Understanding the Electronic Structure of Matter in Liquid Form Using Soft X-Ray XANES and RIXS Kaan Atak HESEB Webinar, 20 October 2020 ### **Outline** - Soft X-ray Absorption Near Edge Spectroscopy and Resonant Inelastic X-Ray Scattering: - Theory - Methodology - Various Applications ## **Core-level absorption** Resonant X-ray absorption (XAS/XANES) Core-level photoemission ## **Radiative decay** Non-resonant X-ray emission (XES) Resonant inelastic X-ray scattering (RIXS) ## A typical XANES spectrum - photon-in photon-out - near-edge features and chemical shifts provide information - various measurement modes: transmission, TFY, PFY ## A typical RIXS spectrum - Raman vs. Fluorescence features - Emission pattern dependent on excitation energy - Resonance occurs where absorption is strong ## First principles computational methods WIREs Comput Mol Sci, 2018, Vol 8, 1759 ### A third generation synchrotron and a soft X-ray beamline ## Layout of a soft X-ray beamline (P04 - Petra III) ### A typical endstation capable of XANES/RIXS applied to liquids ### **ChemRIXS** - Compact and mobile - Low cost (~300k) - Acceptable resolution ### Resolution - proportional to detector arm length - inversely proportional to grating line width and camera pixel size ## The liquid flow-cell technique - allows for absorption measurements using fluorescence yields - fresh sample is flown minimizing sample damage - suitable for samples in small amounts ## The liquid micro jet technique - allows for absorption measurements using fluorescence yields - lack of membranes resolve sample-membrane interaction issues - fresh sample is flown effectively nullifying sample damage - suitable for samples in larger amounts ## The flat jet - allows for a "true" absorption measurement in the transmission mode - resolves the issues arising from the deviations between fluorescence and transmission mode absorption # What type of questions can liquid state XANES/RIXS address? We have an active site in a functional molecule, it has a central atom (such as a TM): - What type of bonding does it exhibit? (pi, sigma,...) - What is its coordination with neighboring atoms? - What is its oxidation state? - What is its spin state? - Does the surrounding liquid have a chemical effect? - How about electronic transitions such as d-d or charge transfer? - ... ## A biologically relevant Co TM-complex: Cobalamin (B12) - The central Co³⁺ ion is vital for biological activity - The alpha position (R) can bind to (CN⁻, OH, CH₃, and 5-deoxyadenosyl) ligands Cobalt TM-complexes in catalysis: electron mediators in a dye sensitized solar cell Nature Communications 3, 631 (2012) ### Octahedral splitting in strong ligand field ## Aqueous [Co(CN)₆]³⁻ - The characteristic π^* peak shows the mixing of Co 3d t_{2g} orbitals with $2\pi^*$ orbitals of CN⁻. - The orbital characters are obtained by Löwdin population analysis. - LUMO and LUMO+1 have 60% Co contribution, MOs #57-59 have 20% metal character. ## Aqueous [Co(CN)₆]³⁻ - Emission channel 3d→2p, fluorescence a and a' - 3d t_{2g}⁶ closed shell nature of the nature. ### Aqueous $[Co(bpy)_3]^{2+}$ and $[Co(bpy)_3]^{3+}$ - [Co(bpy)₃]²⁺ two spin possibilities for the valence d⁷ configuration. LS with t_{2g}⁶ e_g¹ and HS with t_{2g}⁵ e_g² - The uneven occupation in the e_g level causes strong Jahn-Teller distortions for LS case - $[Co(bpy)_3]^{3+}$ three different spin possibilities. LS with t_{2g}^{6} and e_g^{0} HS with t_{2g}^{4} and e_g^{2} ## Co L-edge RIXS of [Co(bpy)₃]²⁺ and [Co(bpy)₃]³⁺ - Co L-edge RIXS maps showing dd and CT emission following a 2p→3d excitation - In the [Co(bpy)₃]²⁺ case, both possible spin states are open shell - The [Co(bpy)₃]³⁺ case, spin state is not purely LS (zero spin), a HS component must be considered ### Co L-edge PFY-XA spectra ### Co L-edge PFY-XA spectra comparison with theory DFT/ROCIS level theory suggests multiple spin states to consider for both [Co(bpy)₃]²⁺ and [Co(bpy)₃]³⁺ ### N K-edge PFY-XA spectra ✔ PFY- XA spectra obtained by integrating the N K-edge RIXS maps ## N K-edge RIXS of $[Co(bpy)_3]^{2+}$ and $[Co(bpy)_3]^{3+}$ - RIXS/X-ray emission after ligand 1s→2p excitation - Main emission from ligand 2p orbitals - A special feature is seen on the high energy emission side marked by dotted blue line - Both systems exhibit fluorescence features above B₄ and B₄ ### N K-edge PFY-XA spectra comparison with theory - Sensitivity towards metal spin state is minimum from the ligand side - B_2 and B_2 N 1s $\rightarrow \pi^*$ characteristic C=N π^* unoccupied orbitals - B_5 and $B_5 \sigma^*$ shape resonance ### **Summary** #### **Acknowledgements** Prof. Simone Techert Deutsches Elektronen-Synchrotron DESY, Structural Dynamics in Chemical Systems, Hamburg, Germany Dr. Bernd Winter Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin ,Germany Dr. Sreeju Sreekantan Nair Lalithambika Deutsches Elektronen-Synchrotron DESY, Structural Dynamics in Chemical Systems, Hamburg, Germany