Numerical simulation of air-water counter-current two-phase flow in a model of the hot-leg of a pressurized water reactor (PWR)


Numerical simulation of air-water counter-current two-phase flow in a model of the hot-leg of a pressurized water reactor (PWR)

Deendarlianto; Höhne, T.; Lucas, D.; Vallée, C.

In order to validate newly developed multiphase flow models in the code ANSYS CFX, a CFD simulation of the counter-current two-phase flow of 1/3rd scale model of the hot leg of a German Konvoi Pressurized Water Reactor with rectangular cross section was performed. A selected air-water Counter-current flow limitation (CCFL) experiment of Forschungszentrum Dresden-Rossendorf (FZD) at 0.153 MPa and room temperature was simulated with three-dimensional two-fluid Euler-Euler models of computer code CFX 12.0 (ANSYS CFX). The calculation was carried out in fully transient manner using a gas/liquid inhomogeneous multiphase flow model coupled with a shear stress transport (SST) turbulence model. In the simulation, the drag coefficient was approached by the Algebraic Interfacial Area Density (AIAD) model. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. Next, a comparison with the high-speed video observations shows also a good qualitative agreement.

Keywords: Numerical simulation; Computational fluid dynamic; Counter-current flow limitation (CCFL); Pressurized water reactor (PWR); Algebraic interfacial area density (AIAD) model

  • Contribution to proceedings
    7th International Conference on Multiphase Flow (ICMF 2010), 30.05.-04.06.2010, Tampa, USA
    Proceeding of the 7th International Conference on Multiphase Flow
  • Lecture (Conference)
    7th International Conference on Multiphase Flow (ICMF 2010), 30.05.-04.06.2010, Tampa, USA

Permalink: https://www.hzdr.de/publications/Publ-14074
Publ.-Id: 14074