Lateral straggling and its influence on lateral diffusion in implantation with a focused ion beam


Lateral straggling and its influence on lateral diffusion in implantation with a focused ion beam

Batabyal, R.; Roy, A.; Roy, S.; Bischoff, L.; Dev, B. N.

Ion implantation plays an important role in semiconductor industry. Different kinds of ions are introduced into semiconductors by implantation in order to form n-type and p-type semiconductors. Nanoscale doped structures are required to be fabricated, usually by a focused ion beam (FIB), for applications in nanoelectronics. However, how closely these structures could be fabricated for an effective device performance would be determined by the limitation imposed by the lateral diffusion of the implanted species. For ion implantation, lateral straggling of the ion beam also produces defects surrounding the implanted region. This would produce radiation enhanced lateral diffusion. It is important to understand the lateral diffusion in FIB-fabricated nanostructures. We present a method based on photoemission electron microscopy (PEEM) for the determination of lateral diffusion coefficient in nanostructures. As an example, we present the investigation of lateral diffusion of Ga in FIB-fabricated structures of Ga-implanted n-type Si. For a set of parallel Ga implanted stripes, the diffusion profiles at the end of the stripes along their length obey the standard diffusion equation and the diffusion coefficient is extracted. However, across the stripes the diffusion profile is more complex, due to the presence of defects due to lateral straggling in the neighbouring stripes.

Keywords: photoemission; focused ion beam; diffusion in nanostructures

Related publications

  • Lecture (Conference)
    24th International Conference on ATOMIC COLLISIONS IN SOLIDS, ICACS-24, 18.-23.07.2010, Krakow, Poland

Permalink: https://www.hzdr.de/publications/Publ-14905
Publ.-Id: 14905