Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel


Controlled generation of ferromagnetic martensite from paramagnetic austenite in AISI 316L austenitic stainless steel

Menendez, E.; Sort, J.; Liedke, M. O.; Fassbender, J.; Surinach, S.; Baro, M. D.; Nogues, J.

The strain-induced austenite (gamma) to martensite (alpha') transformation in AISI 316L austenitic stainless steel, either in powders or bulk specimens, has been investigated. The phase transformation is accomplished by means of either ball milling processes (in powders) –dynamic approach– or by uniaxial compression tests (in bulk specimens) –quasi-static approach–. Remarkably, an increase of the strain rate causes opposite effects in each case: (i) it increases the amount of transformed alpha' in ball milling procedures, but (ii) it decreases the amount of alpha' in pressed samples. Both the microstructural changes (e.g., crystallite size refinement, microstrains or type of stacking faults) in the parent gamma phase and the role of the concomitant temperature rise during deformation seem to be responsible for these opposite trends. Furthermore, the results show the correlation between the gamma to alpha' phase transformation and the development of magnetism and enhanced hardness.

Keywords: phase transformation; steel; strain; ball milling; compression

Permalink: https://www.hzdr.de/publications/Publ-11378