Using X-ray diffraction to identify precipitates in transition metal doped semiconductors


Using X-ray diffraction to identify precipitates in transition metal doped semiconductors

Zhou, S.; Potzger, K.; Talut, G.; von Borany, J.; Skorupa, W.; Helm, M.; Fassbender, J.

In the past decade, room temperature ferromagnetism was often observed in transition metal doped semiconductors, which were claimed as diluted magnetic semiconductors (DMS). Nowadays intensive activities are devoted to clarify weather the observed ferromagnetism stems from carrier mediated magnetic impurities, ferromagnetic precipitates or spinodal decomposition. In this paper, we have correlated the structural and magnetic properties of transition metal doped ZnO, TiO2 and Si, prepared by ion implantation. Crystalline precipitates, i.e. transition metal (Co, Ni) and Mn-silicide nanocrystals, are responsible for the magnetism. Additionally due to their orientation nature with respect to the host, these nanocrystals in some cases are not detectable by conventional x-ray diffraction (XRD). This nature results in the pitfall of using XRD to exclude magnetic precipitates in DMS materials.

Keywords: X-ray diffraction; Nanocrystals; Magnetic semiconductors

  • Journal of Applied Physics 103(2008), 07D530
    DOI: 10.1063/1.2828710
    Cited 40 times in Scopus
  • Lecture (Conference)
    52nd Conference on Magnetism and Magnetic Materials and Intermag Conference, 05.-09.11.2007, Tampa, United States
  • Lecture (Conference)
    DPG Spring Meeting 2008, 24.-29.02.2008, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-10637
Publ.-Id: 10637