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Plasma Physics: lecture 5

§ Principles of MHD macroscopic models for plasma

§ Continuity, momentum and energy equations

§ Moments of the distribution functions

§ Ohm’s law and the induction equation

§ Magnetic flux freezing

§ Magnetic pressure

§ Plasma ! parameter



Magneto-hydrodynamics
§ For a large number of particles it is difficult to solve 

individual equations of motion.
§ The primary weakness of kinetic models is that the 

modification of E and B fields by particle motion is 
neglected. 

§ The fluid model overcomes these issues.
§ MHD solves the motion of fluid elements instead of 

tracing the individual particles.
§ Two fluid model: electrons and ions two separate  

fluids that penetrate each other.
§ NB: in fluid dynamics particles strongly coupled, 

not the case in ideal plasmas!



MHD basic assumptions

§ Quasi-neutrality assumed → cannot model ! < #
$%

and & < '()*+) → macroscopic model of plasma
§ Pressure scalar 
§ Velocity much smaller than speed of light 
§ Typical length scales much larger than kinetic length 

scales, e.g. gyro radii, skin depth, etc. 
§ Typical time scales much slower than kinetic time 

scales, e.g. gyro frequencies 



MHD basic assumptions
§ Does not track individual particles
§ Only valid if particles localized by:
• Collisions: !"#$ ≪ &
• Magnetic field: '()*"+* ≪ & → MHD cannot be used

without B-fields! 

§ Momentum exchange by collisions between species 
or by heavier ions dragging electrons along due to 
charge imbalance (if collisionless).

§ MHD is a theory describes large-scale and slow 
phenomena compared to kinetic theory. 



Components of MHD

§ Mass density – ! (kg/m3)

§ Fluid velocity – " (m/s)

§ Internal energy – # (J/m3)

§ Pressure – $ (Pa)

§ Magnetic field – % (Tesla)

§ Current density – & (A/m2)



Maxwell’s equations

§ Gauss’ law:

§ Gauss’ law for B-fields:

§ Faraday’s law:

§ Ampère’s law: !×# = %& ' + )&
*+
*,

! - + = .
)&

! - # = 0
No magnetic monopoles

!×+ = −*#*,
Electromagnetic induction



Continuity equation

§ Conservation of particles → balance for the number of 
particles in a fixed cell of size  ∆" = ∆x∆y∆z.

§ The number of particles inside the interval x, x + ∆x is 
N = nA ) ∆x as A = ∆y∆z.

§ The incident flux is: *+ = , ) ∆y∆z ) -.



Continuity equation

§ When this flux is accelerated/decelerated by external 
forces, the flux on the exit side is larger/smaller and thus 
the number of particles inside the cell is 
diminished/increased:

−"#"$ = &' ( + ∆( − &' ( ≈ "&'
"( ∆(



Continuity equation (mass conservation)
§ Before, we obtained:

§ Which can be rewritten in terms of current density:

§ For charge density: ! = ∑$ %$&$
§ And current density: ' = ∑$ %$&$($

)%
)* + , %( = 0

)!
)* + , . ' = 0



Momentum equation
§ MHD = hydrodynamics + Lorentz force:

§ For inhomogeneous flow:

§ Vector (dx/dt, dy/dt, dz/dt) is just the velocity in the 
cell, thus:

!d#
d$ = & ' + #×*
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Convective derivative



Momentum equation
§ Substitute into the expression for the Lorentz force 

and multiply by particle density n to obtain the 
balance of internal forces for many-particle system:

§ Particle flux: ∆"#(%&) = %&∆)(%&) ∆y∆z

§ By analogy, momentum flux:

)* +,
+- + (, / 0), = )1 2 + 3×5

Mass density 6

∆"7= *%&∆)(%&) %& ∆y∆z



Momentum equation
§ The momentum balance in the interval x, x + ∆x :

• Gain at x : 

• Loss at x : 

• Gain at x + ∆x: 

• Loss at x + ∆x: 

∆%&'()) = ,
-./0

∆1(23)(423) 23 3 ∆y∆z

∆%&5()) = ,
-.60

∆1(23)(423) 23 3 ∆y∆z

∆%&'() + ∆)) = ,
-./0

∆1(23)(423) 23 3'∆3 ∆y∆z

∆%&5() + ∆)) = ,
-.60

∆1(23)(423) 23 3'∆3 ∆y∆z



Momentum equation
§ The net gain/loss in momentum:

§ Taylor expand and set the negative velocity intervals 
!" to −!":

$%"
$& = ∆)*+ , − ∆)*+ , + ∆, + ∆)*. , − ∆)*. , + ∆,

$%"
$& = −/ 0

123.4

4
∆5(!")!"8 "+∆" − ∆5(!")!"8 "

$
$& 5/9" ∆,∆:∆; = −/ $

$, 5 !"8 ∆,∆:∆;→



Momentum equation

§ Remembering the distribution function:

§ The velocities break down into, the mean flow ux
and random thermal motion !"#:   "# = %# + !"#

§ Thus, the momentum conservation:

' "#( = )*("#)"#( - d"#

/
/0 '1%# = −1 /

/3 ' %#( + 2%# !"# + !"#(



Momentum equation

§ From 1-D Maxwellian: !"# $%&" = !
" ()*

§ By definition, average random motion is $%& = 0

§ Hence, the momentum balance becomes:

,
,- .#/& = − ,

,1 .#/&" + .()*

Thermal pressureStagnation pressure

,
,- .#/& = −,3,1→ 4 d/&d- = −,3,1→



Momentum equation
§ Using continuity equation, we obtain:

§ And:

§ The full momentum transport equation: 

!" #$%
#& + $%

#$%
#( = −#+#(

!" #,
#& + (, . /), = !1 2 + 3×5

!" #,
#& + (, . /), = !1 2 + 3×5 − /+



Momentum equation
§ Generalize the MHD momentum equation by 

substituting the current density:

§ Current density due to the relative motion between 
electrons and ions:

! "#
"$ + (# ' ()# = +×- − (/ + 0

All external forces

+ = −123#2 + 143#4 = 13 #4 − #2



Energy equation
§ Can be written in different forms depending on 

thermodynamic variables used:

§ From intuitive analysis energy conservation follows:

!"
!# + % & ' ( = −+' & % − ' & −K'T + ./0 − radiation

d(
d2

Fixed lab frame

Moving with fluid

Compressional
heating/cooling

Heat flux 
(thermal conduction)

Ohmic heating

!
!#

345
0 + 67 + ' 345

0 + 67 + + & % = 0

Specific internal energy



Energy equation (MHD)
§ Consider the Poynting vector to include the effects of 

the magnetic field (EM field):

§ The full MHD form thus follows:

§ See supplemental material for further notes on the 
energy equation.

!
!"

#$%
& + () + *%

&+,
+ - #$%

& + () + . + *%
+,

/ 0 − (0/3)3
+,

= 0

7 = 8×3
:;

= (0×3)×3
:;

= 0<&
:;

− (0 / 3)3:;

Magnetic pressure Magnetic tension force



Moments of the distribution function
§ Relate the fluid description (MHD) to the kinetic theory.
§ The Vlasov equation:

§ nth moment in velocity:

!"
!# + %('(") +

*
+ (, + -×/) 0 ('1") =

!"
!# 3455676487

9-8 !"!# !
:- + 9-8 (% 0 '()"!:- +

*
+ 9-8 (, + -×/) 0 ('1")!:-

= 9-8 !"
!#

3455676487 § 0th moment → continuity equation
§ 1st moment → momentum equation
§ 2nd moment → energy equation



Induction equation
§ Ohm’s law in simplified form:

§ Faraday’s law: !×# = −&'
&(

§ Ampère’s law: !×' = )*+
§ By substituting into the Ohm’s law, we get simplified 

version of the induction equation:

+ = , # + .×' = 1
0 # + .×'

Conductivity Resistivity

1'
12 = −!×# = − 0

)*
!× !×' + !× .×'

Convective termDiffusive term



Resistive and ideal MHD
§ Continuity equation:

§ Momentum equation:

§ Energy equation (a version of):

§ Induction equation:

§ For ideal MHD, ignore the resistive terms !
§ NB: These equations valid for Te = Ti = T 

"#
"$ = &× (×# − !

*+
&× &×#

, d.d$ = /×# − &0 + 2

",
"$ + & ,. = 0

4
45

678
9 + ,: + ;8

9<=
+ & 678

9 + ,: + 0 + ;8
<=

> . − (.>#)#
<=

= 0



Magnetic diffusion
§ Consider plasma at rest v = 0, the induction equation 

reduces to time-dependent diffusion equation:

§ Where DB = !"# is the diffusion coefficient.

§ Estimate the diffusion time by setting:

$%
$& +

(
)*
+× +×% = $%

$& + DB∆% = 0

%(&) ∝ exp −&/89



Magnetic diffusion
§ Thus, replace Laplacian by the square of a 

characteristic scale length:

§ Obtain estimated diffusion time for the magnetic 
field:

§ With decreasing resistivity the diffusion time 
increases. 

§ Inside Earth’s core we obtain !" = 104 years

∆% = %/'(

!" =
)*'(
+



Magnetic Reynolds number
§ Starting from induction equation

§ Diffusive term: !"# $× $×& ≈ !
"#

(
)*

§ Convective term: $× +×& ≈ ,(
)

§ Magnetic Reynolds number definition:

§ Rm characterizes the ratio of mass flow to magnetic diffusion.

-. = $× +×&
0
12 $× $×&

= 1234
0



Frozen-in magnetic flux
§ Hot plasmas have a very large conductivity 

compared to metals. 
§ Thus, hot ideal plasmas (astrophysical plasmas) can 

be assumed to have zero resistivity (ideal MHD).
§ For ! → 0, $% → ∞, the induction equation 

reduces to: 

§ And the continuity equation gives:

'(
') = +× -×(

+ . - = −11
'1
') + (- . +)1 = −11

d1
d)



Frozen-in magnetic flux
§ Using a vector identity, we get:

§ Use the quotient rule:

§ Truesdell theorem:

d"
d# = " % & ' + ")

d)
d#

d
d#

"
) = 1

)
d"
d# −

"
),
d)
d#

d
d#

"
) = "

) % & '



§ Quantity ⁄" # is equivalent to the number of field 
lines per unit mass

§ When mass flows perpendicular to the magnetic 
field the r.h.s. vanishes:

§ Mass motion can only occur together with the 
magnetic field

§ This also means that the magnetic flux: %&'
%( = 0

§ The magnetic flux is “frozen in” the plasma
§ If plasma is compressed, mag. field increases

d
d,

-
. = 0

Frozen-in magnetic flux for / → 0



Magnetic diffusion & frozen-in flux
§ Highly resistive plasmas: !" ≪ 1
• Plasma can move through field

§ Partially resistive plasmas: !"~1
• Convection stretching field lines, resistive diffusion 

straightening field lines

§ Highly conductive plasmas: !" ≫ 1
• Highly twisted field line result, Solar surface (!">104) 



Magnetic pressure
§ Start from Ampère's law:

§ Magnetic force:

§ Momentum equation:

!×# = %&'

'×# = !( = 1
%&

!×# ×# = − 1
%&
#× !×#

+ d-d. = '×# − !(

'×# = − 1
2%&

!(12) + 1
%&

# 5 ! #



Magnetic pressure
§ Substitute for !×#:

§ Pressure balance:

§ Magnetic pressure in plasma:

$ d&d' = −*+ − *,
-

2/0
+ 1
/0

# 3 * #

+4 =
,-
2/0

*(+ + +4) =
1
/0

# 3 * #

Thermal pressure gradient

Gas pressure

Magnetic pressure gradient

Magnetic tension force



Plasma ! parameter
§ The ratio of the plasma kinetic (thermal) pressure 

and the magnetic pressure:

§ ! ≫ 1 → Particles dominant → dominate dynamics

§ !~1 → particles ~ fields (typical in astrophysics)

§ ! ≪ 1→ Field dominant (ignore particles)

! = '
()* 2,-

= 2,-'
)* ≈ 2,-/012

)*



Magnetic diffusion & frozen-in flux
§ Flux tubes:

§ Sunspots are an example of frozen-in flux (flux 
tubes) with strong magnetic fields



Solar prominence



Summary of lecture 5
§ Basic MHD equations:

!"
!# = %× '×" − )

*+
%× %×"

, d.d# = /×" − %0 + 2

!,
!# + % ,. = 0

Continuity equation: mass conservation

Momentum equation

Energy equation

Induction equation

4
45

678
9 + ,: + ;8
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+ % 678

9 + ,: + 0 + ;8
<=

> . − (.>")"
<=

= 0



Summary of lecture 5

§ Magnetic Reynolds number:

§ Magnetic pressure:

§ Frozen-in flux: 

§ Plasma beta:

!" = $%&'
(

) = *
+,- 2$%

= 2$%*
,-

*/ =
,-
2$%

d
d1

2
3 = 2

3 4 5 6



Supplemental material for lecture 5



Energy equation derivation
§ A nice overview of the energy equation derivation can be found 

here: https://www.youtube.com/watch?v=fjsxYmpth6A
§ The derivation follows the same way as the momentum 

conservation equation, however the main difference is what 
components of the energy equation are being included. 

§ Here we start with the general fluid energy conservation equation 
that includes the kinetic, internal energy with rates of heat flux, 
gravitational potential energy flux, and the rate of viscous 
dissipation.

§ Note that energy flux due to any other external force can be 
added. Many terms (gravity, viscosity, etc.) can be often ignored.

§ We will also consider energy flux due to magnetic pressure and 
tension force.

https://www.youtube.com/watch?v=fjsxYmpth6A


Energy components
§ Consider different forms of energy conservation:

§ Kinetic energy flux rate: !" = $
%&'2. *

§ Internal energy: + = ,
% -./ and for ideal gas: 01 = 2-./

§ Work done: 3 = 041 = 5
6

§ Enthalpy: 7 = + + 041 = ϵ + 5
6 =

:
:;$ <

5
6

→ 0
& = -./ → + = =

2 <
0
& =

1
? − 1 <

0
& and ? = AB

AC
= = + 2

= = 5
3

For monatomic ideal gas

Degrees of freedom

Assuming adiabatic (entropy preserving) process: F55 = ? F66

&+ = 0
? − 1→



Energy components

§ Gravity (energy flux rate): !" = $% & '
§ Viscous energy dissipation rate: Ψ = ∑*,, -./ 01*023

= -∇%

§ For EM energy we use the Lorentz force: 56%
67 = 8 ! + %×;

§ Poynting vector for EM energy flux:   < = =×;
>?

§ Conductive heat flow from Fourier’s law: @A = −CA∇D

§ Ohmic heating: E/F

§ Radiation losses: e.g. Bremsstrahlung

§ etc.

Viscous stress tensor

Coefficient of thermal conductivity



Conservation of energy
§ Consider energy flux rate through a volume ∆" = ∆x∆y∆z 

§ Energy per unit mass: $ = %& + $( = %& + )
*+2

§ Rate of energy accumulation: --. /$0∆1∆2∆3
§ Energy flow rate through a surface: /$0.4

Rate of energy 
accumulation = +–Rate of energy 

flux in
Rate of energy 
flux out

Rate of added 
heat flux

Rate of work 
done+

Other energy flux components (e.g. gravitational potential, 
viscosity, material stress, B-field, heat conduction, radiation, etc.)+

= /$+5 6∆y∆z+ /$+9 :∆z∆x+ /$+< =∆x∆y
− /$+5 5?∆5∆y∆z+ /$+9 9?∆9∆z∆x+ /$+< <?∆<∆x∆y

= –Rate of energy 
flux in

Rate of energy 
flux out

Also denoted as U



Conservation of energy
§ Rate of added heat flux by conduction: qx, qy, qz

§ Net rate to the volume ∆" = ∆x∆y∆z:

§ Work done by force F over distance dx: F.dx

§ Rate of work done on volume ∆": F.u

§ The flux rate of work done on ∆": F.u
$ = −&.u

§ Rate of work done by gravity: ((∆x∆y∆z) - . / can be added, etc.

= 01 2∆y∆z+ 04 5∆z∆x+ 06 7∆x∆y
− 01 18∆1∆y∆z+ 04 48∆4∆z∆x+ 06 68∆6∆x∆y

= &91 2∆y∆z+ &94 5∆z∆x+ &96 7∆x∆y
− &91 18∆1∆y∆z+ &94 48∆4∆z∆x+ &96 68∆6∆x∆y

and other directions if applicable



Energy conservation with B-field
§ In the most basic case we ignore gravity, viscosity, material 

stresses, EM fiends, etc.
§ Considering the particle distribution function, dividing by ∆x∆y∆z

and taking the limit of ∆x → 0, ∆y → 0, ∆z → 0 as before for the 
momentum equation, we get:

§ For monatomic ideal gas and adiabatic process:

'
'(

)*+
, + ./ = −2 .3 / + *+

, + 43

'
'(

)*+
, + 5

678 = −2 )*+
, + 6

678 4 3



Energy equation
§ Consider the Poynting vector (units W/m2):

§ The full MHD form follows:

§ Thus, the complete expression for energy conservation for 
an ideal gas plasma shock used in lecture 10:

!
!"

#$%
& + () + *%

&+,
+ - #$%

& + () + . + *%
+,

/ 0 − (0/3)3
+,

= 0

7 = 8×3
:;

= (0×3)×3
:;

= 0<&
:;

− (0 / 3)3:;
Vector identity: =×3 ×3 = =<& − (= / 3)3

(>?
1
2>

& + B
B − 1 /

.
( + >?

<&
:;
− 0 / 3<?:;

= 0

Steady state: !!" → 0

Magnetic pressure


