Understanding the Electronic Structure of Matter in Liquid Form Using Soft X-Ray XANES and RIXS

Kaan Atak HESEB Webinar, 20 October 2020

Outline

- Soft X-ray Absorption Near Edge Spectroscopy and Resonant Inelastic X-Ray Scattering:
 - Theory
 - Methodology
- Various Applications

Core-level absorption

Resonant X-ray absorption (XAS/XANES)

Core-level photoemission

Radiative decay

Non-resonant X-ray emission (XES)

Resonant inelastic X-ray scattering (RIXS)

A typical XANES spectrum

- photon-in photon-out
- near-edge features and chemical shifts provide information
- various measurement modes: transmission, TFY, PFY

A typical RIXS spectrum

- Raman vs. Fluorescence features
- Emission pattern dependent on excitation energy
- Resonance occurs where absorption is strong

First principles computational methods

WIREs Comput Mol Sci, 2018, Vol 8, 1759

A third generation synchrotron and a soft X-ray beamline

Layout of a soft X-ray beamline (P04 - Petra III)

A typical endstation capable of XANES/RIXS applied to liquids

ChemRIXS

- Compact and mobile
- Low cost (~300k)
- Acceptable resolution

Resolution

- proportional to detector arm length
- inversely proportional to grating line width and camera pixel size

The liquid flow-cell technique

- allows for absorption measurements using fluorescence yields
- fresh sample is flown minimizing sample damage
- suitable for samples in small amounts

The liquid micro jet technique

- allows for absorption measurements using fluorescence yields
- lack of membranes resolve sample-membrane interaction issues
- fresh sample is flown effectively nullifying sample damage
- suitable for samples in larger amounts

The flat jet

- allows for a "true" absorption measurement in the transmission mode
- resolves the issues arising from the deviations between fluorescence and transmission mode absorption

What type of questions can liquid state XANES/RIXS address?

We have an active site in a functional molecule, it has a central atom (such as a TM):

- What type of bonding does it exhibit? (pi, sigma,...)
- What is its coordination with neighboring atoms?
- What is its oxidation state?
- What is its spin state?
- Does the surrounding liquid have a chemical effect?
- How about electronic transitions such as d-d or charge transfer?
- ...

A biologically relevant Co TM-complex: Cobalamin (B12)

- The central Co³⁺ ion is vital for biological activity
- The alpha position (R) can bind to (CN⁻, OH, CH₃, and 5-deoxyadenosyl) ligands

Cobalt TM-complexes in catalysis: electron mediators in

a dye sensitized solar cell

Nature Communications 3, 631 (2012)

Octahedral splitting in strong ligand field

Aqueous [Co(CN)₆]³⁻

- The characteristic π^* peak shows the mixing of Co 3d t_{2g} orbitals with $2\pi^*$ orbitals of CN⁻.
- The orbital characters are obtained by Löwdin population analysis.
- LUMO and LUMO+1 have 60% Co contribution, MOs #57-59 have 20% metal character.

Aqueous [Co(CN)₆]³⁻

- Emission channel 3d→2p,
 fluorescence a and a'
- 3d t_{2g}⁶ closed shell nature of the nature.

Aqueous $[Co(bpy)_3]^{2+}$ and $[Co(bpy)_3]^{3+}$

- [Co(bpy)₃]²⁺ two spin possibilities for the valence
 d⁷ configuration. LS with t_{2g}⁶ e_g¹ and HS with t_{2g}⁵ e_g²
- The uneven occupation in the e_g level causes strong Jahn-Teller distortions for LS case
- $[Co(bpy)_3]^{3+}$ three different spin possibilities. LS with t_{2g}^{6} and e_g^{0} HS with t_{2g}^{4} and e_g^{2}

Co L-edge RIXS of [Co(bpy)₃]²⁺ and [Co(bpy)₃]³⁺

- Co L-edge RIXS maps showing dd and CT emission following a 2p→3d excitation
- In the [Co(bpy)₃]²⁺ case, both possible spin states are open shell
- The [Co(bpy)₃]³⁺ case, spin state is not purely LS (zero spin), a HS component must be considered

Co L-edge PFY-XA spectra

Co L-edge PFY-XA spectra comparison with theory

DFT/ROCIS level theory suggests multiple spin states to consider for both [Co(bpy)₃]²⁺ and [Co(bpy)₃]³⁺

N K-edge PFY-XA spectra

✔ PFY- XA spectra obtained by integrating the N K-edge RIXS maps

N K-edge RIXS of $[Co(bpy)_3]^{2+}$ and $[Co(bpy)_3]^{3+}$

- RIXS/X-ray emission after ligand 1s→2p excitation
- Main emission from ligand 2p orbitals
- A special feature is seen on the high energy emission side marked by dotted blue line
- Both systems exhibit fluorescence features above B₄ and B₄

N K-edge PFY-XA spectra comparison with theory

- Sensitivity towards metal spin state is minimum from the ligand side
- B_2 and B_2 N 1s $\rightarrow \pi^*$ characteristic C=N π^* unoccupied orbitals
- B_5 and $B_5 \sigma^*$ shape resonance

Summary

Acknowledgements

Prof. Simone Techert Deutsches Elektronen-Synchrotron DESY, Structural Dynamics in Chemical Systems, Hamburg, Germany

Dr. Bernd Winter Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin ,Germany

Dr. Sreeju Sreekantan Nair Lalithambika Deutsches Elektronen-Synchrotron DESY, Structural Dynamics in Chemical Systems, Hamburg, Germany