Thermoelectromagnetic convection - an alternative stirring technique in metallurgy


Thermoelectromagnetic convection - an alternative stirring technique in metallurgy

Cramer, A.; Zhang, X.; Gerbeth, G.

Thermoelectromagnetic convection in electrically conducting cubic containers was studied experimentally. Two opposing side walls were cooled and heated, respectively, to produce a uniform temperature gradient. Inhomogeneous magnetic field distributions were achieved either with a small permanent magnet located above the melt layer, or with specifically shaped pole shoes of the magnetic system. Ultrasonic Doppler velocimetry measurements demonstrated that even a moderate temperature gradient may drive a distinct convection. Two different flow regimes were investigated with the permanent magnet. When it was positioned in the vicinity of an isothermal wall, with its direction of magnetization parallel to the temperature gradient, a single vortex spreading the whole container developed while the flow might be assessed as relatively stable. Moving the magnet to the center led to a modified distribution of the magnetic field, which altered the flow structure. The convective pattern changed to four vortices and the velocity fluctuations were intensified. A more generic case was realized with the pole shoes providing a gradient of the magnetic field only in one direction. Since the strength of the field could be raised significantly above that provided by the small permanent magnet and the area of impact onto the melt was larger, developed turbulent regimes were accomplished. Numerical results obtained for the Lorentz force and the rotor thereof support the experimental findings.

  • Contribution to proceedings
    International Symposium on Liquid Metal Processing and Casting, 20.-23.09.2009, Santa Fe, New Mexico, 978-0-87339-743-8
  • Lecture (Conference)
    International Symposium on Liquid Metal Processing and Casting, 20.-23.09.2009, Santa Fe, New Mexico

Permalink: https://www.hzdr.de/publications/Publ-12735
Publ.-Id: 12735