Thermo-mechanische Finite-Elemente-Modellierung zur Schmelzerückhaltung im RDB nach Verlagerung von Corium in das untere Plenum Thermo-mechanical finite element modelling of in-vessel melt retention after corium relocation into the lower plenum


Thermo-mechanische Finite-Elemente-Modellierung zur Schmelzerückhaltung im RDB nach Verlagerung von Corium in das untere Plenum Thermo-mechanical finite element modelling of in-vessel melt retention after corium relocation into the lower plenum

Altstadt, E.; Abendroth, M.; Willschütz, H.-G.

Bezüglich eines hypothetischen Kernschmelzeszenarios in einem Leichtwasserreaktor ist es notwendig, mögliche Versagensformen des Reaktordruckbehälters sowie Versagenszeiträume zu untersuchen, um die Belastung für das Containment bestimmen zu können.
Vom Institut für Sicherheitsforschung des FZD wurden Finite-Elemente-Modelle erstellt, die sowohl die Temperaturfeldberechnung für die Wand als auch die elastoplastische Mechanik der Behälterwand beschreibt. Die thermischen und mechanischen Berechnungen sind gekoppelt. Das Modell ist in der Lage, Versagenszeit und Versagensposition eines Behälters mit beheiztem Schmelzepool zu berechnen. Es existieren Modelle für die Druckwasserreaktortypen KONVOI und WWER-1000. Es wurden prototypische Szenarien mit und ohne externe Flutung des RDB untersucht, wobei die homogen und die segregierte Schmelzepoolkonfiguration betrachtet wurden. Zusätzlich wurde eine bruchmechanische Bewertung des Thermoschocks, der durch die externe Flutung entsteht, vorgenommen. Auf Grundlage der Experimente im Rahmen des ISTC-Projekts METCOR wurde außerdem die Auswirkung der thermochemischen Wechselwirkung zwischen Corium-Schmelze und RDB-Wand auf das Versagensverhalten des RDB untersucht. Das wichtigste Ergebnis ist, dass eine erfolgreiche Schmelzerückhaltung im RDB auch bei größeren Reaktoren möglich erscheint, wenn eine rechtzeitige Flutung der Reaktorgrube gelingt. Mittels einer statistischen Analyse wurden die Empfindlichkeiten von Ergebnissen gegenüber den Eingangsparametern
und die Unsicherheiten der Ergebnisse quantifiziert.

Considering the hypothetical core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be investigated for a determination of the loadings on the containment. Several experiments have been performed accompanied with material properties evaluation, theoretical, and numerical work. At the Institute of Safety Research of the FZD finite element models have been developed simulating the thermal processes and the viscoplastic behaviour of the vessel wall. The thermal hydraulic and the mechanical calculations are coupled. The model is capable of evaluating fracture time and fracture position of a vessel with an internally heated melt pool. Models exist for the pressurised water reactor types KONVOI and VVER-1000. Prototypic scenarios with and without external flooding were investigated with consideration of homogeneous and segregated melt pool configurations. Additionally a fracture mechanic evaluation of the thermal shock, originating from the external flooding, was performed. Based on the experimental results of the ISTC project METCOR, the effects of the thermal chemical interaction between corium melt and vessel steel were investigated in the IVR scenarios. An important result of the project is that a successful in-vessel melt retention seems to be possible even for large reactors if the reactor pit can be filled with water before the corium melt is relocated to the lower plenum. By means of statistical analysis the sensitivity of results against input parameter variations was studied. The uncertainty of results was quantified.

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; FZD-503 2008
    ISSN: 1437-322X

Downloads

Permalink: https://www.hzdr.de/publications/Publ-11785
Publ.-Id: 11785