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Lectures 6 – 7: Waves in plasmas



Plasma Physics: lecture 6

§ Electrosta*c plasma waves revisited

§ Sound waves recap

§ Ion acous*c waves

§ Alfvén waves

§ Conduc*vity and dielectric tensors

§ Waves in cold magne*zed plasma



Plasma Physics: lecture 6

Part 1



Plasma frequency

Apply Gauss‘ law:

→

Oscillation plasma frequency:



Electrostatic waves in plasma
§ This plasma oscilla,on (or a Langmuir wave) is also 

called the electrosta)c wave
§ Since only the electric field oscillates
§ There is no oscillatory magne)c field (as with light)
§ From Faraday’s law, we assume wave-like solu,on:

§ Thus:

and



Electrostatic waves in plasma
§ For there to be no oscilla/ng magne/c field, we 

need, thus for electrosta/c waves we get:

§ I.e. the k-vector is parallel to the electric field

§ Now we look at Ampere’s law:

§ For there to be no magne/c field, we require the 
conduc4on current and the displacement currents 
to be equal and opposite:



Electrosta*c waves in plasma



Electrostatic waves in plasma

§ At any instant the current is:

§ Our electric field: 

§ Compute displacement current (proportional to the rate 
of change in the electric field):

§ The conduction and displacement currents in an 
electrostatic wave are opposite and equal in magnitude

!"
!# = %&

!'
!# = () !*!# = −,



Electrosta*c waves in plasma

§ Arise naturally from thermal fluctuations of charge 
density in plasma of finite temperature

§ Can be driven externally, e.g. during scattering 
processes during an impact of a photon changing the 
density fluctuations

§ Previously we obtained the Bohm-Gross dispersion 
relation for the electrostatic waves using the Vlasov
equation with no damping term:

!" = !$%" + 3()*+ , (" The dispersion rela.on 
for electrosta.c waves in 
warm plasma



Sound waves
§ Sound waves in neutral gases/fluids arise from 

oscillating density fluctuations.
§ Starting from fluid equations, for ordinary fluids we 

have the (simplified) Navier-Stokes equation:

§ And the continuity equation:

§ Assume oscillatory motion: ! = #$%&' ( ) * + − -.

/ 0!
0. + (! * 3)! = −35 = −65/ 3/

0/
0. + 3 /! = 0



Sound waves
§ Linearize for stationary equilibrium with uniform P0 and 
!0 and get:

§ For a plane wave with " = $%& and ' = $%', we eliminate 
!( and obtain:

§ Thus speed of sound waves: 
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Ion acoustic waves
§ Real plasmas have finite temperature resulting in 

density fluctuation → equivalent of sound waves
§ Starting from fluid equations for waves in x-direction, 

continuity equation for ions:

§ And the momentum equation for ions:

!" #$
#% + ($ ( ))$ = !, - + .×0 − )2From: For B=0

Ion mass



Ion acoustic waves
§ Take spa(al and temporal deriva(ves and merge 

equa(ons elimina(ng the !"($%&%)/!)!* terms:

§ Linearize by neglec(ng products of perturbed quan((es 
ni = ni0 + +$, ui = +&%, E = ,-, and Pi = Pi0 + ,.%:



Ion acoustic waves
§ Ideal gas adiabatic equation in 1-D: !"# = 3&'(# )*#
§ Substituting for !"#:

§ When the ions move, the electrons follow quickly (they 
are very light). Therefore the electric field is still due to 
the electron motion → restoring electric force and 
thermal force:

§ And the electrons are almost massless, thus :



Ion acous)c waves
§ And for isothermal equa2on of state for electrons, we 

have !" = $%&'(). Hence:

§ For %) = *%+, and $%) = * $%+ we can differen2ate with 
respect to x:

§ And subs2tute:

i.e. 



Ion acoustic waves
§ Wave equation form:

§ Assuming wave-like solutions with the form of:

§ Therefore the ion-acoustic frequency is:

→



Ion acous)c waves
§ These waves have low frequency compared to the 

electron electrostatic waves (plasmons, Bohm-Gross).
§ Ion-acoustic waves are an analogue to sound waves in 

normal neutral gases/fluids (see supplemental notes to 
this lecture).

§ The ions provide the inertia for the waves (density 
oscillations) and the plasma pressure provides the 
restoring force. The pressure is mitigated by the 
electrons. We treat the ions as adiabatic in their motion, 
but the electrons as isothermal (they are faster). 

§ Note that Ti and Te are treated separately. The collisions 
between electrons and ions take a long time that the 
two species have significantly different temperatures.



Plasma waves dispersions



MHD waves in magne.zed plasma
§ Low-frequency waves in magne4zed plasma 
§ Remembering the momentum equa4on:

§ Longitudinal waves:
• For B = 0 reduces to a simple sound wave
• Get magne4c pressure waves for: 

! d#d$ = −'( − ')
*

2,-
+ 1
,-

0 1 ' 0
Sound wave

Magnetic pressure gradient

Shear Alfén waves (due to mag. tension)

Magnetosonic waves

')*
2,-

≫ '(



Transverse Alfvén waves
§ Transverse waves:

• From magne/c tension force:

§ Star/ng from equa/on for sound waves:

§ For period oscilla/ons we have:

§ Where ! = #$
% is the wavenumber

&#'
&(# − *+

# &#'
&,# = 0

1
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1 2 3 1
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Transverse Alfvén waves
§ Starting from ideal MHD equations (! = 0), i.e. frozen-in 

flux, magnetic field cannot leave the plasma by diffusion
§ Simplified momentum equation:

§ For ! → 0, %& → ∞, the induction equation: 

§ Apply vector identity as before (lecture 5):

(&
d*&
d+ = ,×.

/.
/+ = 0× *&×.

d.
d+ = . 1 0 *& + *& 1 0 . − .(0 1 *&)



Transverse Alfvén waves
§ Ignore the contribution of soundwaves, i.e. no density 

fluctuation: ! = const. and # $ %& = 0
§ For wavelike perturbation:

§ B-field along z-direction: () = (0,0, ,)) and plasma 
assumed to be at rest: %) = 0:

( = () + (/
%& = %) + %/

!&
d%/
d1 = 2×( = 1

5)
#×(/ ×()

d(/
d1 = () $ # %/

NB: We dropped second order term %/ $ # (1



Transverse Alfvén waves
§ Transverse displacement leading to magnetic field 

perturbations in the x-direction: !" = (%"&, 0,0)
§ The double vector product: 

*×!" ×!, = !, - * !" − *!" - !,
§ And !, - * !" = %, /%"&//1 3̂&
§ Simplify:

45
/6"&
/7 = %,

8,
/%"&
/1

= 0 as B1 in x-direction 
and B0 in z-direction

/%"&
/7 = %,

/6"&
/1



Transverse Alfvén waves
§ Combine above expressions to a set of wave equations 

for the transverse or shear Alfvén wave:

§ Giving the Alfvén speed:

!"
!#$ − &'

$ !"
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Transverse Alfvén waves
§ The transverse Alfvén waves conserve the volume 

between the field lines (frozen-in flux).
§ There is no compression of the plasma or field lines.
§ Waves driven by mag. field tension:



Longitudinal Alfvén waves
§ Compressional/longitudinal Alfvén waves propagate 

across the magnetic field, i.e. B-field is compressed.



Longitudinal Alfvén waves
§ These are more similar to sound waves: 

!" = $
% =

&'
(

)/+
where   ,-= -.

+/0
§ For 2 degrees of freedom 1 = 2
§ Then the full magnetosonic wave propagates at speed:

34= $
% = 35+ + !"+ )/+ where

§ Alfvén Mach number = 7
89

→ shocks for : > 35
→ MHD instabili@es!!!

35 =
<=+
>=?@

)/+

Accounting for kinetic 
pressure Alfvén speed is the maximum speed of 

information transfer



Nobel Prize for Physics
The Nobel Prize in Physics 1970 was given to 
Hannes O. G. Alfvén “for fundamental work 
and discoveries in magnetohydrodynamics
with fruiFul applicaHons in different parts of 
plasma physics”. 



Conductivity/dielectric tensor
§ We have previously found the conductivity of  

unmagnetized plasma:

§ And the dielectric (permittivity) function:

§ In unmagnetized plasma, conductivity is a scalar:

Plasma frequency

! " = −% &'
(

)"

* " = 1 − &'(
*,)"( = 1 − %

*,"
! " = 1 − "-

(

"(

J " = ! " E "



Conductivity/dielectric tensor
§ In a magne(c field, the path of the electrons (and hence 

the current) is not necessarily parallel to the electric 
field. To take this into account we must let the 
conduc(vity be a 3 x 3 tensor:

§ Therefore the dielectric permiCvity must also be a 
tensor:

§ Note that waves in plasma s(ll sa(sfy dispersion 
equa(on (see lecture 3):

̅" # = % − '
"(#

)* #

J # = )* # E #

Iden%ty matrix



§ Assume the magne,c field to be along the z-axis.
§ In the z-direc,on, we thus have no mo,on due to B-

field and the oscillatory E-field gives (as before):

§ The electric field in the z direc,on never causes any 
mo,on in the x-y plane, and an electric field in the x-y
plane never causes mo,on along the z-axis:

Conductivity/dielectric tensor



Conductivity/dielectric tensor
§ Starting from the Lorentz force:

§ And the cyclotron frequency:

§ Thus, the motion of electrons in the plane perpendicular 
to the magnetic field:

→



Conductivity/dielectric tensor
§ Substituting:

§ As the applied E-field and thus the velocity is oscillatory:

§ Rewrite the above equation of motion: 

→



§ The individual components are:

§ And since ! = −$%& = ' ( ):

Conductivity/dielectric tensor



§ Since: ̅" # = % − '
()*

+, #

§ Therefore, we get the full dielectric tensor:

§ Remember:

Conductivity/dielectric tensor



§ Simpler form:

§ Where:

Conductivity/dielectric tensor
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Waves in magne+zed plasma

§ Using the dielectric (conductivity) tensor and plugging it 
into the dispersion relation, we can derive waves in 
magnetized plasmas.

§ Rewrite the dispersion relation:

§ As:



Waves in magnetized plasma

§ Solutions depend on the polarization of the wave 
(direction of the k-vector), which we track with:

§ Thus using the dielectric tensor we find:



Waves propaga+ng ∥ to B-field
§ For waves parallel to the B-field: "# = "% = 0
§ The tensor becomes:

§ Non-trivial solution for ' ( ) = 0 occur for roots of 
det(M) = 0:

§ Which has three solutions:
and



Waves propaga+ng ∥ to B-field
§ The first solu,on of "# = 0 simply reproduces plasmon

waves at the plasma frequency: &' = &('
§ In this case we have:

§ I.e. ) * + = 0 sa,sfied for E field (0,0,Ez), thus we get:

§ Consistent with an electrosta,c wave introduced before.



Waves propagating ∥ to B-field
§ Now we focus on the other two solutions (EM waves?):

§ Starting with:  "#− "%= '(%

§ We defined k to lie along z-direction: '(% = )*+*
,*

§ Substitute:

§ If there is no B-field, -). = 0 and we obtain known 
dispersion of electromagnetic waves:



Waves propagating ∥ to B-field
§ For:  "#+ "%= '(%
§ We then get:

§ For no B-field, )*+ = 0 the dispersion of EM waves is 
once again reproduced:

§ Subs?tu?ng for "#± "%= '(%, we get:

)% = ).% + /%0%



Waves propagating ∥ to B-field
§ The solu)on for " # $ = 0, we require the electric field 

of the form: ((), ∓,(-, 0), i.e. the k-vector is 
perpendicular to the electric field as expected for 
electromagne)c waves!

§ Unlike in unmagne)zed plasma, where the EM wave 
was linearly polarized, the EM waves in magne)zed 
plasma are circularly polarized for k ∥ B.

§ Consider the “leG-handed” wave first: 



Waves propaga+ng ∥ to B-field
§ Notice that for " very large compared to "# and "$% we 

reproduce the vacuum dispersion. At high frequency 
there is no time in one period to interact with the 
plasma oscillations or the gyratory motion of electrons.

§ At low " we get to the cut-off point where & = 0 and 
the waves get infinitely long wavelength, i.e. below the 
cut-off frequency ")* waves can no longer propagate:

→

→ Wave reflected



Waves propaga+ng ∥ to B-field
§ Now, the “right-handed” wave:

§ For large " we recover " = $% again.
§ For small " compared to "& and "'( we see that:

§ There is a pole at " = "'(, i.e. resonance
§ But we ignored the motion of ions here (and got % ∝
"), which is not correct at low " → Alfvén waves

→ Wave absorbed



Waves propaga+ng ∥ to B-field
§ If " is just above "#$, then % is imaginary → no 

propaga6on.
§ But if " is increased further, the first term on r.h.s

exceeds the second term and waves can propagate 
again:

§ Cut-off frequency for the right-hand wave at % = 0:

→ Wave reflected



Waves propagating ∥ to B-field

"#$

"%$



Whistler modes
§ Whistler modes detected at low 

frequency radio (AM)
§ Comes from a lightning strike on an 

opposite hemisphere

Whistler mode



Whistler modes on Jupiter observed



Waves propagating ⊥ to B-field
§ The analysis using the dielectric tensor can be followed 

the same way but with keeping either Nx or Ny non-zero 
too, with all other components set to zero.

§ There is no physical differences between the waves with 
either Nx or Ny non-zero terms.

§ Such analysis produces new electromagnetic modes 
called the O-mode (ordinary) and two extraordinary 
ones (X-mode).



Waves propagating ⊥ to B-field

§ If the wave propaga.on is ⊥ to the B-field, the electron 
mo.on will be affected by the B-field 

§ We choose propaga.on along x-axis (k-vector ∥ to x-axis)
§Nx non-zero, #$ = #& = 0
§ Care must be taken as such waves tend to be ellip.cally 

polarized, i.e. the wave develops an Ex component 
becoming partly longitudinal and party transverse. Thus 
we must allow the E-field to have both x and y
components.



Waves propagating ⊥ to B-field

§ And we obtain a new form of the conductivity tensor:

§ Again, non-trivial solutions for " # $ = 0 occur for roots 
of det(M) = 0:

§ Again, offers three solutions

" = '(
)(

*+ −-*( 0
-*( *+ − ./( 0
0 0 *0 − ./(

*0 − ./( # *+ # *+ − ./( − *(( = 0



Waves propagating ⊥ to B-field

§ The first solution gives:

§ I.e. " # $ = 0 again satisfied for E field (0,0,Ez), thus we 
get the electric field aligned with the static B-field, and 
the refractive index is not affected by the B-field

§ Resultant dispersion relation is of the electromagnetic 
wave seen in lecture 3:

§ This is the “ordinary wave” or O-mode, linearly polarized

'( − *+, = 0

→ '( = *+, =
-,.,
/, = 1 − /1

,

/,



Waves propagating ⊥ to B-field

§ The cut-off frequency of the “ordinary wave” is the 
plasma frequency as shown in lecture 3:

" = "$
→ Wave reflected



Waves propagating ⊥ to B-field

§ Now, solutions for:

§ Non-vanishing solutions for E when the matrix 
determinant is zero:

§ Get dispersion relation by substituting for Nx, "# and "$:

"# −'"$
'"$ "# − ()$ * +)

+, = 0

→ "# − ()$ * "# − "$$ = 0 ()$ = "# −
"$$
"#

→

()$ =
/$0$
1$



Waves propagating ⊥ to B-field

§ Define the `upper hybrid frequency’:

§ After much algebra:

§ Giving the “extraordinary wave” or X-mode
§ Resonance occurs when " → ∞ as % → %&'
§ Cut-off happens when " = 0:
§ After some more algebra:

*+"+
%+ = 1 − %.

+

%+ /
%+ − %.+
%+ − %&'+

%&'+ ≡ %.+ + %23+

→ Wave absorbed

→ Wave reflected

1 − %.
+

%+ = ±%23%
%+ ∓ %%23 − %.+ = 0→



Waves propagating ⊥ to B-field
§ Solving the quadra1c equa1on, we get two cut-off 

frequencies for the le9-hand wave:

§ And the right-hand wave at " = 0:

§ The same solu1ons as for the waves with k ∥ B
§ These are also EM waves, just dispersion rela1on affected by 

the B-field → ellip&cally polarized for k ⊥ B

→ Wave reflected

&'( =
&)* + &)*, + 4&.,

2

&0( =
−&)* + &)*, + 4&.,

2
→ le,-hand cut-off

→ right-hand cut-off



Waves propagating ⊥ to B-field



Alfvén waves revisited
§ The Alfvén waves can alternatively be derived from the 

conductivity/dielectric tensor for ions too.
§ Let’s go back and consider right circularly polarized 

waves travelling parallel to the B- field.
§ At very low frequencies we cannot ignore the response 

of the heavy ions - they have time to move.
§ The ion plasma frequency for ni = n/Z ions:



Alfvén waves revisited
§ Redefine the dielectric tensor with new terms:

§ Note: ion gyro-frequency has an opposite sign: −"#$
§ The “right-handed” wave expression then becomes:



Alfvén waves revisited
§ In the low frequency limit ! → 0:

§ Substituting for !$%& , !ce and !ci:

§ Refractive index:

'( =
*+&
,+-.

//&
1& = 2&3&

!& ≈ 1 + 2&
'(&

where

→ Alfvén speed



Alfvén waves revisited
§ Rearrange to obtain the phase velocity of the waves:

§ As typically !" ≪ $, the low frequency waves travel at 
Alfvén speed as shown previously

§ The expression for le>-handed waves also reduce to !"
for very low frequencies

§ These are the same waves due to magneAc tension 
force derived for ideal MHD (frozen-in flux)

%
& =

!"

1 + !"
*

$*
≈ !"



Lower hybrid resonance
§ Similarly, the ion motion needs to be added if we want 

investigate the low frequency behavior for X-waves, 
we obtain the `lower hybrid resonance frequency’:

§ The X-mode has a resonance at ! = !#$ since % → ∞
as ! → !#$

§ In the limit of high electron density !()* ≪ !,-* , the 
lower hybrid frequency approaches !ci

!#$ = !(.* +
!,0* !()*

!,-* + !()*
1/*

→ Wave absorbed



Plasma waves ZOO



Summary of lectures 6 – 7
§ Ion-acous)c waves equivalent to soundwaves in plasma.

§ At very low frequencies ion dynamics are important, and we find 
Alfvén waves (frozen-in flux).

§ The Alfvén speed:

§ In a magne)zed plasma the conduc)vity and dielectric 
permiFvity are tensors.

§ Waves exist when ! " # = 0, where

§ For waves parallel to the B field, the electrosta)c wave exists as 
before, plus circularly polarized waves.

§ Waves travelling perpendicular to the B-field give rise to O and X 
waves.

&' =
()*
+),-

./*


