Effect of electromagnetic stirring on microstructure evolution and mechanical properties of peritectic Ti-Al alloy


Effect of electromagnetic stirring on microstructure evolution and mechanical properties of peritectic Ti-Al alloy

Biswas, K.; Hermann, R.; Gerbeth, G.; Priede, J.

The effects of strong melt convection on microstructure evolution and resulting mechanical properties of Ti45Al55 peritectic alloys has been investigated. The samples are subjected to both conventional induction melting as well as enhanced melt stirring by applying an external magnetic field using a specially designed floating zone arrangement. The stirred samples show a significant improvement of the plastic deformability compared to the conventionally melted samples. Additionally, the fracture surface of the stirred samples exhibits more deformation. A strong change in the morphology of properitectic phase from dendritic to spherical together with an increase in the properitectic phase fraction was observed in the stirred samples. The possible reason of the change in morphology is explained as a result of spherical growth under forced convection. Compositional line-scan shows that the Al-depletion layer near the interface of (a2+g) colonies and g matrix reduces in the stirred samples due to the enhanced mass transfer under the effect of strong stirring.

  • Lecture (Conference)
    5th Decennial International Conference on Solidification Processing - SP07, 23.-25.07.2007, Sheffield, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-10630
Publ.-Id: 10630