A Comparative Complexation Study on Np(V) Interactions with Bacterial Cell Wall Compartments and Bioligands Secreted by Microbes


A Comparative Complexation Study on Np(V) Interactions with Bacterial Cell Wall Compartments and Bioligands Secreted by Microbes

Moll, H.; Barkleit, A.; Bernhard, G.

Microorganisms, microbial components, biopolymers and bioligands secreted by microbes have a great potential to influence the behavior of actinides in the environment. Functional groups provided by both lipopolysaccharide (LPS: main part of the cell wall of Gram-negative bacteria), and peptidoglycan (PG: main part of the cell wall of Gram-positive bacteria) are very effective in complexing uranium(VI) over a wide pH range (2.0 to 9.0) [1, 2]. The main functionalities for uranyl binding are phosphoryl and carboxyl groups of LPS and carboxyl groups of PG. The aerobic soil bacterium Pseudomonas fluorescens (CCUG 32456 A) isolated from the aquifers at the Äspö Hard Rock Laboratory, Sweden secretes pyoverdins. These unique bioligands have a high potential to bind uranium(VI) and curium(III) mainly due to their hydroxamate and catecholate functionalities [3, 4]. However, the interaction of neptunium(V) with both microbial cell wall components (LPS, PG) and secreted bioligands (PYO) are unknown. To address this lack, we thus present findings regarding the complexation of neptunium(V) with LPS, PG, and P. fluorescens (CCUG 32456) pyoverdins (PYO) obtained using near-infrared (NIR) absorption spectroscopy.
The spectrophotometric titrations of the Np(V)-LPS system showed a dominant neptunyl(V) coordination to phosphoryl groups between pH 4 and 8 followed by hydroxyl interactions in the alkaline pH range. A very low affinity of Np(V) to interact with the carboxyl groups of PG was measured. Strong Np(V)-pyoverdin species of the type MxLyHz could be identified from the spectrophotometric titrations. Remarkable was that the influence of Np(V)-pyoverdin species could already be detected under equimolar conditions.
Estimates are possible, on the basis of the determined stability constants, if neptunium(V) prefers to interact with the microbial cell wall (LPS), with biopolymers (PG) or with the secreted pyoverdin bioligands (PYO). The calculations were performed using nearly equimolar conditions of Np(V) and functional groups of the biosystems. More than 80% of all Np(V) is bound to pyoverdin species at pH 8 compared to ~37% bound to LPS and less than 1% bound to PG. This shows both the high affinity of neptunium(V) to bioligands containing hydroxamate and catecholate groups and the importance of indirect interaction processes between neptunium(V) and bioligands secreted by resident microbes.

[1] A. Barkleit, H. Moll, G. Bernhard, Dalton Trans. 2879-2886 (2008).
[2] A. Barkleit, H. Moll, G. Bernhard, Dalton Trans. published online: DOI 10.1039/b818702a (2009).
[3] H. Moll, M. Glorius, G. Bernhard, A. Johnsson, K. Pedersen, M. Schäfer, H. Budzikiewicz, Geomicrobiol. J. 25, 157-166 (2008).
[4] H. Moll, A. Johnsson, M. Schäfer, K. Pedersen, H. Budzikiewicz, G. Bernhard, Biometals 21, 219-228 (2008).

This work was funded by the BMWi under contract number: 02E9985.

Keywords: Neptunium; NIR; Spectroscopy; Bioligands; Pyoverdins; LPS; PG; Complexation

  • Contribution to proceedings
    4th Asia-Pacific Symposium on Radiochemistry (APSORC' 09), 29.11.-04.12.2009, Napa, California, USA
  • Lecture (Conference)
    4th Asia-Pacific Symposium on Radiochemistry (APSORC' 09), 29.11.-04.12.2009, Napa, California, USA

Permalink: https://www.hzdr.de/publications/Publ-12897
Publ.-Id: 12897