Plasma Physics

TU Dresden Lecturer: Dr. Katerina Falk

Lecture 2: Single particle motion

Plasma Physics: lecture 2

- Single particle motion
- Larmor radius
- Guiding centre drift
- Confinement with magnetic mirrors
- Adiabatic invariants

Charged particle motion in plasma

- Plasmas made out of mobile positive and negative charges
- The motion of each charged particle is determined by the electric and magnetic fields it experiences
- Those fields can be external (e.g. Earth's magnetic field and ionosphere) and also generated by all the individual moving particles within the plasmas (very messy situation!) → start with simple approximations
- Motion of a charged particle governed by Lorentz force:

$$\mathbf{F} = m \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2} = q(\mathbf{E} + [\mathbf{v} \times \mathbf{B}])$$

Reduce the Lorentz equation to:

$$m\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = q(\mathbf{v}\times\mathbf{B})$$

Start with the simple example of a particle moving in a constant B-field with no curvature in z-direction:

$$m\dot{\mathbf{v}} = q(\mathbf{v} \times \mathbf{B}) \quad \Rightarrow \quad \dot{\mathbf{v}} = \boldsymbol{\omega}_{c} \times \mathbf{v}$$

Define the cyclotron (also gyro) frequency:

$$\vec{\omega}_c = \frac{-q\mathbf{B}}{m} \rightarrow \left(\vec{\omega}_{ce} = \frac{e\mathbf{B}}{m}, \vec{\omega}_{ci} = \frac{-Ze\mathbf{B}}{M}\right)$$

- The energy of the particle is not altered as the magnetic field does not do any work on it.
- Note that the force on the particle due the magnetic field is perpendicular to the direction of motion of the particle.
- The motion of particles in the plane perpendicular to the magnetic field is altered → circular.
- The velocity of the particle prior applying the B-field does not change in the direction of the field (z-axis):

$$z = z_0 + v_z t$$

\rightarrow overall helical motion

- Changes of velocity only in the perpendicular directions (along x and y axes).
- Consider the speed of the particle in the plane perpendicular to the field:

$$v_{\perp} = \sqrt{v^2 - v_z^2}$$
$$\mathbf{v}_{\perp} = v_x \mathbf{\hat{x}} + v_y \mathbf{\hat{y}}$$

• Substitute in the gyro frequency into $\dot{\mathbf{v}} = \omega_c \times \mathbf{v}$:

$$\dot{v_x} = -\omega_{
m c} v_y$$
 and $\dot{v_y} = \omega_{
m c} v_x$

Differentiate with respect to time:

$$\ddot{v_x} = -\omega_{
m c}^2 v_x$$
 and $\ddot{v_y} = -\omega_{
m c}^2 v_y$

• Simple harmonic motion: $v_x = v_\perp \cos(\omega_{
m c} t + \phi)$

$$v_y = v_\perp \sin(\omega_{\rm c} t + \phi)$$

• With v_x and v_y being 2π out of phase.

$$v_{\perp} = \sqrt{v_x^2 + v_y^2}$$

 v_x

Write out cartesian coordinates:

$$x = x_0 + \frac{v_\perp}{\omega_c} \sin(\omega_c t + \phi)$$
$$y = y_0 - \frac{v_\perp}{\omega_c} \cos(\omega_c t + \phi)$$
$$z = z_0 + v_z t$$

Notice that:

$$(x - x_0)^2 + (y - y_0)^2 = \left(\frac{v_\perp}{\omega_c}\right)^2$$

- Particle moves along a helix
- Circular component of the motion centered around x₀ and y₀ coordinates → guiding centre
- Radius of this motion is the Larmor radius:

The Larmor radius

In plasmas with finite temperature, by conservation of energy:

$$E = \frac{1}{2}mv_{tot}^2 = \frac{n_d}{2}k_BT \quad \text{where} \quad v_{tot}^2 = v_{\parallel}^2 + v_{\perp}^2$$

$$\Rightarrow \ \frac{1}{2}mv_{\perp}^2 = k_BT \qquad \Rightarrow \qquad v_{\perp} = \sqrt{\frac{2k_BT}{m}}$$

• Thus Larmor radius: $r_L = \frac{v_\perp}{\omega_c} = \frac{\sqrt{2k_BmT}}{qB}$

Guiding centre drift

- Adding another force acting on the particle.
- Consider the average motion of the particle, which is simply a movement along the magnetic field with v_z.
- Add another general constant force:
 - In z-direction: the motion in x-y plane is unaltered, but there is additional acceleration along z-direction
 - In x-y plane: more complicated cases. Assume that the force acts in this direction and only velocity in this plane is considered.

General constant force drift

New equation of motion with F in x-y plane :

$$\dot{\mathbf{v}} = (\boldsymbol{\omega}_{\mathrm{c}} \times \mathbf{v}) + \frac{\mathbf{F}}{m}$$

And differentiate with respect to time:

$$\ddot{\mathbf{v}} = (\boldsymbol{\omega}_{\mathrm{c}} \times \dot{\mathbf{v}})$$

And substitute:

$$\begin{split} \ddot{\mathbf{v}} &= \boldsymbol{\omega}_{c} \times \left((\boldsymbol{\omega}_{c} \times \mathbf{v}) + \frac{\mathbf{F}}{m} \right) \\ &= \boldsymbol{\omega}_{c} (\boldsymbol{\omega}_{c} \cdot \mathbf{v}) - \mathbf{v} \boldsymbol{\omega}_{c}^{2} + \frac{\boldsymbol{\omega}_{c} \times \mathbf{F}}{m} \\ &= -\mathbf{v} \boldsymbol{\omega}_{c}^{2} + \frac{\boldsymbol{\omega}_{c} \times \mathbf{F}}{m} \end{split}$$

General constant force drift

The motion will be circular, as before, with an additional drift at a constant velocity given by:

$$\mathbf{v}_{\mathrm{d}} = rac{oldsymbol{\omega}_{\mathrm{c}} imes \mathbf{F}}{m\omega_{\mathrm{c}}^2} \ = rac{1}{q} rac{\mathbf{F} imes \mathbf{B}}{B^2}$$

- General expression for any force (e.g. gravity)
- For constant **electric field** (perpendicular to B), we get:

Guiding centre drift in constant E field

- Electrons and ions gyrate at opposite directions with ions having bigger Larmor radius.
- Ion gains energy from electric field (y-direction) increasing v_{\perp} and with it r_L , but looses energy in the next half cycle and r_L decreases again
- Electron does the same, but in the opposite direction
- Overall drift in *x*-direction for **both electrons and ions** as these effects cancel out

E field along y-axis

Note: z-axis out of page

Gradient drift in non-uniform B field

- Also called grad-B drift
- Consider straight B-field, but with gradient in density of the field lines

Note: z-axis out of page

- The Larmor radius is inversely proportional to the B field
- There is an effective force in the y-direction drift in xdirection
- Electrons and ions drift in opposite directions as the gyration is opposite

Gradient drift in non-uniform B field

• For uniform B-field: $\dot{v_y} = \omega_{
m c} v_x$

$$F_y = -qv_x B_z = -qv_\perp (\cos \omega_c t) B_z$$

Assume B-field varies slowly in y-direction:

$$B_z = B_0 + y \left(\frac{\partial B_z}{\partial y}\right)$$

Substitute:

$$F_y = -qv_{\perp}(\cos\omega_{\rm c}t) \left[B_0 + y \left(\frac{\partial B_z}{\partial y} \right) \right]$$

Note: Larmor radius small compared to the scale length of the gradient in the B-field

Gradient drift in non-uniform B field

• Substitute for *y*-coordinate with $y_0 = 0$:

$$F_{y} = -qv_{\perp}(\cos \omega_{c}t) \left[B_{0} - \frac{v_{\perp}}{\omega_{c}}(\cos \omega_{c}t) \left(\frac{\partial B_{z}}{\partial y} \right) \right]$$
• Averaged force:

Note: The first term averages to 0 and the second to $\frac{1}{2}$.

$$\bar{F_y} = q v_\perp^2 \frac{1}{2\omega_{\rm c}} \left(\frac{\partial B_z}{\partial y}\right)$$

Substitute to find drift velocity:

$$\mathbf{v}_{\rm d} = v_{\perp}^2 \frac{1}{2\omega_{\rm c}} \frac{\nabla \mathbf{B} \times \mathbf{B}}{B^2}$$

Curvature drift in non-uniform B field

 Consider circular B-field with radius of curvature R, particle experiences an effective centrifugal force:

$$\mathbf{F}_{\rm cf} = m v_{\parallel}^2 \frac{\mathbf{R}}{R^2}$$

Thus drift velocity due to the curvature of the field is simply:

$$\mathbf{v}_{\rm d} = \frac{m v_{\parallel}^2}{q B^2} \frac{\mathbf{R} \times \mathbf{B}}{R^2}$$

But that is not the full story ...

Curvature drift in non-uniform B field

- There is also an associated grad-B drift that arises directly from the requirements set by the Maxwell's equations, i.e. curved field in vacuum cannot be uniform!
- B-field has to be inversely proportional to R:

$$\begin{split} |B| \propto \frac{1}{R} \rightarrow \frac{\nabla |B|}{|B|} &= -\frac{\mathbf{R}}{R^2} \\ \bullet \text{ Additional grad-B drift: } \mathbf{v}_{\nabla \mathbf{B}} &= -v_{\perp}^2 \frac{|B|}{2\omega_c} \frac{\mathbf{R} \times \mathbf{B}}{R^2 B^2} \\ &= \frac{m v_{\perp}^2}{2q B^2} \frac{\mathbf{R} \times \mathbf{B}}{R^2} \\ &= \frac{m v_{\perp}^2}{2q B^2} \frac{\mathbf{R} \times \mathbf{B}}{R^2} \\ \end{split}$$

Magnetic moment

• Magnetic moment defined as: $\mu = \text{area} \times \text{current}$

• Current :
$$I = \frac{dQ}{dt} = \frac{q}{T} = \frac{q}{2\pi/\omega_c} = \frac{q\omega_c}{2\pi}$$

• Thus:
$$\mu = \pi r_L^2 \cdot \frac{q\omega_c}{2\pi} = \frac{v_\perp^2}{2\omega_c^2} \cdot q\omega_c = \frac{1}{2} \frac{mv_\perp^2}{B}$$
 as $\omega_c = \frac{qB}{m}$

Magnetic moment:

$$\boldsymbol{\mu} = \frac{1}{2} m v_{\perp}^2 \frac{\mathbf{B}}{B^2}$$

Principle of magnetic confinement

- Particles constrained to move along the B field lines
- Adding circular motion perpendicular to B to motion along B-field
 → helical motion
- Ions rotate in opposite direction to electrons
- Particle motion induces further B fields
- → plasmas are diamagnetic

- Non-uniform B-field with cylindrically symmetric field lines along z-axis (or r), no component in θ-direction
- $v \times \mathbf{B}_r$ force confines particles in the *z*-direction

- \mathbf{B}_r field value must be approximated
- Starting from Maxwell's equations: $abla \cdot \mathbf{B} = 0$

• Thus:
$$\frac{1}{r}\frac{\partial}{\partial r}(rB_r) + \frac{\partial B_z}{\partial z} = 0$$

• Assume that $\partial B_z / \partial z$ is roughly constant, and equal to its value on axis:

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_r) = -\frac{\partial B_z}{\partial z}$$
$$rB_r = -\int_0^r r\frac{\partial B_z}{\partial z} dr \approx -\frac{1}{2}r^2 \left[\frac{\partial B_z}{\partial z}\right]_{r=0}$$
$$B_r = -\frac{1}{2}r \left[\frac{\partial B_z}{\partial z}\right]_{r=0}$$

Consider particle moving along z-axis with Larmor radius r_L, motion perpendicular to B_r, thus the particle experiences v×B force in the z-direction:

• The particle feels a confining force F_z

- Only particles with perpendicular velocity component will be trapped and they have: $v_0^2 = v_{\perp 0}^2 + v_{\parallel 0}^2$
- Conservation of the magnetic moment μ or angular momentum $v_{\perp}r_L = \text{const.}$

$$v_{\perp}^2 = \left(\frac{B}{B_0}\right) v_{\perp 0}^2$$

Conservation of energy:

$$v_{\parallel}^{2} = v_{0}^{2} - v_{\perp}^{2} = v_{0}^{2} \left(1 - \frac{B}{B_{0}} \frac{v_{\perp 0}^{2}}{v_{0}^{2}} \right)$$

• Particles reflected when $v_{\parallel}=0$: $B_{
m ref}=rac{v_0^2}{v_{\perp 0}^2}B_0$

- As **B** increases:
 - v_{\perp} must increase to keep μ constant
 - v_{\parallel} must decrease to keep the kinetic energy constant
- At field maximum B_m :
 - Particles with $v_{\parallel}^2(0) < v_{\perp}^2(0) \left(\frac{B_m}{B_0} 1\right)$ are reflected.
 - Particles with $v_{\parallel}^2(0) > v_{\perp}^2(0) \left(\frac{B_m}{B_0} 1\right)$ are lost.
- Trapped particles oscillate between two reflection points

B_{max}

Loss cone

Particle velocity components:

$$\sin^2 \theta = \frac{v_{\perp 0}^2}{v_0^2} = \frac{B_0}{B}$$

• Thus, particles with the pitch angle of the orbit θ smaller than θ_m will escape from the confinement:

$$\sin^2 \theta_{\rm m} = \frac{B_0}{B_{\rm m}}$$

Van Allen belts and the northern lights

- Naturally occurring magnetic mirrors are the Van Ellen radiation belts within Earth's ionosphere
- Particles from the solar wind get trapped within the weaker field region between the poles
- Escaping particles cause the northern lights (aurorae)

Magnetic confinement fusion

The tokamak is an example of magnetic confinement

Bananas in tokamaks

Finite size of "bananas" due to small finite drift velocity

Adiabatic invariants

1) The magnetic moment μ is conserved.

$$\boldsymbol{\mu} = \frac{1}{2} m v_{\perp}^2 \frac{\mathbf{B}}{B^2} \quad \Rightarrow \quad \frac{\mathrm{d}\mu}{\mathrm{d}t} = 0$$

2) The path integral of v_{\parallel} is conserved.

 \rightarrow Particles always follow the field lines.

 $\mathbf{J} = \int_{a}^{b} v_{\parallel} \mathrm{d}s$

- 3) The flux mapped by the 3D surface due to the drift motion in B field curvature and gradients is conserved.
 - → Particles drift around the equator returning to the same longitude.

Summary of lecture 2

- In a uniform B field the motion of a charged particle is helical.
- With the addition of another force, perpendicular to B, the guiding centre of the particle drifts along a direction perpendicular to both B and F.
- Electrons and ions drift in the same direction in an electric and magnetic field.
- B-field gradients and curvature also cause drift (this is an issue in tokamaks).
- Magnetic fields can be used to confine plasmas (e.g. magnetic mirrors)
- The magnetic moment of a plasma is called the first plasma/adiabatic invariant.