SUPERFISH Calculation for the Rossendorf SRF Gun Cavity

- Field profiles for beam dynamic simulations
- RF simulations for cavity tuning
Rossendorf 3.5 cell cavity
Generation of Input files for SUPERFISH

Elliptische Resonatoren - Inputparameter fuer SUPERFISH

<table>
<thead>
<tr>
<th>Auswahl</th>
<th>Parameter (in mm)</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonator-Typ</td>
<td>Z0</td>
<td>12.65</td>
</tr>
<tr>
<td>Variante</td>
<td>Z1</td>
<td>25</td>
</tr>
<tr>
<td>3.5 Zellen ohne Kühle</td>
<td>R1</td>
<td>102577</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>b1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>a0</td>
<td>11.396</td>
</tr>
<tr>
<td></td>
<td>a0</td>
<td>11.396</td>
</tr>
<tr>
<td></td>
<td>R0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>d0</td>
<td>30</td>
</tr>
</tbody>
</table>

Notes

- The image shows a software interface for generating input files for the SUPERFISH program.
- The interface includes a table with parameters for elliptical resonators.
- The software is used to input specific geometrical parameters for the resonators.

Explanation of Parameters

- **Z0, Z1, Z2, Z4**: These are likely the lengths or distances in the resonator design.
- **R1, R2**: Possibly the radii of curvature or other dimensions.
- **a2, a4**: These could be related to the aspect ratios or other geometric proportions.
- **b2**: This might be a secondary dimension.
- **LTube**: The length of the tube in the resonator design.
- **P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13**: These could represent specific points or outputs in the design process.

Usage

This software is likely used by engineers or scientists to design and simulate resonators for various applications, such as in microwave or RF systems.
Electric axis fields for ASTRA simulation

![Graph showing electric axis fields with various positions and without cathode.](image-url)
Pass band frequencies and field profiles of detuned cavity
Tuned Gun cavity

<table>
<thead>
<tr>
<th>Moden</th>
<th>1/4(\pi)</th>
<th>2/4(\pi)</th>
<th>3/4(\pi)</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequenz / MHz</td>
<td>1265.98</td>
<td>1280.66</td>
<td>1292.53</td>
<td>1297.88</td>
</tr>
<tr>
<td>Amplitude Zelle 1 (Halbzelle)</td>
<td>4.17</td>
<td>-3.96</td>
<td>-1.68</td>
<td>-1.24</td>
</tr>
<tr>
<td>Zelle 2</td>
<td>2.46</td>
<td>0.47</td>
<td>1.94</td>
<td>1.92</td>
</tr>
<tr>
<td>Zelle 3</td>
<td>0.81</td>
<td>2.53</td>
<td>0.42</td>
<td>-1.89</td>
</tr>
<tr>
<td>Zelle 4 (Endzelle)</td>
<td>0.19</td>
<td>1.45</td>
<td>-2.49</td>
<td>1.85</td>
</tr>
</tbody>
</table>
df/dL = 2.06 MHz/mm

df/dL = 2.31 MHz/mm

df/dL = 6.32 MHz/mm

TESLA-Cavity: 0.315 MHz/mm (Aune et al., 2000)
For one cell: 2.84 MHz/mm
\[
\begin{pmatrix}
1 + k_{12} & -k_{12} & 0 & 0 \\
-k_{21} & 1 + k_{21} + k & -k & 0 \\
0 & -k & 1 + 2k & 0 \\
0 & 0 & -k & 1 + k
\end{pmatrix}
\begin{pmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4
\end{pmatrix}
= \lambda
\begin{pmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4
\end{pmatrix}
\]

\[
\lambda_{n/4\pi} = \left(\frac{f_{n/4\pi}}{f_0} \right)^2
\]

Tuning

\[
(L + P)X_\pi = \lambda_\pi X_\pi
\]

\[
X_\pi = \begin{pmatrix}
0.6 \\
-1 \\
1 \\
-1
\end{pmatrix}
\]

\[
P = \begin{pmatrix}
-0.042 & 0 & 0 & 0 \\
0 & -0.005 & 0 & 0 \\
0 & 0 & 0.000 & 0 \\
0 & 0 & 0 & 0.019
\end{pmatrix}
\]

\[
\Delta f_4 = 11.90 MHz, \quad \Delta L = 5.78 mm
\]

\[
\Delta f_2 = -3.13 MHz, \quad \Delta L = -1.35 mm
\]

\[
\Delta f_1 = -26.32 MHz, \quad \Delta L = -4.16 mm
\]
1.1 GHz 3.5-Zellen-Gun-Resonator, komplet

\[\pi \text{-mode} \]

- electric field / a.u.
- \(z / \text{cm} \)

Graphical Information:
- Graph showing electric field (a.u.) vs. \(z / \text{cm} \).
-峰值频率：所有单元 \(f = 1276.72 \text{ MHz} \).
gun resonator (gun4165c.af, 30.05.2005)
gun cell frequency 1276.72 MHz

\[\pi \text{-mode} \]
1.1 GHz 3.5-cellen-Gun-Resonator, komplett $f = 1297.3636$ MHz

Graph showing the electric field in a.u. along the z-axis in cm, with a peak at π-mode.