HTGR Fuel Element Depletion Benchmark: Stage Three Results


HTGR Fuel Element Depletion Benchmark: Stage Three Results

Fridman, E.; Shwageraus, E.

Recently, a new numerical benchmark exercise for High Temperature Gas Cooled Reactor (HTGR) fuel depletion was defined. The purpose of this benchmark is to provide a comparison basis for different codes and methods applied for burnup analysis of HTGRs. The benchmark specifications include three different models: (1) an infinite lattice of tristructural isotropic (TRISO) fuel particles, (2) an infinite lattice of fuel pebbles, and (3) prismatic fuel including fuel and coolant channels. In this paper, we present the results of the third stage of the benchmark obtained with MCNP based depletion code BGCore and deterministic lattice code HELIOS 1.9. The depletion calculations were performed for three-dimensional model of prismatic fuel with explicitly described TRISO particles as well as for two-dimensional model in which double heterogeneity of the TRISO particles was eliminated using reactivity equivalent physical transformation (RPT). Generally good agreement in the results of calculations obtained by different methods and codes was observed.

  • Contribution to proceedings
    PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance, 09.-14.05.2010, Pittsburgh, Pennsylvania, USA
  • Lecture (Conference)
    PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance, 09.-14.05.2010, Pittsburgh, Pennsylvania, USA

Permalink: https://www.hzdr.de/publications/Publ-13585
Publ.-Id: 13585