Stoichiometric MgB2 layers produced by multi-energy implantation of boron into magnesium


Stoichiometric MgB2 layers produced by multi-energy implantation of boron into magnesium

Werner, Z.; Szymczyk, W.; Piekoszewski, J.; Seah, M. P.; Ratajczak, R.; Nowicki, L.; Barlak, M.; Richter, E.

Ion implantation manufacture of superconducting magnesium diboride films of the MgB2 stoichiometry (B: Mg = 2:1 composition) by boron implantation in Mg wafers requires a precise knowledge of the implantation process properties, in particular of the partial sputtering yields of Mg atoms by B ions. To verify these yields experimentally we deposited thin Mg films on glassy carbon platelets and implanted them with high fluences of 40, 60, and 80 keV B+ ions. He-backscattering (RBS) spectrometry was used to determine before- and after-implantation depth profiles of Mg and B. The sputtering yields turned out to be small enough (<0.1 atoms per ion) to neglect sputtering in simulations of the implanted profiles. The results of the simulations have been compared to RBS spectra recorded on samples treated with 3 energies/fluencies optimised for a wide plateau of the B:Mg = 2:1 stoichiometric composition.

Permalink: https://www.hzdr.de/publications/Publ-13074
Publ.-Id: 13074