν

]
δ(z − z′) one gets

(
G0
γ

)
µν

(z, z′) = G
γ

µν+

∫
d4xG

γ

µρ(z, x)
[
e2π+(x)π−(x)gρκ

]
G
γ

κν(x, z
′)+O

(
e4
)
, (D.1.3)

which is applied in (4.2.28).
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Application to the quark propagator

Setting M(z, z′) ≡
((
G0
q

)
σ,π

(z, z′)
)−1

, M0(z, z
′) =

(
G0
q

)
v,0

(z, z′)−1 and ∆M =
[
− g∆(z) −

giγ5τaπ
a(z)

]
δ(z − z′) one obtains

(
G0
q

)
σ,π

(z, z′) =
(
G0
q

)
v,0

(z, z′) −
∫

d4x
(
G0
q

)
v,0

(z, x)A(x)
(
G0
q

)
v,0

(x, z′)

−
∫∫

d4x d4y
(
G0
q

)
v,0

(z, x)A(x)
(
G0
q

)
v,0

(x, y)A(y)
(
G0
q

)
v,0

(y, z′)

−
∫∫

d4x d4y
(
G0
q

)
v,0

(z, y)A(y)
(
G0
q

)
v,0

(y, x)A(x)
(
G0
q

)
v,0

(x, z′)

+ O
(
∆3, π⃗3

)
,

(D.1.4)

A(z) = −g∆(z) − giγ5τaπ
a(z). (D.1.5)

Replacing on both sides of the equation ∆(z) by δ/δησ(z) and πa(z) by δ/δηπ−a(z) one

arrives at

(̂
G0
q

)
σ,π

(z, z′) =
(
G0
q

)
v,0

(z, z′) −
∫

d4x
(
G0
q

)
v,0

(z, x)Â(x)
(
G0
q

)
v,0

(x, z′)

−
∫∫

d4x d4y
(
G0
q

)
v,0

(z, x)Â(x)
(
G0
q

)
v,0

(x, y)Â(y)
(
G0
q

)
v,0

(y, z′)

−
∫∫

d4x d4y
(
G0
q

)
v,0

(z, y)Â(y)
(
G0
q

)
v,0

(y, x)Â(x)
(
G0
q

)
v,0

(x, z′)

+ O
(
δ3

δη3σ
,
δ3

δη3π

)
,

(D.1.6)

Â(z) = − g
δ

δησ(z)
− giγ5τa

δ

δηπ−a(z)
, (D.1.7)

which is used in Section 4.3.



E. Thermodynamic formulas in LFA

In this appendix, the formulas for thermodynamic quantities within the LFA are collected

(see [MME04] for a detailed derivation). First, the set of equations which determines

self consistently the meson masses and the thermal expectation value v of the sigma field

is given. Given these, the thermodynamic quantities can be calculated applying a field

averaging procedure:

m2
σ = 2λv2 + g2

⟨(
∆

⟨∆2⟩
− 1

v

)
(v + ∆)A(m2)

⟩
+
H

v
, (E.1.1)

m2
π = 2λ

(
1

3

⟨
π2
⟩
−
⟨
∆2
⟩)

+ g2
⟨(

π2

⟨π2⟩
− v + ∆

v

)
A(m2)

⟩
+
H

v
, (E.1.2)

0 = g2⟨(v + ∆)A(m2)⟩ + λv
(
v2 + 3

⟨
∆2
⟩

+
⟨
π2
⟩
− ζ
)
−H, (E.1.3)⟨

∆2
⟩

= F vac
σ +

1

2π2

∫
d|p⃗| |p⃗|

2

Eσ
p

nB(Eσ
p ), (E.1.4)

⟨
π2
⟩

= F vac
π +

1

2π2

∫
d|p⃗| |p⃗|

2

Eσ
p

nB(Eσ
p ), (E.1.5)

A(m2) = F vac
q +

2NfNc

2π2

∫
d|p⃗| |p⃗|

2

Eq
p

(
nF (Eq

p) − nF (Eq
p)
)
. (E.1.6)

The thermal averaging ⟨f(σ, |π⃗|)⟩ is done according to (4.2.27). The vacuum fluctuation

contributions F vac
σ,π,q depend on the renormalization scheme. In Tab. E.1, the contributions

for two different renormalization schemes as well as the unrenormalized (and hence infinite)

term are given. In this thesis, these terms have been ignored, i.e. here F vac
σ,π,q = 0.

After solving self consistently the set of equations (E.1.1) – (E.1.6), various thermodynamic

quantities can be evaluated:

n =

⟨
1

(2π)3

∫
d3p(nF (Eq) − nF (Eq))

⟩
, (E.1.7)

(E.1.8)
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divergent here MS MME

F vac
q

2NfNc
(2π)3

∫
d3pEq 0 −2NfNc

32π2 m
4
q ln

m2
q

µ2
−2NfNc
32π2

(
m4
q ln

m2
q

Λ2 + fMME(mq,Λ)
)

F vac
σ

1
(2π)3

∫
d3pEσ

2
0 1

64π2m
4
σ ln m2

σ

µ2
1

64π2

(
m4
σ ln m2

σ

Λ2 + fMME(mσ,Λ)
)

F vac
π

3
(2π)3

∫
d3pEπ

2
0 3

64π2m
4
π ln m2

π

µ2
3

64π2

(
m4
π ln m2

π

Λ2 + fMME(mπ,Λ)
)

Table E.1.: Vacuum fluctuation contributions F vac
q,σ,π within the MS renormaliza-

tion scheme in dimensional regularization (fourth column) and with
the renormalization scheme used in [MME04] (rightmost column) using
fMME(m,x) = (3m2 − x2)(x2 −m2)/2. The remaining two columns give
the unrenormalized expression (second column) and the values used in this
thesis (third column).

e = ⟨U(v + ∆, π⃗)⟩ − 1

2
m2
σ

⟨
∆2
⟩
− 1

2
m2
π

⟨
π2
⟩

+ F vac
σ + F vac

π

+
1

(2π)3

∫
d3pEσnB(Eσ) +

3

(2π)3

∫
d3pEπnB(Eπ) (E.1.9)

+ ⟨F vac
q ⟩ +

2NfNc

(2π)3

∫
d3p⟨Eq[nF (Eq) + nF (Eq)]⟩,

⟨U(v + ∆, π⃗)⟩ =
1

4
λ

(
3
(
v2 +

⟨
∆2
⟩ )2

+
(
v2 +

⟨
π2
⟩ )2

+
2

3

⟨
π2
⟩2

+ 2
⟨
∆2
⟩ ⟨

π2
⟩
− 2ζ

(
v2 +

⟨
∆2
⟩

+
⟨
π2
⟩
− 1

2
ζ

)
− 3v4

)
,

(E.1.10)

s =
1

T
(e+ p− µn). (E.1.11)

The quark number susceptibility and the heat capacity are obtained by differentiation of

the net quark density and the entropy density, respectively:

χµµ =
∂n

∂µ
, χTT =

∂s

∂T
. (E.1.12)



F. Matrix elements

F.1. FEYNMAN rules

With the generating functional, as derived in Chapter 4, the Feynman rules depicted in

Fig. F.1 have to be applied. Vertices and propagators are those derived in Chapter 4. The

normalization of the incoming or outgoing particles has to be chosen consistently to the

propagators leading to the factors
√

2 for the mesons. With these rules at hand we can

write down the formulas for the matrix elements depicted in Fig. 4.3

The Mandelstam variables are defined according to:

s = (p+ q)2 = (k + z)2 = m2 + 2pq + q2 = k2 + 2kz +m2,

t = (z − p)2 = (q − k)2 = 2m2 − 2zp = q2 − 2qk + k2, (F.1.1)

u = (k − p)2 = (z − q)2 = k2 − 2kp+m2 = m2 − 2zq + q2.

F.2. COMPTON scattering with sigma mesons

There are only two diagrams contributing to the Compton process with σ mesons at tree

level. Diagrammatically, they are represented by the first two diagrams in the upper row

of Fig. 4.3. Applying the Feynman rules depicted in Fig. F.1 one finds the following two

expressions:

MC1 = u(z)f,s(−i)g1ff ′
/p− /k +m

u−m2
ieqfγ

µϵ(k)∗µu(p)r,f
′

(F.2.1)

= geϵ(k)∗µqfu(z)f,s
/p− /k +m

u−m2
γµu(p)r,f , (F.2.2)

MC2 = geϵ(k)∗µqfu(z)f,sγ
µ /k + /z +m

s−m2
u(p)r,f . (F.2.3)
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propagators

=̂
(
G0
γ

)µν
=̂

(
G0
q

)
v,0

=̂ Gπ
ab =̂ Gσ

vertices

=̂ g12×2 =̂ igγ5τa

=̂ (iepµ+− iepµ−)
×(λ3)

ab

=̂ −e2δabgµν

=̂ ieQγµ12×2

external lines

=̂ ϵν(k) =̂ (ϵµ(k))∗

=̂ us(p) =̂ us(p)

=̂ vs(p) =̂ vs(p)

=̂ 1 =̂ 1

=̂
√

2 =̂
√

2

Figure F.1.: Momentum space Feynman rules corresponding to the derivation in
Chapter 4. The propagators

(
G0
γ

)µν
,
(
G0
q

)
v,0

, Gπ
ab and Gσ are those

defined in Chapter 4, g and e are the quark-meson and electromagnetic
coupling (cf. (2.1.1) and (4.1.1)), respectively, Q is the charge operator
and τa as in (4.1.2). The photon polarization four-vector is denoted by ϵµ

and the asterisk denotes complex conjugation. At the pion-photon vertex
p+ and p− are the momenta of the incoming π+ and π− meson, respec-
tively and λ3 is the respective Gell-Mann matrix. The spinors us and
vs denote the particle and anti-particle solutions of the Dirac equation
and us and vs denote the respective Dirac-adjoint spinors (cf. notation
in [PS95]).
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The matrix elements can be simplified with a bit of Dirac algebra (cf. [PS95]):

(/p+m)γµu(p)r,f =2pµu(p)r,f , (F.2.4)

u(z)f,sγ
µ(/z +m) =2u(z)f,sz

µ (F.2.5)

resulting in

MC1 = geϵ(k)∗µqfu(z)f,s
2pµ − /kγµ

u−m2
u(p)r,f , (F.2.6)

MC2 = geϵ(k)∗µqfu(z)f,s
γµ/k + 2zµ

s−m2
u(p)r,f . (F.2.7)

Both contributions are added (M ≡MC1 +MC2):

M = geϵ(k)∗µqfu(z)f,s

(
2pµ − /kγµ

u−m2
+
γµ/k + 2zµ

s−m2

)
u(p)r,f . (F.2.8)

The squared and spin-, flavour- and polarisation summed/averaged matrix element then

reads:

1

2

∑
r,s,ϵ,f

|M |2 =
∑
r,s,ϵ,f

geϵ(k)∗µqfu(z)f,s

(
2pµ − /kγµ

u−m2
+
γµ/k + 2zµ

s−m2

)
u(p)r,f

× geϵ(k)νqfu(p)r,f

(
2pν − /kγν

u−m2
+
γν/k + 2zν

s−m2

)†

u(z)f,s

(F.2.9)

= −
∑
f

g2(qf )2e2gµν Tr
Dirac

[(
2pµ − /kγµ

u−m2
+
γµ/k + 2zµ

s−m2

)
(/p+m)

×
(

2pν − γν/k

u−m2
+
/kγν + 2zν

s−m2

)
(/z +m)

] (F.2.10)

= − g2e2
∑
f

(qf )2

×
(

I

(u−m2)2
+

II

(s−m2)2
+

III + IV

(u−m2)(s−m2)

) (F.2.11)

with

I = Tr
Dirac

[
(2pµ − /kγµ) (/p+m) (2pµ − γµ/k) (/z +m)

]
, (F.2.12)

II = Tr
Dirac

[
(γµ/k + 2zµ) (/p+m) (/kγµ + 2zµ) (/z +m)

]
, (F.2.13)

III = Tr
Dirac

[
(2pµ − /kγµ) (/p+m) (/kγµ + 2zµ) (/z +m)

]
, (F.2.14)
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IV = Tr
Dirac

[
(γµ/k + 2zµ) (/p+m) (2pµ − γµ/k) (/z +m)

]
. (F.2.15)

Applying the procedure outlined in Appendix B.4.2 based on the reduction formula (B.4.12)

these traces can be evaluated yielding

I = 16p2
(

(pz)−(kz)+m2
q

)
+ 16m2

q

(
k2−(kp)

)
− 16(kp)(kz) + 8k2(pz), (F.2.16)

II = 16z2
(

(kp)+(pz)+m2
q

)
+ 16m2

q

(
k2+(kz)

)
− 16(kp)(kz) + 8k2(pz), (F.2.17)

III = 16
(

(pz) − (kz)
)(

(kp) + (pz)
)

+ 8m2
q((kp) + 2(pz) − (kz)) + 8m2

qk
2 − 8p2(kz) + 8(kp)z2, (F.2.18)

IV = III. (F.2.19)

These can be rewritten in terms of the Mandelstam variables resulting in (p2 = z2 = m2
q,

q2 = m2
σ, k2 = 0)

1

2

∑
|Mqσ→qγ|2 = −5

9
g2e2

(
(4m2

q −m2
σ)

(
8m2

q

(u−m2
q)

2
+

8m2
q

(s−m2
q)

2

+ 8
(2m2

q −m2
σ)

(u−m2
q)(s−m2

q)

)
(F.2.20)

+ 4
s+ 7m2

q − 2m2
σ

u−m2
q

+ 4
u+ 7m2

q − 2m2
σ

s−m2
q

+ 8

)

for the fully summed and averaged squared matrix element. If we now set the fermion

masses zero (i.e. in the Wigner-Weyl phase in the chiral limit), this reduces to

1

2

∑
|Mqσ→qγ|2 = −5

9
g2e2

(
8
m4
σ

us
+ 4

s− 2m2
σ

u
+ 4

u− 2m2
σ

s
+ 8

)
. (F.2.21)

The annihilation matrix elements are related to the Compton matrix elements by crossing

symmetries and can be obtained by s↔ t.
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F.3. COMPTON scattering with pions

The three contributing diagrams for the process q + π → q + γ (upper row in Fig. 4.3)

translate into the following expression for the matrix element:

MC3 = u(z)f,sgγ
5(τa)ff ′

/z − /q +m

u−m2
ieqfγ

µϵ(k)∗µu(p)r,f
′
, (F.3.1)

MC4 = u(z)f,sieqfγ
µϵ(k)∗µ

/p+ /q +m

s−m2
gγ5(τa)ff ′u(p)r,f

′
, (F.3.2)

MC5 = u(z)f,sgγ
5(τa)ff ′u(p)r,f

′ 1

t−m2
π

ieqa(2q
µ − kµ)ϵ(k)∗µ (F.3.3)

with qa being the charge of the corresponding pions: q± = ±1, q0 = 0. This can be

rewritten using the Gell-Mann matrix λ3:

λ3 :=

1 0 0

0 −1 0

0 0 0

 , (F.3.4)

MC5 = u(z)f,sg̃γ
5
(
τ b
(
λ3
)a
b

)f
f ′
u(p)r,f

′ 1

t−m2
π

ie(2qµ + kµ)ϵ(k)∗µ. (F.3.5)

The matrix elements can be simplified a bit using some Dirac algebra:

u(z)f,sγ
5(/z +m) = 0, (F.3.6)

(/p+m)γ5u(p)r,f
′

= 0, (F.3.7)

(2qµ − kµ)ϵ(k)∗µ = 2qµϵ(k)∗µ (F.3.8)

yielding for MC3 – MC5

MC3 = ieqf ′ g̃(τa)ff ′ϵ(k)∗µu(z)f,sγ
5

−/q
u−m2

γµu(p)r,f
′
, (F.3.9)

MC4 = ieqf g̃(τa)ff ′ϵ(k)∗µu(z)f,sγ
µ /q

s−m2
γ5u(p)r,f

′
, (F.3.10)

MC5 = 2ieg̃qµϵ(k)∗µ
(
τ b
)f
f ′

(
λ3
)a
b
u(z)f,s

1

t−m2
π

γ5u(p)r,f
′
. (F.3.11)
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The three elements are added (M := MC3 +MC4 +MC5)

M = iegϵ(k)∗µu(z)f,s

×

(
qf ′(τ

a)ff ′γ
5

−/q
u−m2

γµ + qf (τa)ff ′γ
µ /q

s−m2
γ5 + γ5

(
τ b
)f
f ′

(
λ3
)a
b

2qµ

t−m2
π

)
× u(p)r,f

′
,

(F.3.12)

squared and summed/averaged over all spins, polarizations and flavors. This results in

1

2

∑
r,s,ϵ
f,f ′,a

|M |2 =
1

2

∑
r,s,ϵ,f,f ′,a

iegϵ(k)∗µu(z)f,s

×

(
qf ′(τ

a)ff ′
−γ5/qγµ

u−m2
+ qf (τa)ff ′

γµ/qγ5

s−m2
+ γ5

(
τ b
)f
f ′

(
λ3
)a
b

2qµ

t−m2
π

)
×u(p)r,f

′
(−i)egϵ(k)νu(p)r,f ′

×

(
qf ′(τ

a†)f
′

f

−γν/qγ5

u−m2
+ qf (τa†)f

′

f

γ5/qγν

s−m2
+ γ5

(
τ c†
)f ′
f

(
λ3
)a
c

2qν

t−m2
π

)
×u(z)f,s,

= −1

2

∑
f,f ′,a

e2g2gµν Tr
Dirac

[
(/z +m)

×

(
qf ′(τ

a)ff ′
−γ5/qγµ

u−m2
+ qf (τa)ff ′

γµ/qγ5

s−m2
+ γ5

(
τ b
)f
f ′

(
λ3
)a
b

2qµ

t−m2
π

)
×(/p+m)

×

(
qf ′(τ

a†)f
′

f

−γν/qγ5

u−m2
+ qf (τa†)f

′

f

γ5/qγν

s−m2
+ γ5

(
τ c†
)f ′
f

(
λ3
)a
c

2qν

t−m2
π

)]
,

= −e
2g2

2

(
I

(u−m2)2
+

II

(s−m2)2
+

III

(t−m2
π)2

+2
IV

(u−m2)(s−m2)
+ 2

V

(u−m2)(t−m2
π)

(F.3.13)

+2
V I

(s−m2)(t−m2
π)

)
.

With

I =
∑
f,f ′,a

qf ′(τ
a)ff ′qf ′(τ

a†)f
′

f gµν Tr
Dirac

[
γ5/qγ

µ(/p+m)γν/qγ
5(/z +m)

]
, (F.3.14)
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II =
∑
f,f ′,a

(qf )2(τa)f
′

f (τa)ff ′gµν Tr
Dirac

[
γµ/qγ

5(/p+m)γ5/qγ
ν(/z +m)

]
, (F.3.15)

III =
∑
f,f ′,a

gµν
(
τ b
)f
f ′

(
λ3
)a
b

(
τ c†
)f ′
f

(
λ3
)a
c

Tr
Dirac

[
γ52qµ(/p+m)γ52qν(/z +m)

]
, (F.3.16)

IV = −
∑
f,f ′,a

qf ′qf (τa)ff ′(τ
a†)f

′

f gµν Tr
Dirac

[
γ5/qγ

µ(/p+m)γ5/qγ
ν(/z +m)

]
, (F.3.17)

V = −
∑
f,f ′,a,c

gµνqf ′(τ
a)ff ′
(
τ c†
)f ′
f

(
λ3
)a
c

Tr
Dirac

[
γ5/qγ

µ(/p+m)γ52qν(/z +m)
]
, (F.3.18)

V I =
∑
f,f ′,a,c

qf (τa)ff ′
(
τ c†
)f ′
f

(
λ3
)a
c
gµν Tr

Dirac

[
γµ/qγ

5(/p+m)γ52qν(/z +m)
]
. (F.3.19)

For the evaluation of the expressions I-V I one needs the adjoint τa:

(τ+)† =
1√
2

(τ 1 + iτ 2)† =
√

2

(
0 1

0 0

)†

=
1√
2

(τ 1 − iτ 2) = τ−, (F.3.20)

(τ−)† =
1√
2

(τ 1 − iτ 2)† =
√

2

(
0 0

1 0

)†

=
1√
2

(τ 1 + iτ 2) = τ+, (F.3.21)

τ+(τ+)† = τ+τ− = 1 + τ 3, (F.3.22)

τ−(τ−)† = τ−τ+ = 1 − τ 3, (F.3.23)

τ 0 ≡ τ 3 ⇒ τ 0(τ 0)† = (τ 3)2 = 1. (F.3.24)

Evaluating and simplifying as described in Appendix B.4.2 yields

I =
5

3

(
16(qp)(qz) − 8q2(pz) + 16m2

qq
2
)
, (F.3.25)

II =
5

3

(
16(qz)(qp) − 8q2(zp) + 16m2

qq
2
)

= I, (F.3.26)

III = −64q2(pz) + 64q2m2
q, (F.3.27)

IV = −1

3

(
8m2

qq
2 + 16(qp)(qz)

)
, (F.3.28)

V = 16m2
qq

2 − 16q2(pz), (F.3.29)

V I = −16q2(pz) + 16q2m2
q = V. (F.3.30)
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Rewriting these in terms of Mandelstam variables and inserting into (F.3.13) gives

1

2

∑
|M |2 = −e2g2

(
− 10

3

(
s−m2

q

u−m2
q

+
u−m2

q

s−m2
q

)
+

20

3
m2
πm

2
q

(
1

(u−m2
q)

2
+

1

(s−m2
q)

2

)
+

4

3
− 4

3

m2
π(s+ u−m2

π)

(u−m2
q)(s−m2

q)

+ 8
m2
πt

t−m2
π

(
1

u−m2
q

+
1

s−m2
q

+
2

t−m2
π

))
.

(F.3.31)

where the squared four-momenta were evaluated using p2 = z2 = m2
q, q

2 = m2
π and k2 = 0.

For the case of massless pions (e.g. in the Nambu-Goldstone phase in the chiral limit)

this simplifies considerably:

1

2

∑
|M |2 = e2g2

(
10

3

(
s−m2

q

u−m2
q

+
u−m2

q

s−m2
q

)
− 4

3

)
. (F.3.32)

F.4. Annihilations and anti-COMPTON

The annihilation diagrams are related to the respective Compton diagrams by crossing

symmetries which translate into the exchange of Mandelstam variables. To be specific,

changing from Compton to annihilation diagrams (which corresponds diagrammatically

to bending the outgoing fermion line to the left and the incoming meson line to the right,

cf. Fig. 4.3) is equivalent to switch s and t in the formulas. Thus, the matrix element for

annihilations into a σ meson and a photon reads

1

2

∑
|Mqq→σγ|2 = −5

9
g2e2

(
(4m2 −m2

σ)

(
8m2

(u−m2)2
+

8m2

(t−m2)2

+ 8
(2m2 −m2

σ)

(u−m2)(t−m2)

)
+ 4

t+ 7m2 − 2m2
σ

u−m2
+ 4

u+ 7m2 − 2m2
σ

t−m2
+ 8

)
.

(F.4.1)

This result is symmetric w.r.t. the interchange u ↔ t, which reflects the crossing symme-

tries of the S matrix.
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That for the annihilation into a pion and a photon is

1

2

∑
|Mqq→πγ|2 = −e2g2

(
− 10

3

(
t−m2

u−m2
+
u−m2

t−m2

)
+

20

3
m2
πm

2

(
1

(u−m2)2
+

1

(t−m2)2

)
+

4

3
− 4

3

m2
π(t+ u−m2

π)

(u−m2)(t−m2)

+ 8
m2
πs

s−m2
π

(
1

u−m2
+

1

t−m2
+

2

s−m2
π

))
.

(F.4.2)

The matrix elements for anti-Compton processes coincide with the matrix element for

the respective Compton process:∑
|Mqσ→qγ|2 =

∑
|Mqσ→qγ|2, (F.4.3)∑

|Mqπ→qγ|2 =
∑

|Mqπ→qγ|2. (F.4.4)





G. Comments on the photon

production formulas

G.1. The MCLERRAN-TOIMELA formula

We follow here the derivation in [KG06, GK91]. The starting point is an S-matrix element

that gives the transition amplitude from an initial |i⟩ state to a final state |f⟩. We will

consider only reactions which involve one photon with momentum kν and polarization ϵµ.

The transition rate Ri→f between these states is

Ri→f =
1

V δt
|Sfi|2. (G.1.1)

The S-matrix element in the one-photon approximation (which corresponds to no back-

reaction of the emitted photons) is given by

Sfi =

⟨
f

∣∣∣∣ ∫ d4xAµ(x)Ĵµ(x)

∣∣∣∣i⟩ (G.1.2)

with the electromagnetic current operator Ĵµ(x). The one-photon approximation (or equiv-

alently the leading term in a perturbation expansion w.r.t. the electromagnetic coupling)

requires the use of the unperturbed photon field

Aµ =
ϵµ√
2ωV

(e−ikx + eikx). (G.1.3)

The somewhat awkward prefactor is necessary to obtain the correct value for the energy

of a single photon. Assuming translation invariance for the current

⟨f | Ĵµ(x) |i⟩ = ei(pf−pi)x ⟨f | Ĵµ(0) |i⟩ (G.1.4)
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one arrives at

Ri→f =
1

V δt
⟨f |
∫

d4xAµ(x)Ĵµ(x) |i⟩ ⟨i|
∫

d4yAν(y)Ĵν(y) |f⟩ (G.1.5)

=
1

V δt

∫
d4xd4y

ϵµ√
2ωV

(e−ikx + eikx)
ϵν√
2ωV

(e−iky + eiky)

× ⟨f | Ĵµ(x) |i⟩ ⟨i| Ĵν(y) |f⟩ ,
(G.1.6)

=
1

V δt

∫
d4xd4y

ϵµϵν

2ωV
(e−ikx + eikx)(e−iky + eiky)ei(pf−pi)xe−i(pf−pi)y

× ⟨f | Ĵµ(0) |i⟩ ⟨i| Ĵν(0) |f⟩ ,
(G.1.7)

=
1

V δt

∫
d4y

ϵµϵν

2ωV
((2π)4δ(−k + pf − pi) + (2π)4δ(k + pf − pi))

(e−i(k+pf−pi)y + e−i(−k+pf−pi)y) ⟨f | Ĵµ(0) |i⟩ ⟨i| Ĵν(0) |f⟩ ,
(G.1.8)

=
(2π)4ϵµϵν

2ωV
(δ(pf − pi − k) + δ(pf − pi + k)) ⟨f | Ĵµ(0) |i⟩ ⟨i| Ĵν(0) |f⟩ , (G.1.9)

with the first delta distribution corresponding to absorption and the second one to emission

processes. Summing over the final states and averaging over the initial states with a thermal

weight 1/Z ⟨i| exp{β(Ĥ−µN̂)} |i⟩, where Ĥ is the Hamiltonian and N̂ the number operator

and Z =
∑

i ⟨i| exp{β(Ĥ − µN̂)} |i⟩ is the partition function, one obtains

R ≡ 1

Z

∑
f,i

Ri→fe
β(Ei−µNi) (G.1.10)

= − gµν(2π)4

2ωV

1

Z

∑
f,i

eβ(Ei−µNi)δ(pf − pi + k) ⟨f | Ĵµ(0) |i⟩ ⟨i| Ĵν(0) |f⟩ (G.1.11)

= − gµν(2π)4

2ωV

1

Z

∑
f,i

V

(2π)3

∫
dK[3]eβ(Ei−µNi)δ(pf − pi + k) ⟨f | Ĵµ(0) |i⟩ ⟨i| Ĵν(0) |f⟩

=:

∫
dK[3]

dR[3]

dK[3]
. (G.1.12)

This corresponds to the differential rate

ω
dR[3]

dK[3]
= − gµνπ

1

Z

∑
f,i

eβ(Ei−µNi)δ(k + pf − pi) ⟨f | Ĵµ(0) |i⟩ ⟨i| Ĵν(0) |f⟩ (G.1.13)

=
gµνπ

(2π)3
f−
µν(k) (G.1.14)

with

f±
µν(k) = ± 1

Z

∑
f,i

eβ(Ei−µNi)(2π)3δ(pf − pi ± k) ⟨f | Ĵµ(0) |i⟩ ⟨i| Ĵν(0) |f⟩ (G.1.15)
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being the spectral function of the current-current correlator associated to emission and

absorption, respectively [KG06]. The retarded current correlation function

f ret
µν (ω, k⃗) =

∫
dω′

(2π)

(f+
µν(ω

′, k⃗) + f−
µν(ω

′, k⃗))

ω′ − ω − iϵ
(G.1.16)

is up to order e2 identical to the retarded photon propagator Gγ,ret
µν . Using the detailed

balance relation f+
µν = −eβωf−

µν and inserting the inverted (G.1.16) into (G.1.14) yields for

the differential rate

ω
dR[3]

dK[3]
=

gµν

(2π)3
1

eβω − 1
ImGγ,ret

µν (G.1.17)

which is the McLerran-Toimela formula (3.1.1)

G.2. The optical theorem

The discussion follows closely the one in [PS95]. From the unitarity of the S-matrix follows

a useful identity for the T -matrix. The T -matrix is defined as the part of the S-matrix

that corresponds to scattering, i.e.

S = 1 + iT. (G.2.1)

The unitarity of the S-matrix

1 = S†S (G.2.2)

yields for the T -matrix

i(T † − T ) = T †T. (G.2.3)

In the case of forward scattering, i.e. the case of identical initial and final state this reads

i(T ∗
ii − Tii) = 2ImTii =

∑
f

|Tfi|2. (G.2.4)

where Tfi is that element of the matrix T , that connects the initial state |i⟩ with the final

state |f⟩. The left hand side, i.e. the imaginary part of the forward scattering amplitude

being connected to the propagator by the LSZ theorem, can be related to the damping of

a particles wave function as well as to the finite width of a resonance in scattering experi-
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ments. The right hand side in turn is proportional to the total probability of the particle to

scatter into any possible finite state. The optical theorem (G.2.4) thus can be interpreted

as stating that the reason for damping are scattering processes. The somewhat handwav-

ing derivation above in turn points to the unitarity (i.e. the conservation of probability) as

the fundamental property that causes this connection. Equation (G.2.4) similarly applies

to the invariant matrix elements Mi→f connected to Tfi by

Tfi = (2π)4δ(4)(Pf − Pi)Mi→f , (G.2.5)

where Pi and Pf denote the total four-momentum of the initial and final states, respectively

[PS95]:

ImMi→i =
∑
f

(2π)4(δ(4)(Pf − Pi))|Mi→f |2 (G.2.6)

with the sum running over all possible states |f⟩, especially over all possible momenta

compatible with energy-momentum conservation, represented by the delta distribution .

Equations (G.2.4) and (G.2.6) are the optical theorem.

In the derivation of the photon emissivity in Chapter 4, the optical theorem is used to

transform the McLerran-Toimela formula (3.1.1) into the form known from kinetic

theory with the Cutkosky cutting rules [Cut60] being the diagrammatic equivalent to

(G.2.6).



H. Phase space integration

H.1. Solving the integrals

The general formula for the differential rate ωd7N/d3kd4x for 2 → 2 processes (incoming

momenta: p1, p2; outgoing momenta: q, k with k corresponding to the photon and R ≡
d4N/d4x) is (cf. (4.4.1))

ω
d3R

d3k
=

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3z

2Eq(2π)3
(2π)4δ(4)(p1 + p2 − q − k)

× nF/B(p1)nF/B(p2)(1 − nF/B(q))|M(s, u)|2.
(H.1.1)

The first step is the evaluation of the q integration using the momentum conserving delta

distribution followed by the introduction of the Mandelstam variable s, which is done

by inserting 1 =
∫

ds δ(s− (p1 + p2)
2):

ω
d3R

d3k
=

1

(2π)5

∫
d3p2
2E2

d3p1
2E1

δ(E1 + E2 − Eq − ω)

×
∫

ds δ(s− p21 − p22 − 2E1E2 + 2p⃗1p⃗2)nF (E1)nB(E2) (H.1.2)

× nF (ω − E1 − E2)|M(s, t)|2 1

2Eq
.

Afterwards, p1 is transformed into spherical coordinates d3p1 → |p⃗1|2d|p⃗1|d cos θ12dϕ12.

These coordinates are adjusted such that the q direction of the spherical coordinates coin-

cides with the direction of p⃗2 (⇒ p⃗1p⃗2 = |p⃗1||p⃗2| cos θ12). Then the azimuthal integration

can be carried out easily by virtue of the delta distribution in the second line of (H.1.2)
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resulting in

ω
d3R

d3k
=

1

(2π)5

∫
d3p2
2E2

|p⃗1|2
d|p⃗1|dϕ12

2E1

∫
ds|M(s, t)|2 θ(1 − c22)

2|p⃗1||p⃗2|

× nF (E1)nB(E2)nF (ω − E1 − E2)
1

2Eq
δ(E1 + E2 − Eq − ω)

(H.1.3)

with

c2 :=
−s+ p21 + p22 + 2E1E2

2|p⃗1||p⃗2|
≡ cos(θ12). (H.1.4)

Similarly a second Mandelstam variable is introduced by inserting 1 =
∫

dt δ(t−(p2−k)2).

Afterwards the differential d3p2 is transformed into spherical coordinates and simplified

analogously. This time the q direction of the spherical momentum coordinates points in

direction of the photon three-momentum k⃗:

ω
d3R

d3k
=

1

(2π)5

∫
|p⃗2|2d|p⃗2|dϕ2k

2E2

|p⃗1|2d|p⃗1|dϕ12

2E1

∫
dsdt

θ(1 − c22)

2|p⃗1||p⃗2|
θ(1 − c21)

2|p⃗2||⃗k|

× |M(s, t)|2nF (E1)nB(E2)nF (ω−E1−E2)
1

2Eq
δ(E1+E2−Eq−ω),

(H.1.5)

with

c1 :=
t− p22 − k2 + 2E2ω

2|p⃗2||⃗k|
≡ cos(θ2k). (H.1.6)

Now, the energy conserving delta distribution can be evaluated. For this purpose one

transforms the argument of the delta distribution ,

1

2Eq
δ
(
Eq − (E1 + E2 − ω)

)
= δ
(
E2
q − (E1 + E2 − ω)2

)
, (H.1.7)

and expands the quadratic terms. The angles θ12, θ2k between p⃗1 and p⃗2 as well as between

p⃗2 and k⃗ are determined by (H.1.4) and (H.1.6), respectively. Thus

E2
q − (E1 + E2 − ω)2 = q2 +

(
|p⃗1|2 + |p⃗2|2 + |⃗k|2 + 2|p⃗1||p⃗2|c2

− 2|p⃗1||⃗k| cos(θ1k) − 2|p⃗2||⃗k|c1
)
− (E1 + E2 − ω)2,
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which can be simplified considerably yielding that the energy conserving delta distribution

can be rewritten according to

δ
(
E2
q − (E1 + E2 − ω)2

)
=
δ(c0 − cos(θ1k))

2|p⃗1||⃗k|
(H.1.8)

with

c0 :=
q2 + p22 − s− t+ 2E1ω

2|p⃗1||⃗k|
, (H.1.9)

which gives for the rate

d3R

d3k
=

1

8|⃗k|2(2π)5

∫
d|p⃗2|dϕ2k

2E2

d|p⃗1|dϕ12

2E1

∫
ds dt θ(1 − c22)θ(1 − c21)

× nF (E1)nB(E2)nF (ω − E1 − E2)|M(s, t)|2δ(c0 − cos(θ1k)).

(H.1.10)

Now, the next goal is to express cos(θ1k) in terms of one of the remaining integration

variables and using the delta distribution to execute the corresponding integration. The

angle ϕ12 is defined to be between the projections of p⃗1 onto a plane perpendicular to p⃗2

and some normalized vector e⃗v lying in that plane, i.e.

cosϕ12 =
(e⃗1e⃗v)√

1 − (e⃗1e⃗2)2
(H.1.11)

with e1 = p⃗1/|p⃗1|. Because of the delta distributions that have already been evaluated, it

is known (cf. (H.1.4) and (H.1.6)) that e⃗2e⃗1 = cos(θ12) = c2 and e⃗2e⃗k = cos(θ2k) = c1. It

remains to specify which vector e⃗v is used for reference. Since the only physical vector is

k⃗, the projection k⊥ of k⃗ onto the plane perpendicular to p⃗2 is chosen. Then ϕ12 can be

expressed in terms of θ1k by (e2 = p⃗2/|p⃗2|)

cosϕ12 =
(e⃗1(1 − e⃗2 ◦ e⃗2)k⃗)

|⃗k⊥|
√

1 − (e⃗1e⃗2)2
(H.1.12)

with the direct product a⃗ ◦ b⃗ of two vectors a⃗ and b⃗ acting on a third vector c⃗ according to

(⃗a ◦ b⃗)c⃗ = a⃗(⃗bc⃗), which yields after some straightforward algebra

cosϕ12 =
cos θ1k − c2c1√
1 − c21

√
1 − c22

, (H.1.13)

cos θ1k =
√

1 − c21

√
1 − c22 cosϕ12 + c2c1. (H.1.14)
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Inserting into the rate formula gives

ω
d3R

d3k
=

1

8|⃗k|2(2π)5

∫
d|p⃗2|dϕ2k

2E2

d|p⃗1|dϕ12

2E1

∫
dsdtθ(1 − c22)θ(1 − c21)

× nF (E1)nB(E2)nF (ω−E1−E2)|M(s, t)|2
δ
(

c0−c2c1√
1−c21

√
1−c22

−cosϕ12

)
√

1 − c21
√

1 − c22
.

(H.1.15)

The ϕ12 integration is evaluated using the substitution

ξ := cosϕ12 , dξ =
√

1 − ξ2dϕ12. (H.1.16)

Besides replacing ϕ12 and dϕ12 according to (H.1.16) a factor of two has to be inserted

since when ϕ12 runs from 0 to 2π each value of ξ is taken twice:

ω
d3R

d3k
=

2

8|⃗k|2(2π)5

∫
d|p⃗2|dϕ2k

2E2

d|p⃗1|dξ
2E1

∫
dsdt|M(s, t)|2θ(1 − c22)θ(1 − c21)

× nF (E1)nB(E2)nF (ω − E1 − E2)
δ(c3 − ξ)√

1 − ξ2
√

1 − c21
√

1 − c22

(H.1.17)

with

c3 :=
c0 − c2c1√

1 − c21
√

1 − c22
. (H.1.18)

Now, the integration w.r.t. ξ can be done easily:

ω
d3R

d3k
=

1

16|⃗k|2(2π)4

∫
d|p⃗2|
E2

d|p⃗1|
E1

∫
ds dt |M(s, t)|2

× nF (E1)nB(E2)nF (ω − E1 − E2)θ(1 − c23)θ(1 − c22)θ(1 − c21)√
1 − c23

√
1 − c21

√
1 − c22

.

(H.1.19)

The denominator is expanded:

ζ2 := (1 − c23)(1 − c21)(1 − c22) (H.1.20)

=
1

(2|p⃗2||⃗k||p⃗1|)2
(
−|⃗k|2(ŝ−2E1E2)

2−|p⃗1|2(t̂+2E2ω)2−|p⃗2|2(û+2E1ω)2

+ 4|p⃗1|2|p⃗2|2|⃗k|2 − (û+ 2E1ω)(ŝ− 2E1E2)(t̂+ 2E2ω)
) (H.1.21)
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with the shortcuts:

ŝ := s− p21 − p22, t̂ := t− p22 − k2, û := q2 + p22 − s− t = u− p21 − k2. (H.1.22)

This is a nicely symmetric result that is inserted into (H.1.19). Then the |p⃗2| and |p⃗1|
integrations are transformed into E1 and E2 integrations yielding

ω
d3R

d3k
=

1

8|⃗k|(2π)4

∫
ds dt |M(s, t)|2

∫
dE2dE1

× nF (E1)nB(E2)nF (ω−E1−E2)θ(1 − c23)θ(1 − c22)θ(1 − c21)

ζ ′
,

(H.1.23)

where the shortcut ζ ′ := 2|p⃗2||⃗k||p⃗1|ζ is used. The Heaviside step functions θ(1− c22) and

θ(1− c21) are equivalent to the restriction of s and t to the physical region, i.e. to the limits

s0 and t± given in (B.5.12) and (B.5.16), and thus can be omitted.

As can be seen from (H.1.20) the numerator is zero if and only if (1 − c23), (1 − c22) or

(1 − c21) vanish. As just discussed, the latter two are zero only at the limits of the s and

t integrations. The θ(1 − c23) can be eliminated from (H.1.23) by appropriately setting

the limits of the energy integrations, which in turn means that the energy integration is

limited by the zeros of the numerator.

Thus, by setting the limits of the s, t and the energy integrations appropriately all θ

functions can be dropped.

ω
d3R

d3k
=

1

8|⃗k|(2π)4

∞∫
s0

ds

t+∫
t−

dt |M(s, t)|2
∫

c3≤1

dE2dE1

× nF (E1)nB(E2)nF (ω−E1−E2)

ζ ′
,

(H.1.24)

The numerator ζ ′ in (H.1.24) is transformed by substituting E2 =: ν − E1. The result is

sorted w.r.t. powers of E1 yielding

ζ ′2 =E2
1(−(û+ t̂)2 + 4k2(ŝ+ p22 + p21))

+ E1(ν(−8k2p21 + 2û2 + 2t̂û− 4k2ŝ) + ω(−4p21t̂+ 4ûp22 − 2t̂ŝ+ 2ŝû))

+ ν2(4k2p21 − û2) + 2νω(2p21t̂− ŝû) + p21(4|⃗k|2p22 + t̂2) − |⃗k|2ŝ2 + û2p22

− t̂ŝû

(H.1.25)
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=E2
1

(
− (−s+ q2 − k2)2 + 4k2s

)
+ E1

(
ν
(

+ 2k2(k2 − u− s− p21 − q2 + 2p22) − 2(s− q2)(u− p21)
)

+ ω
(
2q2(−p21 − s+ p22) − 2s(p21 − s+ p22)

+ 2k2(−p22 − s+ p21) + 4us
))

+ ν2(−u2 − p41 − k4 + 2up21 + 2uk2 + 2p21k
2)

+ 2νω
(
− (u+ p21 − k2)(s+ p21 − p22) + 2p2(p21 + q2 − p22 − k2)

)
+ p21(s(p

2
2 + k2 − u) + (q2 − p22 + p21 − s− u)(q2 − k2))

− |⃗k|2(s2 + p41 + p42 − 2sp21 − 2sp22 − 2p21p
2
2) + p22(k

2 − u)(k2 + s− q2)

+ s(u+ s− q2)(u− k2).

(H.1.26)

H.2. Limits of the ν integration

The limits of the ν integration can be found by inspecting s = (q + k)2:

s = (Eq + ω)2 − (k⃗ + q⃗)2 (H.2.1)

= ν2 − |⃗k|2 − |q⃗|2 − 2|⃗k||q⃗| cos θ2k. (H.2.2)

With |q⃗|2 = q2 − E2
q and ν = Eq + ω as well as | cos θ2k| ≤ 1 this yields

s ≤ ν2 − ω2 + k2 + q2 − E2
q + 2|⃗k|

√
E2
q − q2. (H.2.3)

After a number of straightforward steps, the following inequality holds (for the definition

of λ see (4.4.10)):

0 ≥ λ(s, q2, k2) + 4νωq2 + 4ω2s− 4νωs− 4k2νω + 4k2ν2 =: fν . (H.2.4)

In order of obtaining the limits for the ν integration fν = 0 has to be solved with the result

ν± =
ω(s− q2 + k2)

2k2
± |⃗k|

2k2

√
λ(s, q2, k2). (H.2.5)

In the limit k2 → 0 (which is the only relevant case for this work) this reduces to

ν+ = ∞, ν− ≡ νmin =
s− q2

4ω
+

ωs

s− q2
, (H.2.6)

which are the limits of the ν integration used in Section 4.4.1.
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H.3. Simplifying the denominator

The right side of (H.1.26) is quadratic in E1 and thus the zeros w.r.t. E1 can be calculated

exactly. With the definitions

ζ ′2 =AE2
1 +BE1 + C,

A = − (û+ t̂)2 + 4k2(ŝ+ p22 + p21),

B = ν(−8k2p21 + 2û2 + 2t̂û− 4k2ŝ) + ω(−4p21t̂+ 4ûp22 − 2t̂ŝ+ 2ŝû),

C = ν2(4k2p21 − û2) + 2νω(2p21t̂− ŝû) + p21(4|⃗k|2p22 + t̂2)

− |⃗k|2ŝ2 + û2p22 − t̂ŝû

(H.3.1)

the zeros are

E±
1 =

−B ±
√
B2 − 4AC

2A
, (H.3.2)

4A2∆2 :=B2 − 4AC, (H.3.3)

which can be interpreted more easily by defining E±
1 = −B/(2A) ± ∆. Before going on

another shortcut is introduced:

s̃ := s− q2 + k2 ⇒ t̂+ û = −s̃. (H.3.4)

The limits of the Mandelstam variable u (cf. (B.5.15)) can be expressed in terms of s̃ as

û± = − 1

2s

(
s̃(ŝ+ 2p21) ±

√
(ŝ2 − 4p21p

2
2)(s̃

2 − 4sk2)
)
. (H.3.5)

û± are the zeros of the parabola

f̂u := 4s2(û− û+)(û− û−) (H.3.6)

= 4s2û2 + 4sû(s̃(ŝ+ 2p21)) +
(
s̃2(ŝ+ 2p21)

2 − (ŝ2 − 4p21p
2
2)(s̃

2 − 4sk2)
)
. (H.3.7)

Collecting the coefficients of the various powers of ν in B2 − 4AC =: aν2 + bν + c and

simplifying afterwards yields after a simple yet lengthy calculation

a = 4
k2

s
f̂u, (H.3.8)

b = − 4ωs̃

s
f̂u, (H.3.9)
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c =
1

s
f̂u

(
4s|⃗k|2 + s̃2

)
, (H.3.10)

which gives

∆2 =
1

s
f̂u

(
4k2ν2 − 4νωs̃+ 4s|⃗k|2 + s̃2

)
. (H.3.11)

As can be checked easily, the term in brackets is exactly fν of (H.2.4) whose zeros determine

the limits of the ν integration. Thus, the final expression for ∆ simply reads

∆2 =
1

s
f̂ufν (H.3.12)

with f̂u and fν being the parabolas whose zeros define the borders of integration for û and

ν, respectively (cf. (H.3.7) and (H.2.4)).

From a numeric point of view, being able to write ∆2 as a product of relatively simple

terms is extremely helpful, because u, u±, ν and νmin all can be numerically large, even

when ∆2 is not. In such a case (which inevitably occurs during the evaluation of the

phase space integrals, especially when s is large) numerically large terms are subtracted

from each other yielding almost zero. However, due to the finite numerical precision the

relative numerical error of the difference might become large possibly making ∆2 negative

and thus the limits of the E1 integration complex. This imposes rather severe problems if

an expanded expression of ∆2 is used for the definition of the E1-limits of integration as

simple fixes of the possible negative results for ∆2 introduce numerical errors that cannot

be ignored (they even may be of the same order of magnitude as the result). However, when

using the product structure of ∆2, especially f̂u ∝ (û − û+)(û − û−) and fν ∝ (ν − νmin),

the relative error can be made as small as 10−14 for double1 precision.

1 i.e. 64 bit floating-point numbers.
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H.4. The rate formula

Putting everything together (R ≡ d4N/d4x, E ≡ E1) one finds as the final formula for the

rate

ω
d7N

d3kd4x
=

1

16ω(2π)7

∞∫
s0

ds

s− q2

t+∫
t−

dt|M(s, t)|2

×
∞∫

νmin

dν

E+∫
E−

dE
nF (E)nB(ν − E)nF (ω − ν)√

(E − E−)(E+ − E)
,

(H.4.1)

νmin =
s− q2

4ω
+

ωs

s− q2
, (H.4.2)

E± = E ± ∆, (H.4.3)

E =
(s+ p21 − p22)ω(s− q2) + (u− p21)(2ωs− ν(s− q2))

(s− q2)2
, (H.4.4)

with λ defined as in (4.4.10), ∆2 as in (H.3.12) and s0, u± and t± as given in (B.5.12),

(B.5.15) and (B.5.16).





I. Approximations of the rate formulas

I.1. BOLTZMANN approximation

As mentioned in the main text, in large parts of the phase diagram, it is reasonable to

replace the Fermi and Bose distribution functions by their classical analog, the Boltz-

mann distribution function:

nF (x) ≈ e−(x−µ)/T , (I.1.1)

nB(x) ≈ e−x/T . (I.1.2)

The distribution functions of the outgoing particles can then be set to unity. For the

Compton case, the formula for the rate (cf. (4.4.2)) then reads

ω
d7Nqσ/π→qγ

d3kd4x
=

1

16ω(2π)7

∞∫
s0

ds

s−m2
q

t+∫
t−

dt|M(s, t)|2

×
∞∫

νmin

dν

E+∫
E−

dE
e−(E−µ)/T e−(ν−E)/T√
(E − E−)(E+ − E)

.

(I.1.3)

The E-dependence in the exponents cancel and thus the E and ν integration can be

executed with the result

ω
d7Nqσ/π→qγ

d3kd4x
=

Teµ/T

32ω(2π)6

∞∫
s0

ds

s−m2
q

e−νmin(s)/T

t+∫
t−

dt|M(s, t)|2. (I.1.4)
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The t-integral is expressed with the vacuum cross section σ(s) according to (B.5.30)

ω
d7Nqσ/π→qγ

d3kd4x
=

Teµ/T

4ω(2π)5

∞∫
s0

ds

s−m2
q

e−νmin(s)/Tλ(s,m2
q,m

2
σ,π)σqσ/π→qγ(s). (I.1.5)

The annihilation and anti-Compton rates are treated analogously:

ω
d7Nqq→σ/πγ

d3kd4x
=

1

16ω(2π)7

∞∫
s0

ds

s−m2
π,σ

t+∫
t−

dt|M(s, t)|2

×
∞∫

νmin

dν

E+∫
E−

dE
e−(E−µ)/T e−(ν−E+µ)/T√

(E − E−)(E+ − E)

=
T

4ω(2π)5

∞∫
s0

ds

s−m2
π,σ

s(s− 4m2
q)e

−(νmin)/Tσqq→σ/πγ(s), (I.1.6)

ω
d7Nqσ/π→qγ

d3kd4x
=

1

16ω(2π)7

∞∫
s0

ds

s−m2
q

t+∫
t−

dt|M(s, t)|2

×
∞∫

νmin

dν

E+∫
E−

dE
e−(E+µ)/T e−(ν−E)/T√
(E − E−)(E+ − E)

=
Te−µ/T

4ω(2π)5

∞∫
s0

ds

s−m2
q

e−νmin(s)/Tλ(s,m2
q,m

2
σ,π)σqσ/π→qγ (I.1.7)

= e−2µ/Tω
d7Nqσ/π→qγ

d3kd4x
. (I.1.8)

Equations (I.1.5), (I.1.6) and (I.1.7) are the result quoted in (4.5.2).

I.2. Approximations for the s integration

To gain some insight into the spectra, the integrand of the s integration is approximated.

It is reasonable to assume that the shape of the integrand is dominated by the exponential

and that the power law corrections to it (i.e. the cross sections as well as the other s-

dependent terms beside the exponential) are slowly changing. In this section, the exponent

−νmin(s)/T is Taylor expanded around the largest value in the range of integration. Two
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cases have to be considered: either the maximum of the exponent is within the range of

integration or it is not. Both cases require different approximations leading to notable

differences in the differential photon spectra.

νmin as well as its first and second derivative w.r.t. s are (cf. (H.2.6))

νmin =
s−m2

z

4ω
+ ω +

ωm2
z

s−m2
z

, (I.2.1)

∂νmin

∂s
=

1

4ω
− ωm2

z

(s−m2
z)

2
, (I.2.2)

∂2νmin

∂s2
= 2

ωm2
z

(s−m2
z)

3
. (I.2.3)

The extrema are at s = s1 given by

s1 = 2ωmz +m2
z. (I.2.4)

The value of νmin and its second derivative at this point are

νmin(s1) = mz + ω, (I.2.5)

∂2νmin

∂s2

∣∣∣∣
s=s1

=
1

4ω2mz

. (I.2.6)

Two cases are to be distinguished: either the position s1 of the minimum of νmin is within

the s integration range, i.e. s1 ≥ s0 (case a), or it is not, i.e. s1 < s0 (case b).

I.2.1. Case (a), the Gaussian approximation

If s1 ≥ s0 it is reasonable to Taylor expand νmin around its minimum up to second order.

The exponential term exp{−νmin/T} then becomes a Gaussian which can be integrated:

νmin = mz + ω +
1

8ω2mz

(s− s1)
2 + O

(
(s− s1)

3
)
. (I.2.7)

The other s-dependent factors besides exp{−νmin/T} are expected to vary slowly with

s and can be set to their value at the minimum of νmin. If s1 and s0 are not too close

(s1 − s0 ≳ 2ω
√
mzT ) one makes only a relatively small error by shifting the lower limit to
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−∞. Then the integrals in (I.1.5), (I.1.6) and (I.1.8) have the form

C

∞∫
−∞

dxe−
x2

2α2 = C
√

2πα2 (I.2.8)

and can be solved yielding

ω
d7Nqσ/π→qγ

d3kd4x
=

Teµ/T

4ω(2π)5
e−(mq+ω)/T

√
8πω2mqT

λ(s1,m
2
q,m

2
σ,π)σqσ/π→qγ(s1)

s1 −m2
q

(I.2.9)

=
Teµ/T

4ω(2π)5
e−(mq+ω)/T

√
8πω2mqT

λ(s1,m
2
q,m

2
σ,π)σqσ/π→qγ(s1)

2ωmq

(I.2.10)

=
T 3/2

4ωm
1/2
q (2π)9/2

e−(mq+ω−µ)/Tλ(s1,m
2
q,m

2
σ,π)σqσ/π→qγ(s1), (I.2.11)

ω
d7Nqq→σ/πγ

d3kd4x
=

T 3/2

4ωm
1/2
π,σ(2π)9/2

e−(mπ,σ+ω)/T s1(s1 − 4m2
q)σqq→σ/πγ(s1), (I.2.12)

ω
d7Nqσ/π→qγ

d3kd4x
=

T 3/2

4ωm
1/2
q (2π)9/2

e−(mq+ω+µ)/Tλ(s1,m
2
q,m

2
σ,π)σqσ/π→qγ(s1), (I.2.13)

which is the result given in (4.5.8).

I.2.2. Case (b), the exponential approximation

If the minimum of νmin is outside the integration range it is sufficient to expand νmin to

linear order. The integrand is expanded around s0 since from there the largest contribution

to the integral comes. Thus

νmin(s) ≈ νmin(s0) +

(
1

4ω
− ωm2

z

s̃20

)
(s− s0)

=: a+ b(s− s0)

(I.2.14)

with a ≡ νmin(s0) and b = (s̃20 − 4ω2m2
z)/(4ωs̃

2
0). Similar to the Gaussian approximation

the s dependent factors, except exp{−νmin(s)/T}, are set to a typical value they obtain

within the integration range. As exp{−νmin(s)/T} is largest at s = s0 these s dependent

factors are evaluated at s = s0. However, in certain regions of the phase diagram some of

these factors are not defined at s0. In this case, the evaluation at s0 is understood as the
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limit when s→ s0. With

C

∞∫
s0

dse−a/T−b/T (s−s0) = Ce−a/T
T

b
(I.2.15)

the integrals in (I.1.5), (I.1.6) and (I.1.8) can be evaluated with the results

ω
d7Nqσ/π→qγ

d3kd4x
=

T 2eµ/T

4ω(2π)5
λ(s2,m

2
q,m

2
σ,π)σqσ/π→qγ(s2)

b(s0 −m2
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e−a/T (I.2.16)
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T 2e−a/T

(2π)5
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2
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2
σ,π)σqσ/π→qγ(s0)
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2 − 4ω2m2
q

, (I.2.17)

ω
d7Nqq→σ/πγ

d3kd4x
=

T 2

4ω(2π)5b
e−a/T

s(s− 4m2
q)

s−m2
π,σ

σqq→σ/πγ(s) (I.2.18)

=
T 2e−a/T

(2π)5
(s0 −m2

σ,π)s0(s0 − 4m2
q)

(s0 −m2
σ,π)2 − 4ω2m2

σ,π

σqq→σ/πγ(s), (I.2.19)

and the anti-Compton emissivity ωd7Nqσ/π→qγ/d
3kd4x according to (I.1.8). Although the

annihilation matrix elements diverge for s → s0 if mσ,π ≥ 2mq the complete expression

(I.2.19) does not. However, for the ease of notation the prescription of taking the limit is

suppressed.
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