Vortex coupling in magnetic multilayer elements


Vortex coupling in magnetic multilayer elements

Wintz, S.; Puzic, A.; Strache, T.; Bunce, C.; Körner, M.; Schönherr, T.; Neubert, A.; McCord, J.; Moench, I.; Mattheis, R.; Raabe, J.; Quitmann, C.; Erbe, A.; Fassbender, J.

Spin vortices have attracted much attention due to their chiral nature and the variety of dynamic phenomena associated with them. In this contribution we present experimental findings on vortex coupling in trilayer elements, where two ferromagnetic layers are separated by a nonmagnetic spacer. For such systems the relative configurations of the in-plane flux senses (circulations) as well as the core orientations (polarities) of layered vortices are identified by means of scanning transmission x-ray microscopy (STXM). The dominant coupling mechanisms here are the magneto-dipolar interaction and interlayer exchange coupling (IEC). Remarkably, a modification of the IEC, which can be induced by noble gas ion irradiation, allows to specifically set the circulation configuration of a layered vortex pair to be either an- tiferromagnetic or ferromagnetic. In addition, time-resolved measurements of the response of interlayer coupled vortices to an excitation by sinusoidal magnetic fields will be shown.

Keywords: magnetic vortex; coupling; STXM; interlayer exchange coupling

Related publications

  • Poster
    DPG Frühjahrstagung der Sektion AMOP (SAMOP) und der Sektion Kondensierte Materie (SKM), 13.-18.03.2011, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-14887
Publ.-Id: 14887