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Plasma Physics: lecture 4

= Kinetic description of plasma
=" The Vlasov equation

= Langmuir waves

=" Bohm-Gross frequency

= Landau damping



The distribution function

" The comprehensive information about the motion
of individual particles in plasma is included in the
distribution function

= \Waves will alter the distribution function

= Maxwell-Boltzmann distribution can be used for
homogeneous plasma extending over all space:
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The distribution function

= For 6-dimensional phase space we get 3 velocity and
3 spatial coordinates for each particle.

= Number of particles within small volume d°r at
position r, with velocity within volume element d?v at

velocity v:
AN (v,r,t) = f(v,r,t)d’rd’v

" Integrate over all real space = distribution function:

f(v,t) :/f(v,r,t)dBr

" Integrate whole phase space = total no. of particles:

N = / / f(v,r,t)d’rd’v



Continuity equation

= Particles cannot be created or destroyed

= Particle density n and flow velocity u are connected
through conservation of mass:

iﬁfn-dV=—ffn-u~dS and UJVA-dV=#A-dS
at JJJy S % S

Rate of decrease of total charge Total current the divergence theorem
d on
= Uf V(nu) -dV+—jUn-dV = Uf [V(nu) +—] -dV =0
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= Thus the continuity equation: .. V(nu)+— =20

dt



The Vlasov equation

= Particles/mass are conserved

" The distribution function obeys the continuity
equation: of

E‘l' V-(fu) + V,(fa) =0

= Simplify using the product rule:

V-(fu) = f%';' ub, f

7.(fa) = [T +arf =7, 1



The Vlasov equation

= Get the collisionless Boltzmann equation:

of F
E‘FUVTf-Fn—l ‘Vuf:O

= Velocity distribution constantly changed by
collisions

= Add collision term for completeness

= Collisional Boltzmann equation:
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The Vlasov equation

" Plasmas are subject to the Lorentz force:
F =q(E + vxB)
= Substitute to the collisional Boltzmann equation

" The full Vlasov equation:

of _ (91
E Tu (\7 f) + m (E TV XB) (Vuf) (at)colllswns

" |gnoring collisions:

g+u(\7f)+i (E+vxB)-(V,f)=0
dat ’ m wha



The Vlasov equation

=" The Vlasov equation is used to describe and study
the kinetic theory of plasmas.

" The electric and magnetic fields can be:
* External acting on a whole group of particles
* Generated by collective effects in plasma, i.e. waves

" |t is used to model waves in plasma, transport and
collisions.

= We will use it to get a complete description of
Langmuir waves in plasma and recover the Bohm-
Gross frequency.

= We will also study the damping rate of the Langmuir
waves (Landau damping).



Langmuir waves

= Assume static ions (no change in distribution function)
" Electron distribution function perturbed by f,(r, v, ?)

= The total distribution function:

J, v, 0 = fo(r, v, 1) + fi(¥, v, 1)

" Thus, electric field present due to f; perturbation only,
no net electric fields

" Following from the Gauss law:

V- -E(r,t) = —i/fl(r,v,t)d?’v



Langmuir waves
fy . fo

= Vlasov equation before perturbation: — + v

= After perturbation:

O(fo + f1) Ly A(fo+ f1) € . I(fo + f1)
ot or m ov

= Subtract equations:

0f1 o(f1) e O(fo + f1)
5 TV e BTy

=0

= And linearize (ignore terms E f; ):  <— &/ issma
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Langmuir waves

= For wave motion, we assume that the electric field
and perturbation to the distribution function vary

periodically:
E =Eyx , exp(ilk - r — wt])

1= Jiac,w) exp(ilk - r — wi])

= Substituting into the Vlasov equation:

. . e 0 f,
—Wf1(k,w) + 1k - Vfl(k,w) — EEk,w ' 8—\? =0

o v€ 1 d fo
= Simplify: fl(k,w) — m (w k. V) Ek,w ' 8—v




Langmuir waves

" Gauss law again: V-E(r,t)=—£ffl(r,v,t)d3v
8()

ik-E,, =- [ fir,v.0)dv
80

= Substitute for f; :

o2 dfo
k- Ek,w — Ek,w . / Ov d3V
ggm w—k-v
__f L oy



Langmuir waves

= Assuming plane wave propagating along z-direction
* E and k along z-axis for electrostatic waves:

" Thus, the velocity component v, also along z and the
non-zero electric field yields dispersion relation:

9fo

62 o
1 = dv,dv,dv, =0
+€Omk/w—k‘vz Ve Cly el

" This leads to a dispersion relation links £ and w

= Note: there is a pole in the integral when the velocity
of the electron equals the phase velocity of the wave,
i.e. forv,= w/k (weignore it for v, > v;y)



Langmuir waves

= For Maxwell-Boltzmann distribution function:

3/2
o m B 2 2 2
fo= 575 (gpg) explomie? +03 + 1)/ (2haT)

= And substitute for f,:

m’u2

2nge? m\%/? v,e ZFBT _ mvg _ mvy
L B egmk (2kBT) / w — kv dvz/e %BTdU”’/G ey =0

= And:

—mv%'y ZﬂkBT
e Ux’y
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Langmuir waves

= And simplify:

m’u2

. 27’L0€2 m 3/2 / ’Uze_ 2kB?F q o
w12eomk \ 2kpgT w — kv, vz =

* We make the assumption that v, is large compared to
the thermal velocity (kz7/m)'? and thus kv, <K w

-» ignore the pole

= Binomial expansion:

1 1 ( kv, (kvz)z )
= — |14 | + ...
w—kv, w W W




Langmuir waves

= Substitute and simplify:

| 2noe” m ) / LY (s 2 + ~FaT du, = 0
S —_ "Uz cee (A Uz —
w1/ 2eomk \ 2kgT w W W

" |ntegrate from —oo to oo, odd functions go to zero:
2nge? m 3/2 4 kv, kv, 3 _% B
1— ook (2kBT> - /’Uz - + - +...]le ?BTdv, =0
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Langmuir waves

= Rewrite with thermal velocity v, = (kzT/m)'? and
substitute for the plasma frequency:

= Complete result taking in account the pole provides
the exact solution:

Whe 3kgT 2 ITWSew? (afO)
w? , m k?n 0V /) y=/k

Langmuir oscillations Effect of temperature The damping term
(effect of the singularity)



Langmuir waves

= We assumed a large phase velocity% compared to
thermal velocity kv, < w

= With no damping term, the effect of temperature is
small and we obtain the approximate solution
(w = wp,) for the Bohm-Gross frequency:

T The dispersion relation
3k,

k for electrostatic waves in
warm plasma

2 _ ,.2

m

= Can only drive longitudinal waves for w > w,,

= Electron plasma waves similar to sound waves, carry
information at roughly the thermal velocity



Landau damping

" The correct solution of the Vlasov equation for
electrostatic waves (electrons moving parallel to the k-
vector) give a rise to a damping term.

" The pole in the integral occurs when electrons travel
with a velocity equal to the phase velocity % of the wave
- resonant phenomenon. Electrons with velocity close
to % travel with the wave and get trapped in it and
oscillate (potential well).

" Trapped electrons thus see an almost static field - they

can be accelerated (if v, slightly less than w/k) or
decelerated (if v, slightly more than w/k) by the wave.




Landau damping

" Trapped particle oscillates within the field of the wave
A
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Landau damping
"y, D % - electron passes through the wave unchanged

"y, K % -> electron oscillates with the wave,

Av = v —w/k|
", X % - electron travels with the \

>

but average effect zero

wave and sees almost

a steady field \ I (2) av
" Electrons trapped for: Avg

A <v<—4A K
2 ka 1%




Landau damping

" For a Maxwellian distribution function, there are always
more particles travelling more slowly than the wave,
than faster than it.

" The wave accelerates particles and thus loses energy to
them =» the wave is damped (Landau damping).
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Landau damping

= Electron oscillates in a potential well:

L 2 A
Em(AU) < egpg
2e 1/2 £
Av < ( ¢O)
m
=" More particles accelerated than Lo
decelerated (Maxwellian) = wave
gives up energy to the electrons. \
= Self-limited, once Z—i = 0, A}Q (5) v
damping turns off. \




Landau damping

= We explore the physical picture to get an approximate
expression for the Landau damping rate.

" The potential associated with the wave ¢, can be

estimated as half the field amplitude times its
wavelength: EA/2

=" We plug in to obtain the velocity range of trapped
particles:

Av = |v—w/k

1/2
el
A ~ [ —



Landau damping

" Estimate the excess of trapped particles with initial

. . w
velocities lower than - :

of of
(%AU N (%( )

n

Nyt & Av

" One oscillation period:

A T
20v kv

/

Set to the total velocity difference Av

T =




Landau damping

" Estimate the energy density of the electrostatic field as:

1
UE — EEOEZ
dUg
" Thus, the power loss of the wave: P = —

" Then, for one oscillation period :

OF
P = €0E—

-



Landau damping

= The total power loss then:

1
= . ' L
Power (No. of particles) x (EnergyLost) (Time)
P—50E5—E = <3f( V) ) X (mvAv) X (kAU)
T Ov T
(5‘]”) mvAv*k
Ov

= Substituting for Av = (eE/mk)'/?, we get:

p (af)vezEz
~\ov/) mk




Landau damping

= Assume that the wave is dumped with the rate y:
E = Eyexp(—nt)
. . dE
" Thus the dumping rate is: T —~FE

~ 1dE 1 P
ﬁ)/— Edt—EOEQ

0 : OF\ w2.v
= Substitute for P: v = (—f) ¢’ :( f) P

Ov eomk

9F\ wi,
= Given that v = w/k ~ wye/k: 7 = (_f) W



Landau damping

" Plug in 1D Maxwellian (simple analysis):

/
F=(%) ()" veexp (- 22)

" Get dumping rate:

1 w3 3/2 muv?
\/‘1@ (QkBT) UZeXp( QkBT)

u Th UusS for V= (,()/k ~ a)pe/k Thermal velocity \/kgT /m

’y \/S—ﬂ- k 3 96)(/[)( 2 k2 kB Tj\ Plasma frequency
~ 1 L Debye length
1= \/87 k3 03 ) P\ T )\%




Landau damping

" Waves are heavily damped (large y) for wavelength close
to or shorter than the Debye length (large kAp)

" Debye length is the distance a typical thermal electron
travels in an oscillation period.

" Original assumption for light damping was that the
phase velocity of the wave large compared with the
thermal velocity, i.e. small kv, /w.

" The process is reversible < can be used to drive plasma
waves

" As the wave damps, the electric field associated with it
reduces and the faster particles eventually have enough
energy to escape the trapping potential



Plasma accelerators

=" New generation of particle accelerators also works
by particles ‘surfing’ plasma waves.

" |nject a 30-fs very intense laser pulse into a plasma.

" Electrons oscillate in laser field, but due to gradient
in field, get expelled.

" This leaves a ‘wake’ behind the pulse, almost devoid
of electrons, with a huge E field.

u A ny re S i d U a | e | e Ct rO n S Accelerating Trapped Driving

field electrons

trapped in this wake are

accelerated to high energy




Plasma accelerators

= Length of wake region ~ct
* The bubble is devoid of electrons, thus field E = nect/¢
= Need max. 100 fs pulse to get laser field to eject electrons.

= Cannot have too high density or laser group velocity falls
too far below c. Use 10%3m-.

* This leads to fields of 5x101°m! i.e. a GeV in a couple of
centimetres!

= Acceleration is ~1000 times greater than conventional
accelerators.
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Summary of lecture 4

= The continuity equation of the distribution function in phase
space leads to the Vlasov equation:

of

— 4 u (Vf)+—(E+ vXB) - (Vf)—(af
ot “

at)collwlom;

= Assuming periodic perturbations to the distribution function we
recover our dispersion relation for plasma (Langmuir) waves:

2 _ 2 2, 2
w* = wp + 3k v

= We find that the pole in the dispersion relation gives a rise to
famous phenomenon of Landau damping at the rate of:

1 w,*,( ) expl— ]
"= 8x K Pl "ok,




