Density reduction and diffusion in driven two-dimensional colloidal systems through microchannels


Density reduction and diffusion in driven two-dimensional colloidal systems through microchannels

Henseler, P.; Erbe, A.; Köppl, M.; Leiderer, P.

The behavior of particles driven through a narrow constriction is investigated in experiment and simulation. The system of particles adapts to the confining potentials and the interaction energies by a self-consistent arrangement of the particles. It results in the formation of layers throughout the channel and of a density gradient along the channel. The particles accommodate to the density gradient by reducing the number of layers one by one when it is energetically favorable. The position of the layer reduction zone fluctuates with time while the particles continuously pass this zone. The flow behavior of the particles is studied in detail. The velocities of the particles and their diffusion behavior reflect the influence of the self-organized order of the system.

Keywords: Colloids; Nonlinear dynamics and chaos; Computer simulation of molecular and particle dynamics; Studies of specific magnetic materials

Permalink: https://www.hzdr.de/publications/Publ-14370
Publ.-Id: 14370