Effect of Moderate Hypercapnic Hypoxia on Cerebral Dopaminergic Activity and Brain O2 Uptake in Intrauterine Growth–Restricted Newborn Piglets


Effect of Moderate Hypercapnic Hypoxia on Cerebral Dopaminergic Activity and Brain O2 Uptake in Intrauterine Growth–Restricted Newborn Piglets

Bauer, R.; Walter, B.; Vorwieger, G.; Fritz, A.; Füchtner, F.; Zwiener, U.; Brust, P.

There is evidence that intrauterine growth restriction (IUGR) is associated with altered dopaminergic function in the immature brain. Compelling evidence exists that in the newborn brain, specific structures are especially vulnerable to O2 deprivation. The dopaminergic system is shown to be sensitive to O2 deprivation in the immature brain. However, the respective enzyme activities have not been measured in the living neonatal brain after IUGR under hypercapnic hypoxia (H/H). Therefore, 18F-labeled 6-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) together with positron emission tomography was used to estimate the aromatic amino acid decarboxylase activity of the brain of seven normal weight (body weight 2078 +/- 434g) and seven IUGR newborn piglets (body weight 893 +/- 109 g). Two positron emission tomography scans were performed in each piglet. All animals underwent a period of normoxia and moderate H/H. Simultaneously, cerebral blood flow was measured with colored microspheres and cerebral metabolic rate of O2 was determined. In newborn normal-weight piglets, the rate constant for FDOPA decarboxylation was markedly increased in mesostriatal regions during H/H, whereas brain oxidative metabolism remained unaltered. In contrast, moderate H/H induced in IUGR piglets a marked reduction of clearance rates for FDOPA metabolites (p < 0.05), which was accompanied by a tendency of lowering the rate constant for FDOPA conversion. Furthermore, IUGR piglets maintained cerebral O2 uptake in the early period of H/H, but during the late period of H/H, a significantly reduced cerebral metabolic rate of O2 occurred (p < 0.05). Thus, IUGR is accompanied by a missing activation of dopaminergic activity and attenuated brain oxidative metabolism during moderate H/H. This may indicate endogenous brain protection against O2 deprivation.

Permalink: https://www.hzdr.de/publications/Publ-10092