Wear-out phenomena in Si-based light emitting devices with ion beam implanted europium


Wear-out phenomena in Si-based light emitting devices with ion beam implanted europium

Lehmann, J.; Rebohle, L.; Kanjilal, A.; Voelskow, M.; Helm, M.; Skorupa, W.

Recently, it was shown that it is possible to obtain efficient electroluminescence (EL) from UV to IR by implanting lanthanides into the oxide layer of metal-oxide semiconductor (MOS) structures [1]. The best efficiencies could be achieved on a Tb-implanted light emitter with an external quantum efficiency of 16% and a corresponding power efficiency of 0.3%. With these electrically driven Si-based light emitting devices, also called MOSLEDs, it is possible to build an integrated biosensor for the detection of organic molecules like estrogene, e.g. see Ref. [2]. For this purpose, the intensity and stability of the emitted EL are the most critical properties of the light emitters. Usually, lanthanide implanted MOSLEDs show a quenching of the EL-signal with time, which can be attributed to charge trapping in the oxide layer. In contrast to this normal wear-out phenomenon, Eu-implanted MOSLEDs can show a rise in the EL-signal during the operation time of the device [3]. Due to this anomalous wear-out phenomenon, Eu-implanted MOSLEDs offer the possibility to build a device with an extremely stable EL if the occurring processes can be better understood. For this reason, an intensive investigation was performed on Eu-implanted MOSLEDs exposed to different annealing temperatures and times. Transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS) were used to trace the growth of Eu / Eu oxide clusters and the diffusion of Eu to the interfaces of the gate oxide layer, respectively. Both of them were induced by the annealing process. Resonant nuclear reaction analysis (rNRA) was used to measure the hydrogen depth profile in the dielectric. Current-voltage (I-V) characteristics, the EL decay times (τ) and the evolution of the voltage under constant current injection (Vcc) as well as the evolution of the EL spectrum with injected charge (EL-Qinj) were studied with respect to charging and trapping phenomena in the oxide layer in order to reveal details in the occurring wear-out mechanism of the EL. It will be shown, that for certain annealing conditions the EL intensity of Eu-implanted SiO2 layers can increase during constant current injection which is followed by the known EL quenching. In extreme cases this rise may amount up to two orders of magnitude. The EL behaviour will be correlated with the microstructural and electrical properties of the devices. A qualitative model for the anomalous wear-out phenomenon is proposed.

Keywords: Electroluminescence; rare earth; charge trapping; ion implantation; Europium; Si-based light emission; Electroluminescence wear-out; quenching

Related publications

  • Lecture (Conference)
    Ion Implantation and Other Applications of Ions and Electrons (ION 2010), 14.-17.06.2010, Kazimierz Dolny, Poland

Permalink: https://www.hzdr.de/publications/Publ-14908
Publ.-Id: 14908