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Plasma Physics: lecture 3

= Electron-ion collisions

= Coulomb logarithm

= Collision time and Spitzer resistivity
= ‘Collisionless’ nature of plasmas

= Radiation losses in plasma

= EM waves in plasma



Collisions in plasmas

= Mobile particles in plasma feel electrostatic forces

= They collide with other particles inside the Debye sphere
through a series of Coulomb collisions

= A large number of small momentum transfers (small
angle deflections due to these collisions) add up to a

large deflection over a long rage . o
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Rutherford scattering

= Electron feels an average Coulomb force:
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Collision time

= Estimate the rate of change for (Av)? assuming that a
collision has taken place when the rms value of Av has
changed by v leading to a total 90 degree deflection (by
adding lots of small angle collisions).

" For a given collision with impact parameter b:
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" The rate of particle encounter is: n;ov, where g is the
cross section given by 2mbdb



Collision time

" Thus: % < (Av)? > = /27rb db n;v(Av)?
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Collision time

* The upper limit of the integral is the Debye length A as
for any deflection larger than that results in a particle no
longer feeling the electrostatic potential due to shielding:
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" Head on collision (zero angle deflection must) have Av =
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= Setting the b,,,, to the deBroglie length (see lecture 1) is
the more correct approach



The Coulomb logarithm

" By integration with the correct limits, we obtain:
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" Define the Coulomb logarithm:
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The Coulomb logarithm

= Assuming the thermal velocity:
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" The Coulomb logarithm is of the same order as the
plasma parameter N, i.e. corresponds to the number of
particles inside the Debye sphere (typically 1 — 30)



Collision time

= For total of 90 degree deflection after many small
angle collisions we expect the Av? to be of the order
of v?:
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= Average over the velocities present in the Maxwellian
distribution and for electron thermal velocity of
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Mean free path

" The mean free path is the average distance between two
subsequent collisions of the electron (ion) with plasma
components:

average velocity of the electron or ion

ﬂ'i e — —_— Vei = \/kBTe,i/me,i

the electron or ion collision rate

= Collision rates for fully ionized non-degenerate plasma:
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Collisionless plasmas

" While deriving the plasma frequency w,, we ighored

collisions arguing that there were many oscillations of
the electrons on the timescale of a collision

= We can now prove that we can ignore collisions on the
time scale of plasma frequency, i.e. w,T > 1



Collisionless plasmas
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Collisionless plasmas

" |n lecture 1 we defined a ‘good’ plasma is one with a
large number of particles within the Debye sphere:

N, =n0%n)% >> 1

= While typical In A~10

" Thus we can treat plasmas as collisionless, i.e. collisions
take place on a timescale that is long compared with a
plasma period

= This also means that interactions with plasma without
collisions are possible!



Effects of collisions

= Collisions heat and ionize plasmas and produce fusion

" The rate of collisions between particles in plasma are
related to electrical conductivity/resistivity of plasmas

= Collisions of particles also lead do radiative energy losses
in the form of Bremsstrahlung and recombination

= Random motion and collisions in plasma in presence of
gradients in thermodynamic conditions also lead to
diffusion

= Particles can diffuse across B-fields - energy loss in
tokamaks

®" This also leads to constraints in confinement time in
fusion plasmas



Resistivity in plasmas

= Particles in plasma are repeatedly accelerated and
stopped by collisions

" There is some net motion = drift velocity v, (not
guiding centre)
=" Motion between collisions in E field in plasma:
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" The current density of moving charges in plasma:
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Resistivity in plasmas

" From Ohm’s law: Resistivity
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Resistivity in plasmas

= Unlike metals, plasmas become better conductors at
higher temperatures

" |t is not possible to Ohmicaly heat tokamak plasmas to
reach fusion temperatures.

= Ohmic heating/resistive heating is the process by which
the passage of an electric current through a conductor
produces heat.

= Resistivity is independent of electron density for ideal
plasmas.



Bremsstrahlung

= Radiation power from accelerating charge:
aw  ¢? (dv)z
dt  6meyc3 \dt

= Electrostatic force seen by an electron:

dv  Ze?
Meqr ~ 41renb?

" Integrate over frequency - Bremsstrahlung power:

Py = 1.69%x10738Z%n,n; T2 Wm?3



Other radiation losses in plasma

= Due to recombination, where low energy electrons do not
escape the pull of an ion and become bound to it

= Results in a continuum spectrum with a cut-off energy at
lonization energy
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= Total power for radiation losses:

Py = 1.69x10738n, T1/2 3 2%, =t wm3



Electromagnetic waves in plasma

= What happens when light incident onto plasma?
" Both electric and magnetic fields oscillate
= EM waves are transverse

= Electric field makes electrons move, generating current

Conductivity

"Ohm’slaw:  J(w) = o(w)E

" In vacuum (no free charges): V-'E =0

2 k-E=0



Electromagnetic waves in plasma
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A transverse wave does not give rise to charge separation
on the scale of a wavelength.



Electromagnetic waves in plasma

= Start from Maxwell’s equations with proper treatment:

VXE OB VxXH + oD

= — — X p— —_—

ot J dt
Faraday’s Law Ampere’s Law

= Take curl on both sides of the Faraday’s law:

I(VxB)
ot

Vx(VxE)=V(V-E)-V’E = -

= Substitute in Ampere’s law to obtain:
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Electromagnetic waves in plasma

= As we have no charge separation V- E = 0:
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= And the transverse EM wave is:

E =E,. expli(wt — k.1)]

= By simple derivation then:
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= Thus the dielectric function is:
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Conductivity of plasma

Conductivity

*Ohm’slaw: J(w) =oc(w)E
= Assume oscillating electric field: E = E(w) exp(iwt)

" Thus, equation of motion for electrons:

d
md—: = —eE = —cE(w) exp(iwt)

= Flectrons are assumed to also oscillate:
v(t) = v(w) exp(iwt)

*Thus: imv(w)w = —eE(w)



Conductivity of plasma

" Current density also defined as:

= Substitute for v(w):
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" Thus conductivity of plasma:

= And the dielectric function:
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Electromagnetic waves in plasma

" The general expression:

~k(k-E) + k°E = —MO% (J + 600_13)

= Substitute for conductivity o(w) as J(w)= o(w)E:

= Rearrange:
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Electromagnetic waves in plasma

= So finally:
(w? — wg —k*)E+c’k(k-E)=0

= For electrostatic waves K || E, thus k(k - E) = k“E:

(U — (Up 4+— Plasmons

" For electromagnetic waves K- E = 0 :

electromagnetic waves in plasma

W 2 — wl:2) _I_ 62 k2 | Dispersion relation for




Electromagnetic waves in plasma

" No propagation for light with w < w),:
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Summary of lecture 3

= Electrons scatter from ions via Rutherford scattering. A ‘collision’
is usually made up of many small-angle scatters.
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" The scatteringtime: 764

" This time is long compared with a plasma period (the ratio is of
order the plasma parameter) - hence ‘good’ plasmas are
‘collisionless’.

10
= The dielectric function of a plasma: ¢(w) = (1 — u})
€0

= Dispersion relation for EM waves in plasma:

w? = wg 4 c2k?



