Magnetization reversal and artificial domains in hybrid magnetic materials


Magnetization reversal and artificial domains in hybrid magnetic materials

Fassbender, J.; Strache, T.; Fritzsche, M.; McCord, J.; Basitz, M.; Mcvitie, S.

Ion irradiation and implantation allows for a focussed materials modification in the range of a few nm only [1-3]. The modification of physical properties is especially effective, if interface effects in multilayer systems or ordering phenomena in binary alloys are considered. An addi¬tional degree of freedom can be exploited by a periodic patterning of the physical properties circumventing a topographic patterning in the conventional sense. Hybrid magnetic materials are created. Their integral magnetic properties are mainly governed by the shape and arrangement of the individual areas and cannot be considered as a simple superposition of the magnetic properties of modified and unmodified areas. The interactions between both areas and hence the length scales on which the magnetic properties are modified play a key role for their overall behaviour. For a review see Refs. 4 and 5. One of the major challenges is to exploit the scaling limits of this kind of structures and the appearance of an effective medium type material. These questions are addressed by high-resolution Lorentz microscopy imaging.

This work was supported by DFG grant no. FA 314/3-1 and DAAD.

Referenzen
[1] J. Fassbender et al., New J. Phys. 11, 125002 (2009).
[2] E. Menendez et al., Small 5, 229 (2009).
[3] J. McCord et al., Adv. Mater. 20, 2090 (2008).
[4] J. Fassbender and J. McCord, J. Magn. Magn. Mater. 320, 579 (2008).
[5] J. Fassbender et al., J. Phys. D: Appl. Phys. 37, R179 (2004).

Keywords: magnetism; magnetic domains; domain imaging; ion irradiation; hybrid materials

  • Invited lecture (Conferences)
    IEEE 7th International Symposium on Metallic Multilayers (MML 2010), 19.-24.09.2010, Berkeley, USA

Permalink: https://www.hzdr.de/publications/Publ-14095