Electronic structure and magnetism in YFeMnO5


Electronic structure and magnetism in YFeMnO5

Weißbach, T.; Leisegang, T.; Lubk, A.; Meyer, D. C.; Gemming, S.

YFeMnO5 crystallizes in the structure type of the orthorhombic RMn2O5 class of oxides. These show a series of antiferromagnetic phases with propagation vectors (1/2-δ, 0, 1/4+є) below TN ≈ 45 K. For several of these phases, magnetism coexists with ferroelectricity. In YFeMnO5, only one commensurable ferrimagnetic phase was found below TN = 165 K, and ferroelectricity is absent. We apply crystallographic and quantum chemical methods to compare the Fe-substituted and the mangenese-only compounds. Diffraction experiments show slight displacements of the atom sites with increasing Fe content. The largest effects are related to crystal-field repulsion acting on the local metal 3d orbitals. The interaction between the magnetic metal ions is studied using DFT calculations starting with a bias magnetization of the atoms.

Keywords: magnetism; ferroicity; multiferroic; manganite; DFT; XRay; Heisenberg; Ising

  • Lecture (Conference)
    DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2010, 21.-26.03.2010, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-14042
Publ.-Id: 14042