The role of the soft-iron impellers in the VKS dynamo experiment


The role of the soft-iron impellers in the VKS dynamo experiment

Giesecke, A.; Stefani, F.; Gerbeth, G.

A crucial point for the understanding of the von-Karman-Sodium (VKS) dynamo experiment is the influence of soft-iron impellers.

Numerical simulations of a VKS-like dynamo with a large localized permeability distribution that resembles the shape of the flow driving impellers clearly demonstrate that the common simplified treatment of the impellers, by demanding vanishing tangential field components at the top and the bottom boundaries, is not justified. The high permeability domain within the dynamo active region provides an significant enhancement of the axisymmetric field mode, whereas the first non-axisymmetric mode remains nearly unaffected.

To circumvent the restrictions of Cowling's theorem, still some alpha-effect is required for a growing axisymmetric field. However, the scaling behavior with the value of the disk permeability indicates that the necessary magnitude of alpha can be very small. The applied (homogenous) alpha-effect should be regarded as the simplest example how the soft iron disks facilitate growing axisymmetric solutions at reasonable parameter values. A complementary and more detailed approach will have to consider a non-axisymmetric flow variation in terms of azimuthally drifting equatorial vortices that have been observed in water experiments reported by de La Torre & Burguette (2007).

Keywords: Dynamo; VKS; Simulations; Permeability

  • Lecture (Conference)
    Dynamos d'un point de vue numerique et experimental, 07.-09.12.2009, Marseille, France

Permalink: https://www.hzdr.de/publications/Publ-13427