Classification of simulated surface morphologies induced by ion irradiation using combined TRIM and kinetic Monte-Carlo calculations


Classification of simulated surface morphologies induced by ion irradiation using combined TRIM and kinetic Monte-Carlo calculations

Liedke, B.; Heinig, K.-H.; Facsko, S.; Möller, W.

Atomistic understanding of surface morphology evolution induced by ion beam sputtering is still strongly limited. Available continuum models cannot explain microscopic processes during ion beam irradiation. Also atomistic simulation cannot describe pattern dynamics in the spatiotemporal scales of experiments.
Therefore, we develop a novel program package which unifies the collision cascade with kinetic Monte-Carlo simulations. The 3D atom relocations were calculated in the Binary Collision Approximation (BCA), whereas the thermally activated relaxation of energetic atomic configurations as well as diffusive processes were simulated by a very efficient bit-coded kinetic 3D Monte Carlo code.
Low energy (up to 5 keV) ion sputtering simulations have been performed on simulation cell of about 17 million atoms, where irradiation fluence goes up to few 1018 cm-2. The pattern topography has been study by means of various intensive parameters like incidence angle, ion beam energy, ion fluence, and migration energy of surface defects. Moreover, scaling behaviour of surface roughness and pattern periodicity has been analysed.
Finally, we compare our results with experiments as well as with continuum theory.

Keywords: TRIM; kinetic Monte-Carlo; ion irradiation; ripples formation; scaling

  • Poster
    2009 MRS Fall Meeting, 30.11.-04.12.2009, Boston, USA

Permalink: https://www.hzdr.de/publications/Publ-13677