Effect of hydrogen on hardness of amorphous silicon


Effect of hydrogen on hardness of amorphous silicon

Danesh, P.; Pantchev, B.; Wiezorek, J.; Schmidt, B.; Grambole, D.

A comparative study of hardness of thin films of hydrogenated amorphous silicon (a-Si:H) and hydrogen-free amorphous silicon (a-Si) was carried out to reveal the role of hydrogen in the plastic properties of amorphous silicon. In addition, the effect of hydrogen on hardness was established by changing hydrogen concentration in the material using post-deposition processing of the samples. The hydrogen concentration in a-Si:H was decreased by thermal annealing. In a-Si hydrogen was introduced by plasma hydrogenation. The values of hardness of the as-prepared a-Si and a-Si:H films were determined by nanoindentation using depth profiling. Low-depth indentation was applied to evaluate the effect of post-hydrogenation. The results obtained show that the presence of hydrogen in the amorphous silicon network leads to the increase in hardness. The conducted experiments demonstrate that plasma hydrogenation can be used as an effective tool to increase the hardness of amorphous silicon. Hardness of a-Si:H of about 12.3–12.7 GPa is as high as of crystalline silicon, suggesting a-Si:H can be a substitute for crystalline silicon in some MEMS.

Keywords: Hydrogenated amorphous silicon; Ion implantation; Elastic modulus; Hardness

Related publications

Permalink: https://www.hzdr.de/publications/Publ-14866
Publ.-Id: 14866